Processing math: 100%
Research article

Analytical and numerical investigation of beam-spring systems with varying stiffness: a comparison of consistent and lumped mass matrices considerations

  • Received: 07 March 2024 Revised: 22 May 2024 Accepted: 29 May 2024 Published: 28 June 2024
  • MSC : 35P15, 74K10, 74S05

  • This study examined the vibration behavior of a beam with linear spring attachments using finite element analysis. It aims to determine the natural frequency with both consistent/coupled mass and lumped mass matrices. The natural frequencies and corresponding mode shapes were correctly determined which formed the basis of any further noise vibration and severity calculations and impact or crash analysis. In order to obtain eigenfrequencies subject to the attached spring, the characteristic equation was obtained by eigenfunctions expansion whose roots were extracted using the root-finding technique. The finite element method by coupled and lumped mass matrices was then used to determine complete mode shapes against various eigenfrequencies. The mode shapes were then analyzed subject to supports with varying stiffness thereby comparing the analytical and numerical results in case of consistent and lumped masses matrices so as to demonstrate how the present analysis could prove more valuable in mathematical and engineering contexts. Utilizing a consistent mass matrix significantly enhanced accuracy compared to a lumped mass matrix, thereby validating the preference for the former, even with a limited number of beam elements. The results indicated that substantial deflection occurred at the beam's endpoints, supporting the dynamic behavior of the spring-beam system.

    Citation: Mohammed Alkinidri, Rab Nawaz, Hani Alahmadi. Analytical and numerical investigation of beam-spring systems with varying stiffness: a comparison of consistent and lumped mass matrices considerations[J]. AIMS Mathematics, 2024, 9(8): 20887-20904. doi: 10.3934/math.20241016

    Related Papers:

    [1] Huafeng Liu, Rui Liu . The sum of a hybrid arithmetic function over a sparse sequence. AIMS Mathematics, 2024, 9(2): 4830-4843. doi: 10.3934/math.2024234
    [2] Bhabesh Das, Helen K. Saikia . On the Sum of Unitary Divisors Maximum Function. AIMS Mathematics, 2017, 2(1): 96-101. doi: 10.3934/Math.2017.1.96
    [3] Li Zhou, Liqun Hu . Sum of the triple divisor function of mixed powers. AIMS Mathematics, 2022, 7(7): 12885-12896. doi: 10.3934/math.2022713
    [4] Long Chen, Shaofang Hong . Divisibility among determinants of power matrices associated with integer-valued arithmetic functions. AIMS Mathematics, 2020, 5(3): 1946-1959. doi: 10.3934/math.2020130
    [5] Aleksa Srdanov . Invariants in partition classes. AIMS Mathematics, 2020, 5(6): 6233-6243. doi: 10.3934/math.2020401
    [6] Ali N. A. Koam, Ali Ahmad, Azeem Haider, Moin A. Ansari . Computation of eccentric topological indices of zero-divisor graphs based on their edges. AIMS Mathematics, 2022, 7(7): 11509-11518. doi: 10.3934/math.2022641
    [7] Huimin Wang, Liqun Hu . Sums of the higher divisor function of diagonal homogeneous forms in short intervals. AIMS Mathematics, 2023, 8(10): 22577-22592. doi: 10.3934/math.20231150
    [8] Jiankang Wang, Zhefeng Xu, Minmin Jia . Distribution of values of Hardy sums over Chebyshev polynomials. AIMS Mathematics, 2024, 9(2): 3788-3797. doi: 10.3934/math.2024186
    [9] Zhen Guo . On mean square of the error term of a multivariable divisor function. AIMS Mathematics, 2024, 9(10): 29197-29219. doi: 10.3934/math.20241415
    [10] Boran Kim . Locally recoverable codes in Hermitian function fields with certain types of divisors. AIMS Mathematics, 2022, 7(6): 9656-9667. doi: 10.3934/math.2022537
  • This study examined the vibration behavior of a beam with linear spring attachments using finite element analysis. It aims to determine the natural frequency with both consistent/coupled mass and lumped mass matrices. The natural frequencies and corresponding mode shapes were correctly determined which formed the basis of any further noise vibration and severity calculations and impact or crash analysis. In order to obtain eigenfrequencies subject to the attached spring, the characteristic equation was obtained by eigenfunctions expansion whose roots were extracted using the root-finding technique. The finite element method by coupled and lumped mass matrices was then used to determine complete mode shapes against various eigenfrequencies. The mode shapes were then analyzed subject to supports with varying stiffness thereby comparing the analytical and numerical results in case of consistent and lumped masses matrices so as to demonstrate how the present analysis could prove more valuable in mathematical and engineering contexts. Utilizing a consistent mass matrix significantly enhanced accuracy compared to a lumped mass matrix, thereby validating the preference for the former, even with a limited number of beam elements. The results indicated that substantial deflection occurred at the beam's endpoints, supporting the dynamic behavior of the spring-beam system.


    Data analysis plays a critical role in numerous scientific disciplines, including reliability analysis, health sciences, economics, industry, and environmental studies, among others. To effectively conduct data analysis, it is essential to utilize appropriate models and statistical distributions. The development of new distributions has expanded researchers' options of suitable models, allowing them to accurately examine data characteristics and patterns. Additionally, the introduction of new distributions has increased the accuracy of analysis and predictions, enhancing the understanding of data and the ability to forecast future outcomes. Recently, several methods have emerged to facilitate the derivation of new distributions from existing ones, leading to the creation of more adaptable and improved models that better align with real-world data. In this context, we refer the reader to the literature cited in [1,2,3,4,5,6,7,8,9]. Xu et al. [10] proposed a model to evaluate the reliability of multicomponent systems in dynamic environments, accounting for component correlations and shared environmental effects. Wang et al. [11] conducted a study that analyzed clustered panel count data, which are commonly found in biomedical studies with multiple observation points and potential correlations within clusters. They introduced two semiparametric models to address these correlations and prevent biased estimations; these models were supported by simulation studies and a real-world application showcasing their efficacy. Xu et al. [12] introduced a bivariate Wiener model to capture the degradation patterns of two key performance characteristics of permanent magnet brakes. They also presented an objective Bayesian method for analyzing degradation data with small sample sizes.

    Many newly introduced probability distributions include a hazard rate (HR) function that is important in the analysis of lifetime data, particularly in studies related to survival and reliability. For instance, in the field of reliability engineering, numerous real-life datasets exhibit a distinctive bathtub-shaped HR, which indicates varying behaviors across different phases. In the initial phase, known as the infant mortality phase, the HR starts at a high level, indicating a greater likelihood of early failures in the life cycle of the system. Subsequently, as the system enters the normal life phase, the HR stabilizes and remains relatively constant, indicating a consistent HR during this period. Finally, in the wear-out phase, the HR increases, indicating an escalating probability of failures as the system ages and its components deteriorate. Furthermore, the HR function offers valuable insights into the timing and frequency of failures in medical data. It has extensive applications, such as survival analysis, clinical trial analysis, disease progression modeling, and risk assessment [13,14].

    Cho et al. [15] introduced the exponentiated extreme-value (EEV) distribution, which is defined by the cumulative distribution function (CDF) as follows:

    F(x)=(1eexθσ)λ,<x<,σ,λ>0,<θ<. (1.1)

    Cho et al. [15] examined the characteristics of the EEV distribution and provided approximate maximum likelihood estimators (MLEs) for the scale and location parameters by using multiply type-Ⅱ censored samples. The estimators were evaluated based on the mean squared error (MSE) for different censored samples. One major drawback of the work mentioned above is a lack of HR function, rendering it inadequate for many applications, particularly those involving engineering and medical data. Several conventional distributions cannot model the failure rate patterns observed in real-world data with high accuracy, specifically the characteristic bathtub-shaped trend commonly found in engineering and medical data. While the EEV distribution offers some flexibility, it lacks the ability to fully capture these patterns. To address this limitation, we propose a new three-parameter lifetime model called the exponentiated extended extreme-value (EEEV) distribution. By incorporating an additional parameter, the EEEV distribution can effectively model both increasing and bathtub-shaped HRs, making it a more versatile tool for lifetime data analysis.

    In this research paper, we propose a novel distribution by adding an additional variable to the CDF of the EEV distribution. We refer to this new distribution as the EEEV distribution, which possesses several advantageous properties. First, there is the flexibility in representing increasing or bathtub-shaped trends in data. Second, it facilitates the realization of the necessary flexibility when analyzing real-world data, particularly in fields such as engineering and medicine. Third, due to its inclusion of only three parameters, this model is easy to implement. Fourth, its parameters can be estimated by using various methods, and, here, simulation results were used to compare the performance of these estimators. Finally, the EEEV distribution consistently outperformed other competing distributions in terms of goodness of fit. Although the EEEV distribution provides flexibility in the modeling of different failure rate patterns, it is not suitable for all types of data, particularly those exhibiting a decreasing trend. Furthermore, the proposed model was only applied to complete datasets, but its applicability to censored datasets, such as type-Ⅱ progressive censoring, generalized hybrid censoring, and adaptive type-Ⅱ progressive censoring schemes, will be explored in future research.

    The paper is organized as follows. Section 2 explores the distribution of the proposed EEEVs. Section 3 establishes some of its statistical properties. Section 4 presents four estimation methods for calculating the EEEV distribution parameters. Section 5 shows the simulation results that were obtained by using four different estimating methods. Section 6 discusses the applicability of the EEEV distribution to three real datasets, illustrating its significance and flexibility. Finally, Section 7 provides a summary of the conclusion.

    Within this section, we propose a new model that extends the EEV distribution by incorporating an additional variable into the base CDF for the EEV distribution. The additional variable enhances the flexibility of the new distribution in the modeling of various types of data in different fields, consistently providing a better fit than its competitors. The resulting model is referred to as the EEEV distribution model. The CDF and probability density function (PDF) of the EEEV distribution with the parameter vectors denoted by Θ=(δ,γ,η) can be expressed as follows:

    F(x;Θ)=(1eδxeδxγ)η,x>0,η,δ>0,<γ<, (2.1)

    and

    f(x;Θ)=ηδ(1+δx)eδxγeδxeδxγ(1eδxeδxγ)η1, (2.2)

    where η,γ, and δ are the shape, location, and scale parameters, respectively.

    The survival function and the HR function of the EEEV distribution are expressed as follows:

    S(x;Θ)=1(1eδxeδxγ)η, (2.3)

    and

    h(x;Θ)=ηδ(1+δx)eδxγeδxeδxγ(1eδxeδxγ)η11(1eδxeδxγ)η. (2.4)

    Figures 1 and 2 depict the graphical performance of the PDF and HR function for the EEEV distribution for various parameter options. Figure 1 shows that the PDF of the EEEV distribution can be unimodal-shaped (see Figure 1(a)) or decreasing (see Figure 1(b)). On the other hand, Figure 2 indicates that the HR function can be increasing (see Figure 2(a)) or bathtub-shaped (see Figure 2(b)).

    Figure 1.  PDF results for EEEV distribution for different choices of η,γ, and δ.
    Figure 2.  HR function results for EEEV distribution for different choices of η,γ, and δ.

    To find the qth quantile (xq) of the EEEV distribution, one can solve the following equation:

    F(xq)=q, (3.1)

    Thus, solving Eq (3.1) yields

    xqeδxq=eγδlog(1q1η). (3.2)

    Let u=xqeδxq; it is possible to express xq in terms of u when the value of δ is positive, as follows:

    xq=1δF(δu), (3.3)

    where

    F(w)=k=1(1)k+1kk2wk(k1)!.

    We have verified Eq (3.3) and the power-series expansion for F(w)=ProductLog[w] by using Wolfram Mathematica software, which provides F(w) as the main solution for z in w=zez. We get

    F(w)=ww2+3w328w43+125w52454w65+16807w772016384w8315+531441w94480156250w10567+2357947691w1136288002985984w121925+1792160394037w134790016007909306972w14868725+320361328125w151435033635184372088832w16638512875+2862423051509815793w17209227898880005083731656658w1814889875+O(w19).

    Consequently, it is feasible to represent xq in relation to u by using Eq (3.3) given that xq=k=1akuk, where ak=(1)k+1kk2(k1)!δk1 and the condition of convergence of this sum is log(1q1η)<e(γ+1) (see [16,17]). Thus, the quantile for the EEEV distribution is as follows:

    xq=k=1ak(eγδlog(1q1η))k,0<q<1. (3.4)

    Applying q=0.25,0.5,0.75 in Eq (3.4), we obtain the first quartile, the median, and the third quartile of the EEEV distribution, respectively. Also, the skewness (SK) and kurtosis (KU) can be determined according to quartiles as follows:

    Sk=Q(0.75)2Q(0.5)+Q(0.25)Q(0.75)Q(0.25),

    and

    Ku=Q(0.875)Q(0.625)+Q(0.375)Q(0.125)Q(0.75)Q(0.25).

    The mode is determined by finding the solution to the following nonlinear equation:

    ηδ2eδxγeδxeδxγ(1eδxeδxγ)η1(((1+δx)2eδxγ)(η1eδxeδxγ11)+(2+δx))=0. (3.5)

    In general, Eq (3.5) lacks an analytical solution, which implies that the mode of EEEV distribution must be estimated by using numerical methods.

    Using Eq (2.2), the sth moment of the EEEV distribution can be determined as follows:

    μs=ηδ0xs(1+δx)eδxγeδxeδxγ(1eδxeδxγ)η1dx. (3.6)

    Apply the binomial series expansion of (1eδxeδxγ)η1, given by

    (1eδxeδxγ)η1=i=0(1)iΓ(η)i!Γ(ηi)eiδxeδxγ. (3.7)

    By substituting Eq (3.7) into Eq (3.6), we obtain

    μs=ηδi=0(1)iΓ(η)i!Γ(ηi)0xs(1+δx)eδxγe(1+i)δxeδxγdx. (3.8)

    By applying the substitution u=δxeδxγ and employing the same method as previously described, it can be shown that x=j=1aj(eγδu)j, where aj=(1)j+1jj2(j1)!δj1. This sum's convergence requirement is that eγδu<1eδ (see [17]). Therefore, the sth moment of the EEEV distribution can be written as

    μs=ηi=0(1)iΓ(η)i!Γ(ηi)e(γ+1)0(j=0aj(eγδu)j)se(1+i)udu, (3.9)

    but

    (j=1aj(eγδu)j)s=j1,j2,...,js=1Aj1,j2,...,js(eγδu)ms,

    where

    Aj1,j2,...,js=aj1aj2...ajs,andms=aj1+aj2+...+ajs.

    Returning to Eq (3.9) gives

    μs=i=0j1,j2,...,js=1Aj1,j2,...,js(1)iΓ(η+1)i!Γ(ηi)(eγδ)mse(γ+1)0umse(1+i)udu,

    After solving the integral presented above, the resulting solution is as follows:

    μs=i=0j1,j2,...,js=0Aj1,j2,...,js(1)iΓ(η+1)i!Γ(ηi)(1+i)ms+1(eγδ)ms×(Γ(ms+1)Γ(ms+1,(1+i)e(γ+1))). (3.10)

    Based on the first four ordinary moments of the EEEV distribution, the measures of SK and KU can be derived as follows:

    SK=μ33μ1μ2+2(μ1)3(μ2(μ1)2)32,

    and

    KU=μ44μ1μ3+6(μ1)2μ23(μ1)4(μ2(μ1)2)2.

    Table 1 provides the values of the first four moments, variance, SK, and KU for the EEEV distribution, considering various combinations of η,γ, and δ.

    Table 1.  The first four ordinary moments, SK, and KU of the EEEV distribution for different values of η,γ, and δ.
    η γ δ μ1 μ2 μ3 μ4 Variance SK KU
    0.05 0.25 2.25 15.7775 287.012 5771.23 125347. 38.0825 0.17533 2.69041
    0.25 0.25 2.25 3.1555 11.4805 46.1698 200.556 1.5233 0.17533 2.69041
    0.45 0.25 2.25 1.75306 3.54336 7.91664 19.1049 0.47015 0.17533 2.69041
    0.65 0.25 2.25 1.21365 1.6983 2.62687 4.38876 0.22534 0.17533 2.69041
    2.55 0.25 2.25 0.30936 0.11035 0.04351 0.01853 0.01464 0.17533 2.69041
    0.45 0.05 2.25 1.57074 2.87727 5.86865 12.997 0.41004 0.23256 2.71288
    0.45 0.25 2.25 1.75306 3.54336 7.91664 19.1049 0.47015 0.17533 2.69041
    0.45 0.75 2.25 2.25948 5.73786 15.8451 46.7126 0.63263 0.04316 2.68527
    0.45 1.25 2.25 2.83354 8.83346 29.5368 104.398 0.80452 -0.07261 2.73617
    0.45 1.5 1.25 2.5935 7.98134 27.1849 99.5165 1.25511 -0.01774 2.46311
    0.45 2.35 2.25 4.29882 19.6529 94.2261 469.725 1.17305 -0.27045 2.95185
    0.45 0.25 0.15 0.32438 0.4367 0.79478 1.69636 0.33148 2.29542 8.25998
    0.45 0.25 0.85 1.14133 1.90683 3.82028 8.60174 0.60419 0.56385 2.66745
    0.45 0.25 1.25 1.38594 2.49182 5.1907 11.9674 0.57099 0.35801 2.5789
    0.45 0.25 2.35 1.77914 3.62706 8.14864 19.7394 0.46173 0.16779 2.70302
    0.45 0.25 5.55 2.24874 5.36591 13.4809 35.446 0.30909 0.14095 2.9169

     | Show Table
    DownLoad: CSV

    According to Table 1, we can see that the KU of the EEEV distribution falls within the range of (2.46311,8.25998), whereas the SK can exhibit either negative or positive values, making it suitable for modeling skewed data.

    Assume that X1,...,Xn denote a random sample from EEEV distribution and let X1:n,...,Xn:n be the corresponding order statistics (OS). The PDF of the kth-OS is given by

    fk:n(x)=1B(k,nk+1)f(x)[F(x)]k1[1F(x)]nk, (3.11)

    where B(k,nk+1) is the beta function. Applying the binomial expansion of [1F(x;Θ_)]nk, Eq (3.11) can be expressed as follows:

    fk:n(x)=1B(k,nk+1)nkl=0(1)l(nkl)f(x)[F(x)]k+l1. (3.12)

    By substituting Eqs (2.1) and (2.2) into Eq (3.12), we obtain

    fk:n(x)=1B(k,nk+1)nkl=0(1)l(nkl)ηδ(1+δx)eδxγeδxeδxγ(1eδxeδxγ)(k+l)η1.

    As a result,

    fk:n(x)=nkl=0(1)ln!k!(k1)!(nkl)!(k+l)f(x;δ,γ,η), (3.13)

    where f(x;δ,γ,η) is the PDF of the EEEV distribution with the parameters δ,γ,η=(k+l)η. Utilizing Eq (3.10), the rth moment of the kth-OS for the EEEV distribution is given by

    μ(k:n)r=nkl=0i=0j1,j2,...,js=0(1)lin!Γ(η+1)i!k!(k1)!(nkl)!Γ(ηi)(1+i)ms+1(k+l)(eγδ)ms×(Γ(ms+1)Γ(ms+1,(1+i)e(γ+1))).

    The definition of incomplete moments is as follows:

    ms(x)=t0f(x)dx. (3.14)
    ms(x)=ηδt0(1+δx)eδxγeδxeδxγ(1eδxeδxγ)η1dx. (3.15)

    By utilizing the expansion (1eδxeδxγ)η1 and substituting u=δxeδxγ, as explained in the previous subsection, we obtain

    ms(x)=i=0j1,j2,...,js=0Aj1,j2,...,js(1)iΓ(η+1)i!Γ(ηi)(eγδ)msste(stγ)0umse(1+i)udu.

    Upon solving the integral presented above, the resulting solution is as follows:

    ms(x)=i=0j1,j2,...,js=0Aj1,j2,...,js(1)iΓ(η+1)i!Γ(ηi)(1+i)ms+1(eγδ)msγ1,

    where γ1=Γ(ms+1)Γ(ms+1,(1+i)ste(stγ)),(ms)>1.

    The Rényi entropy of X for the EEEV distribution is defined as follows:

    IR(ρ)=11ρlog0(f(x;Θ))ρdx,ρ>0,ρ1. (3.16)

    By substituting Eq (2.2) into Eq (3.16), we get

    IR(ρ)=11ρlog0(ηδ)ρ(1+δx)ρe(δxγ)ρeρδxeδxγ(1eδxeδxγ)ρ(η1). (3.17)

    By employing series expansions for (1+δx)ρ, eρδxeδxγ, and (1eδxeδxγ)ρ(η1), we obtain the Renyi entropy for the EEEV distribution:

    IR(ρ)=11ρlogi,j,k,l=0(1)j+k+l(ρi)(ρ(η1)k)ηρρjklδρ+dedγj!l!I(x;δ,d), (3.18)

    where I(x;δ,d)=0xdeδdx, d=ρ+j+l.

    Within this section, we estimate the unknown parameters δ,γ, and η of the EEEV distribution by utilizing four different estimation methods. The aim is to illustrate the performance variations among different estimators of the EEEV distribution for different combinations of parameters and sample sizes. The estimation methods employed in this study include the use of MLEs, least-squares estimators (LSEs), weighted LSEs (WLSEs), and Cramér-von Mises estimators (CVMEs). The MLE is a consistent method that converges to true parameter values as the sample size is increased. It is efficient and widely applicable, but it can be sensitive to initial parameter choices and computationally challenging for complex models. The LSE offers simplicity and robustness but may lack efficiency compared to the MLE. The WLSE improves upon the LSE by incorporating weights based on data variance, but it requires knowledge of the variance structure. The CVME, based on the empirical distribution function, demonstrates robustness and reduced sensitivity to tail behavior, but it can be computationally complex. The choice of the most suitable method depends on factors such as sample size, parameter values, data characteristics, and computational resources [18,19].

    Assuming that x1,x2,,xn denote n independent random variables with the EEEV distribution. Then, the log-likelihood function of the EEEV distribution, denoted as L(Θ;x), can be expressed as follows:

    L(Θ;x)=nlogδ+nlogηnγ+δni=1xi+ni=1log(1+δxi)δni=1xieδxiγ+(η1)ni=1log(1eδxieδxiγ). (4.1)

    The MLEs ˆδ,ˆγ, and ˆη can by calculated by maximizing Eq (4.1) by using numerical methods, such as NMaximize in the Wolfram Mathematica software. To obtain the normal equations of L(Θ;x), we can derive the first partial derivatives of L(Θ;x) with respect to δ,γ, and η, respectively. By setting these derivatives equal to zero, we have the following equations:

    L(Θ;x)δ=nδ+ni=1xi+ni=1xi1+δxini=1xi(1+δxi)eδxiγ+(η1)ni=1xi(1+δxi)e(δxiγ)δxieδxiγ1eδxieδxiγ. (4.2)
    L(Θ;x)γ=n+δni=1xieδxiγ(η1)ni=1δxie(δxiγ)δxieδxiγ1eδxieδxiγ. (4.3)
    L(Θ;x)η=nη+(1eδxieδxiγ). (4.4)

    Solving Eqs (4.2)–(4.4) by using numerical methods, such as FindRoot in Wolfram Mathematica software, we can obtain the estimators of the EEEV parameters by the MLE method.

    Assume that x1,x2,,xn represent the OS of a random sample of size n drawn from the EEEV distribution. Thus, the LSE [20] of the EEEV parameters can be obtained by minimizing the following function:

    LS(Θ)=ni=1(F((xi:n|Θ))in+1)2=ni=1((1eδxi:neδxi:nγ)ηin+1)2. (4.5)

    The previous equation's solution can be obtained by using numerical methods, such as NMinimize in the Wolfram Mathematica software.

    Similarly, the LSEs ˆδ,ˆγ, and ˆη can also be determined by solving the following nonlinear equations:

    ni=1((1eδxi:neδxi:nγ)ηin+1)Is(xi:n|Θ)=0,s=1,2,3, (4.6)

    where

    I1(xi:n|Θ)=F((xi:n|Θ))δ=ηxi(1+δxi)(1wi)η1eδxiγ, (4.7)
    I2(xi:n|Θ)=F((xi:n|Θ))γ=δηxi(1wi)η1eδxiγwi, (4.8)
    I3(xi:n|Θ)=F((xi:n|Θ))η=(1wi)ηlog(1wi), (4.9)

    and wi=eδxieδxiγ.

    The solution of Is(xi:n|Θ) for s=1,2,3 can be obtained numerically.

    Let x1,x2,,xn represent the OS of a random sample of size n drawn from the EEEV distribution. Thus, the WLSE [20] of the EEEV parameters can be obtained by minimizing the following function:

    W(Θ)=ni=1(n+1)2(n+2)i(ni+1)(F((xi:n|Θ))in+1)2=ni=1(n+1)2(n+2)i(ni+1)((1eδxi:neδxi:nγ)ηin+1)2. (4.10)

    Moreover, the WLSEs ˆδ,ˆγ, and ˆη can by obtained by solving the following nonlinear equations:

    ni=1(n+1)2(n+2)i(ni+1)((1eδxi:neδxi:nγ)ηin+1)Is(xi:n|Θ)=0,s=1,2,3,

    where Is(xi:n|Θ),s=1,2,3 have been defined in Eqs (4.7)–(4.9).

    Let x1,x2,,xn represent the OS of a random sample of size n drawn from the EEEV distribution. Thus, the CVME [21] of the EEEV parameters can be obtained by minimizing the following function:

    CV(Θ)=112n+ni=1(F((xi:n|Θ))2i12n)2=112n+ni=1((1eδxi:neδxi:nγ)η2i12n)2. (4.11)

    Furthermore, the CVMEs ˆδ,ˆγ, and ˆη can by obtained by solving the following nonlinear equations:

    ni=1((1eδxi:neδxi:nγ)η2i12n)Is(xi:n|Θ)=0,s=1,2,3,

    where Is(xi:n|Θ),s=1,2,3 have been defined in Eqs (4.7)–(4.9).

    Within this section, we detail a simulation study that was conducted to illustrate the effectiveness of different estimators by using data generated from the EEEV distribution. Version 12.3 of Wolfram Mathematica was used for all simulated studies and graphical representations. The numerical procedures were executed by following the algorithm below:

    Step 1: Generate random samples of varying sizes, n={25,60,100,200,300}, from the inverse CDF of the EEEV distribution, or by utilizing Eq (3.4).

    Step 2: Use four sets of parameters to generate the simulation results: set 1 (δ=0.05,γ=1.8,η=0.8), set 2 (δ=0.1,γ=1.5,η=0.6), set 3 (δ=0.25,γ=2.3,η=0.9), and set 4 (δ=0.5,γ=2.6,η=1.3).

    Step 3: Repeat the process 2000 times for each sample.

    Step 4: Calculate the average absolute biases (ABs), MSEs, mean relative errors (MREs), and root mean square error (RMSEs) for the four sets. The computational formulas for the AB, MSE, MRE, and RMSE are provided as follows:

    AB=nj=1|ˆΘjΘ|n,
    MSE=nj=1(ˆΘjΘ)2n,
    MRE=1nnj=1|ˆΘjΘ|n,

    and

    RMSE=nj=1(ˆΘjΘ)2n,

    where ˆΘ=(ˆδ,ˆγ,ˆη).

    The AB, MSE, MRE, and RMSE results were calculated for all sets; the results are shown in Tables 2 and 3. While Figures 36 provide graphical representations of the numerical values. Based on the results of the simulation analysis, as displayed in Tables 2 and 3, we can draw several important conclusions:

    Table 2.  Simulation results for the MLE, LSE, WLSE, and CVME methods for (δ=0.05,γ=1.8,η=0.8) and (δ=0.1,γ=1.5,η=0.6) when n=25,60,100,200,300.
    δ=0.05,γ=1.8,η=0.8 δ=0.1,γ=1.5,η=0.6
    n Method Est. Par. Average AB MSE MRE RMSE Average AB MSE MRE RMSE
    25 ˆδ 0.0671 0.0171 0.00399 0.34197 0.06313 0.13217 0.03217 0.0093 0.32172 0.09642
    MLE ˆγ 2.48756 0.68756 8.58016 0.38198 2.92919 2.08876 0.58876 4.57726 0.39251 2.13945
    ˆη 0.89245 0.09245 0.2094 0.11556 0.4576 0.63913 0.03913 0.07125 0.06521 0.26693
    ˆδ 0.08713 0.03713 0.01698 0.74257 0.13031 0.15793 0.05793 0.03375 0.57928 0.1837
    LSE ˆγ 3.36142 1.56142 25.5415 0.86746 5.05386 2.66636 1.16636 12.5284 0.77757 3.53955
    ˆη 0.7843 0.05324 0.23782 0.5962 0.48767 0.5629 0.0371 0.07536 0.06183 0.27451
    ˆδ 0.07637 0.02637 0.01109 0.52741 0.10533 0.14395 0.04395 0.02089 0.43947 0.14453
    WLSE ˆγ 2.85585 1.05585 12.6336 0.58658 3.55438 2.39486 0.89486 8.26169 0.59657 2.87432
    ˆη 0.80104 0.04521 0.21774 0.04526 0.46662 0.57615 0.02385 0.06807 0.03975 0.2609
    ˆδ 0.0912 0.0412 0.02226 0.824 0.1492 0.15984 0.05984 0.04124 0.59844 0.20307
    CVME ˆγ 3.29307 1.49307 26.0844 0.82948 5.10729 2.55771 1.05771 13.0611 0.70514 3.61401
    ˆη 0.85724 0.05724 0.30114 0.07155 0.54876 0.61304 0.03304 0.09029 0.04574 0.30048
    60 ˆδ 0.05461 0.00461 0.00043 0.09226 0.02081 0.11054 0.01054 0.00175 0.10542 0.04188
    MLE ˆγ 1.96756 0.16756 1.49478 0.09309 1.22261 1.69266 0.19266 1.258 0.12844 1.1216
    ˆη 0.8482 0.0482 0.0714 0.06025 0.26721 0.62114 0.02114 0.02783 0.03524 0.16681
    ˆδ 0.05919 0.00919 0.00121 0.18374 0.03479 0.11489 0.01489 0.00385 0.14895 0.06206
    LSE ˆγ 2.21243 0.41243 3.58126 0.22913 1.89242 1.80852 0.30852 2.3887 0.20568 1.54554
    ˆη 0.8163 0.03251 0.11012 0.04213 0.33184 0.59962 0.01538 0.03661 0.03735 0.19134
    ˆδ 0.0562 0.0062 0.00103 0.12394 0.03204 0.11018 0.01018 0.00241 0.10176 0.04907
    WLSE ˆγ 2.06897 0.26897 2.87373 0.14943 1.69521 1.70949 0.20949 1.65289 0.13966 1.28565
    ˆη 0.82292 0.02292 0.08756 0.02865 0.29591 0.60547 0.01547 0.0303 0.02562 0.17407
    ˆδ 0.05925 0.00925 0.00121 0.18494 0.03481 0.11464 0.01464 0.00377 0.14641 0.06137
    CVME ˆγ 2.17052 0.37052 3.51659 0.20584 1.87526 1.75379 0.25379 2.28894 0.16919 1.51293
    ˆη 0.84828 0.04828 0.12254 0.06035 0.35005 0.62152 0.02152 0.03986 0.03586 0.19966
    100 ˆδ 0.05258 0.00258 0.00022 0.05154 0.01485 0.10513 0.00513 0.00087 0.05128 0.02948
    MLE ˆγ 1.89902 0.09902 0.82896 0.05501 0.91047 1.57888 0.07888 0.68684 0.05259 0.82876
    ˆη 0.82713 0.02713 0.04215 0.03391 0.20531 0.61606 0.01606 0.01601 0.02677 0.12652
    ˆδ 0.05493 0.00493 0.00053 0.09859 0.02298 0.10758 0.00758 0.00192 0.07581 0.04376
    LSE ˆγ 2.02658 0.22658 1.81476 0.12588 1.34713 1.63644 0.13644 1.34157 0.09096 1.15826
    ˆη 0.81175 0.02354 0.07091 0.03215 0.2663 0.60706 0.00706 0.02461 0.01176 0.15686
    ˆδ 0.05321 0.00321 0.00032 0.06426 0.01794 0.10463 0.00463 0.0012 0.0463 0.03463
    WLSE ˆγ 1.94653 0.14653 1.17544 0.08141 1.08418 1.57663 0.07663 0.91315 0.05109 0.95559
    ˆη 0.81262 0.01962 0.05194 0.02543 0.22789 0.60988 0.00988 0.01888 0.01647 0.13739
    ˆδ 0.0549 0.0049 0.00053 0.09805 0.02294 0.10745 0.00745 0.00189 0.07452 0.04353
    CVME ˆγ 1.99827 0.19827 1.78684 0.11015 1.33673 1.60401 0.10401 1.31253 0.06934 1.14566
    ˆη 0.83111 0.03111 0.0756 0.03888 0.27496 0.62044 0.02044 0.02611 0.03406 0.16158
    200 ˆδ 0.05086 0.00086 0.0001 0.01723 0.01022 0.10249 0.00249 0.00039 0.02488 0.01986
    MLE ˆγ 1.81744 0.01744 0.42212 0.00969 0.64971 1.53915 0.03915 0.32636 0.0261 0.57128
    ˆη 0.82027 0.02027 0.02087 0.02534 0.14446 0.6073 0.0073 0.00742 0.01216 0.08613
    ˆδ 0.0518 0.0018 0.00025 0.03603 0.01586 0.10355 0.00355 0.00096 0.0355 0.03102
    LSE ˆγ 1.86225 0.06225 0.93335 0.03458 0.9661 1.55992 0.05992 0.71091 0.03995 0.84315
    ˆη 0.81975 0.01975 0.0407 0.02469 0.20174 0.60473 0.00473 0.01385 0.00788 0.11771
    ˆδ 0.05103 0.00103 0.00015 0.02051 0.01215 0.10231 0.00231 0.00059 0.02305 0.02422
    WLSE ˆγ 1.83104 0.03104 0.57806 0.01725 0.7603 1.5381 0.0381 0.45972 0.0254 0.67803
    ˆη 0.81572 0.01572 0.02633 0.01965 0.16225 0.60483 0.00483 0.00969 0.00805 0.09844
    ˆδ 0.05178 0.00178 0.00025 0.0357 0.01584 0.10346 0.00346 0.00096 0.03459 0.03094
    CVME ˆγ 1.84793 0.04793 0.92833 0.02663 0.9635 1.54287 0.04287 0.70442 0.02858 0.8393
    ˆη 0.82961 0.02961 0.04235 0.03702 0.2058 0.61149 0.01149 0.01431 0.01915 0.11964
    300 ˆδ 0.05101 0.00051 0.00007 0.02011 0.00828 0.10187 0.00187 0.00027 0.01868 0.01655
    MLE ˆγ 1.84075 0.04075 0.27529 0.02264 0.52468 1.53059 0.03059 0.22801 0.02039 0.47751
    ˆη 0.8073 0.0073 0.01286 0.00913 0.11342 0.60418 0.00418 0.00488 0.00697 0.06985
    ˆδ 0.05109 0.00109 0.00016 0.02176 0.01261 0.10238 0.00238 0.00059 0.0238 0.02436
    LSE ˆγ 1.83615 0.03615 0.61449 0.02008 0.78389 1.53926 0.03926 0.45913 0.02617 0.67759
    ˆη 0.81531 0.01531 0.02846 0.01914 0.16869 0.60311 0.00311 0.00898 0.00518 0.09478
    ˆδ 0.05079 0.00079 0.00009 0.0158 0.00972 0.10162 0.00162 0.00037 0.01617 0.01928
    WLSE ˆγ 1.82891 0.02891 0.37413 0.01606 0.61166 1.52674 0.02674 0.29961 0.01783 0.54737
    ˆη 0.80918 0.00918 0.01743 0.01148 0.13201 0.6027 0.0027 0.00608 0.00449 0.07794
    ˆδ 0.05108 0.00108 0.00016 0.02153 0.01261 0.10232 0.00232 0.00059 0.02319 0.02432
    CVME ˆγ 1.82662 0.02662 0.61249 0.01479 0.78262 1.52786 0.02786 0.45626 0.01857 0.67547
    ˆη 0.82182 0.02182 0.02925 0.02727 0.17103 0.60761 0.00761 0.00918 0.01268 0.09583

     | Show Table
    DownLoad: CSV
    Table 3.  Simulation results for the MLE, LSE, WLSE, and CVME methods for (δ=0.25,γ=2.3,η=0.9) and (δ=0.5,γ=2.6,η=1.3) when n=25,60,100,200,300.
    δ=0.25,γ=2.3,η=0.9 δ=0.5,γ=2.6,η=1.3
    n Method Est. Par. Average AB MSE MRE RMSE Average AB MSE MRE RMSE
    25 ˆδ 0.35092 0.10092 0.12491 0.40367 0.35342 0.79137 0.29137 1.0852 0.58273 1.04173
    MLE ˆγ 3.27032 0.97032 14.6829 0.42188 3.83183 4.22957 1.62957 38.2691 0.62676 6.1862
    ˆη 1.04184 0.14184 0.43378 0.1576 0.65862 1.66951 0.36951 1.98997 0.28424 1.41066
    ˆδ 0.48518 0.23518 0.50414 0.94073 0.71003 0.97518 0.47518 2.12617 0.95037 1.45814
    LSE ˆγ 4.69185 2.39185 51.8132 1.03993 7.19814 5.31577 2.71577 70.2814 1.04453 8.3834
    ˆη 0.9382 0.06982 0.52559 0.07545 0.72498 1.54415 0.24415 2.10624 0.18781 1.45129
    ˆδ 0.40129 0.15129 0.24664 0.60516 0.49663 0.82816 0.32816 1.20848 0.65632 1.09931
    WLSE ˆγ 3.86563 1.56563 26.9407 0.68071 5.19044 4.49194 1.89194 40.6753 0.72767 6.37772
    ˆη 0.94883 0.05983 0.45286 0.06826 0.67295 1.53852 0.23852 1.8327 0.18348 1.35377
    ˆδ 0.50049 0.25049 0.57997 1.00195 0.76155 1.02994 0.52994 2.63037 1.05988 1.62184
    CVME ˆγ 4.71112 2.41112 56.704 1.04831 7.53021 5.50417 2.90417 82.6703 1.11699 9.09232
    ˆη 1.03185 0.13185 0.67443 0.1465 0.82123 1.7139 0.4139 2.86944 0.31839 1.69394
    60 ˆδ 0.27446 0.02446 0.01234 0.09785 0.11108 0.56227 0.06227 0.08046 0.12453 0.28366
    MLE ˆγ 2.52462 0.22462 2.2402 0.09766 1.49673 2.94318 0.34318 3.86849 0.13199 1.96685
    ˆη 0.98249 0.08249 0.16374 0.09166 0.40465 1.44809 0.14809 0.56166 0.11391 0.74944
    ˆδ 0.30697 0.05697 0.04338 0.22786 0.20829 0.65157 0.15157 0.34572 0.30313 0.58798
    LSE ˆγ 2.90419 0.60419 6.43102 0.26269 2.53595 3.49419 0.89419 13.2909 0.34392 3.64567
    ˆη 0.95662 0.05662 0.24218 0.06291 0.49212 1.42573 0.18765 0.83869 0.012785 0.9158
    ˆδ 0.28499 0.03499 0.02133 0.13994 0.14606 0.59009 0.09009 0.11912 0.18019 0.34513
    WLSE ˆγ 2.67374 0.37374 3.56645 0.16249 1.8885 3.13818 0.53818 5.58451 0.20699 2.36316
    ˆη 0.95121 0.05121 0.18393 0.0569 0.42887 1.40737 0.10737 0.63103 0.08259 0.79437
    ˆδ 0.30752 0.05752 0.04366 0.2301 0.20895 0.65889 0.15889 0.37627 0.31778 0.61341
    CVME ˆγ 2.86611 0.56611 6.36025 0.24613 2.52195 3.49912 0.89912 14.0149 0.34581 3.74364
    ˆη 0.99657 0.09657 0.27374 0.1073 0.5232 1.48448 0.18448 0.94552 0.14191 0.97238
    100 ˆδ 0.2615 0.0115 0.00574 0.04601 0.07574 0.52559 0.02559 0.02565 0.05119 0.16017
    MLE ˆγ 2.39524 0.09524 1.12555 0.04141 1.06092 2.7324 0.1324 1.47605 0.05092 1.21493
    ˆη 0.94712 0.04712 0.07902 0.05236 0.2811 1.40069 0.10069 0.27375 0.07745 0.52321
    ˆδ 0.27398 0.02398 0.01645 0.09593 0.12824 0.56115 0.06115 0.09196 0.1223 0.30324
    LSE ˆγ 2.53265 0.23265 2.81444 0.10115 1.67763 2.94524 0.34524 4.48555 0.13278 2.11791
    ˆη 0.95453 0.05453 0.15666 0.06058 0.3958 1.44611 0.14611 0.60773 0.11239 0.77957
    ˆδ 0.26464 0.01464 0.00872 0.05854 0.09339 0.5355 0.0355 0.04283 0.07101 0.20695
    WLSE ˆγ 2.4418 0.1418 1.64835 0.06165 1.28388 2.80378 0.20378 2.34048 0.07838 1.52986
    ˆη 0.94064 0.04064 0.10859 0.04515 0.32953 1.39714 0.09714 0.3648 0.07473 0.60398
    ˆδ 0.27404 0.02404 0.01645 0.09615 0.12826 0.56352 0.06352 0.09347 0.12704 0.30574
    CVME ˆγ 2.50734 0.20734 2.78855 0.09015 1.66989 2.93868 0.33868 4.50827 0.13026 2.12327
    ˆη 0.97825 0.07825 0.16893 0.08694 0.411 1.48196 0.18196 0.65944 0.13997 0.81206
    200 ˆδ 0.25594 0.00594 0.00247 0.02376 0.04967 0.5104 0.0104 0.01162 0.0208 0.10778
    MLE ˆγ 2.3518 0.0518 0.50164 0.02252 0.70827 2.64302 0.04302 0.69743 0.01655 0.83512
    ˆη 0.92026 0.02026 0.03086 0.02251 0.17566 1.35763 0.05763 0.12527 0.04433 0.35393
    ˆδ 0.26056 0.01056 0.00694 0.04223 0.0833 0.52011 0.02011 0.03298 0.04023 0.18159
    LSE ˆγ 2.39257 0.09257 1.32685 0.04025 1.15189 2.68862 0.08862 1.84477 0.03408 1.35822
    ˆη 0.93858 0.03858 0.0836 0.04287 0.28914 1.41239 0.11239 0.31598 0.08645 0.56212
    ˆδ 0.25696 0.00696 0.00389 0.02783 0.06239 0.51098 0.01098 0.01756 0.02195 0.1325
    WLSE ˆγ 2.36454 0.06454 0.76947 0.02806 0.8772 2.64555 0.04555 1.02578 0.01752 1.01281
    ˆη 0.92212 0.02212 0.04676 0.02457 0.21625 1.36954 0.06954 0.17521 0.05349 0.41858
    ˆδ 0.26058 0.01058 0.00694 0.04231 0.0833 0.52113 0.02113 0.0332 0.04227 0.18221
    CVME ˆγ 2.37999 0.07999 1.32131 0.03478 1.14948 2.68472 0.08472 1.84808 0.03258 1.35944
    ˆη 0.9501 0.0501 0.08717 0.05567 0.29524 1.42931 0.12931 0.32994 0.09947 0.5744
    300 ˆδ 0.25333 0.00333 0.00169 0.01332 0.04111 0.50356 0.00356 0.00713 0.00712 0.08444
    MLE ˆγ 2.32383 0.02383 0.35088 0.01036 0.59235 2.6023 0.0023 0.4417 0.00088 0.66461
    ˆη 0.91716 0.01716 0.0228 0.01907 0.15099 1.34918 0.04918 0.07844 0.03783 0.28008
    ˆδ 0.25826 0.00826 0.00437 0.03304 0.06608 0.51192 0.01192 0.02053 0.02384 0.14327
    LSE ˆγ 2.37853 0.07853 0.8412 0.03414 0.91717 2.64535 0.04535 1.20856 0.01744 1.09934
    ˆη 0.92049 0.02049 0.0497 0.02276 0.22295 1.38797 0.08797 0.22245 0.06767 0.47165
    ˆδ 0.25451 0.00451 0.00243 0.01806 0.0493 0.50501 0.00501 0.01096 0.01003 0.1047
    WLSE ˆγ 2.34027 0.04027 0.49181 0.01751 0.70129 2.61116 0.01116 0.66555 0.00429 0.81581
    ˆη 0.91548 0.01548 0.03059 0.0172 0.17489 1.35743 0.05743 0.11838 0.04418 0.34406
    ˆδ 0.25829 0.00829 0.00437 0.03315 0.06609 0.51257 0.01257 0.02061 0.02514 0.14355
    CVME ˆγ 2.37035 0.07035 0.83881 0.03059 0.91587 2.6426 0.0426 1.20953 0.01638 1.09979
    ˆη 0.92788 0.02788 0.05107 0.03098 0.22598 1.39889 0.09889 0.22906 0.07607 0.4786

     | Show Table
    DownLoad: CSV
    Figure 3.  The AB, MSE, MRE, and RMSE results for the EEEV distribution for various values of n when δ=0.05,γ=1.8,η=0.8.
    Figure 4.  The AB, MSE, MRE, and RMSE results for the EEEV distribution for various values of n when δ=0.1,γ=1.5,η=0.6.
    Figure 5.  The AB, MSE, MRE, and RMSE results for the EEEV distribution for various values of n when δ=0.25,γ=2.3,η=0.9.
    Figure 6.  The AB, MSE, MRE, and RMSE results for the EEEV distribution for various values of n when δ=0.5,γ=2.6,η=1.3.

    ● As the sample size n increased, a clear trend in bias reduction was observed across all of the estimating techniques being examined.

    ● It can be deduced that all estimation methods demonstrate the consistency property, meaning that, as the sample size n increases, the estimators tend to approach the true parameter values.

    ● All of the estimation techniques performed very well on the task of estimating the EEEV parameters.

    ● The plots depicted in Figures 36 illustrate that the AB, MSE, MRE, and RMSE values diminish to zero with increasing sample size, irrespective of the parameter combinations. These graphical representations suggest that the MLE is the most efficient approach for estimating the parameters of the EEEV distribution.

    In this section, we demonstrate the versatility and significance of the EEEV distribution in the modeling of real-life data by employing three datasets from the fields of medicine and engineering. The first dataset, originally presented by Boag [22], details the ages (in months) of 18 patients who passed away due to causes other than cancer. The second dataset, introduced by Aarset [23], consists of the failure times of 50 electronic devices that were subjected to life tests starting from time zero. The third dataset, provided by Murthy et al. [24], revolves around the service times (in thousand hours) of 63 aircraft windshields of a specific model. Figures 79 illustrate the total time test (TTT) plots [23] for these three real datasets. Based on Figures 7(a) and 8(a), we can conclude that the empirical HR functions for the first and second datasets exhibited bathtub curves. On the other hand, Figure 9(a) suggests that the third dataset has an increasing HR.

    Figure 7.  (a) TTT plot, estimated (b) PDFs, (c) survival functions, and (d) HR functions for the Boag data.
    Figure 8.  (a) TTT plot, estimated (b) PDFs, (c) survival functions, and (d) HR functions for the Aarset data.
    Figure 9.  (a) TTT plot, estimated (b) PDFs, (c) survival functions, and (d) HR functions for the aircraft windshield data.

    In this analysis, we compared our model with six other competitive lifetime models, i.e., the exponentiated Weibull (EW)[25], power generalized Weibull (PGW)[26], EEV [15], exponentiated Nadarajah-Haghighi (ENH)[27], alpha logarithmic transformed Weibull (ALTW)[28], and logistic Nadarajah-Haghighi (LNH)[29] distributions. To assess the suitability of these competing distributions, we utilized various goodness-of-fit analytical measures, including the log-likelihood (LL), consistent Akaike information criterion (CAIC), Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC), and Cramér-von Mises (W), Anderson-Darling (A), and Kolmogorov-Smirnov (KS) statistics, along with their corresponding P-value. All calculations were performed by using the Wolfram Mathematica software, as well as the graph construction.

    Tables 4, 7, and 10 present the estimated EEEV parameters obtained from four different estimation methods, along with the corresponding goodness-of-fit measures for the Boag, Aarset, and aircraft windshield datasets, respectively. By examining the P-values in Tables 4, 7, and 10, it is suggested that the MLE is suitable for estimating the EEEV parameters for the Boag data, while the WLSE is recommended for the Aarset data. As for the aircraft windshield data, it is advised to employ the CVME method to estimate the EEEV parameters. Tables 5, 8, and 11 provide the MLE method estimates for the EEEV parameters, as well as the estimates for all of the compared distributions based on the Boag, Aarset, and aircraft windshield data. Tables 6, 9, and 12 present the comparison statistics for the Boag, Aarset, and aircraft windshield data. These statistics consist of LL, AIC, BIC, CAIC, HQIC, A, W, and KS values with corresponding P-value. The values presented in Tables 6, 9, and 12 indicate that the EEEV distribution outperformed other competing models. This is evidenced by the fact that the EEEV distribution had the lowest values across all measures, as well as the highest P-value.

    Table 4.  The estimates of the EEEV parameters and goodness-of-fit measures for the Boag data.
    Method δ γ η AIC A W KS P-value
    MLEs 0.01743 2.62844 0.47484 186.715 0.1288 0.01754 0.08915 0.99881
    LSEs 0.02493 4.21745 0.33478 187.254 0.15944 0.01941 0.10188 0.99214
    WLSEs 0.0209 3.51947 0.36866 187.088 0.15425 0.02114 0.10682 0.98638
    CRVMEs 0.0246 3.95979 0.37316 187.204 0.15054 0.01589 0.08229 0.99971

     | Show Table
    DownLoad: CSV
    Table 5.  Estimated parameters for the EEEV distribution and other fitted distributions for the Boag data.
    Distribution CDF MLE of the parameters
    EEEV (1eδxeδxγ)η,x>0;δ,γ,η>0 ˆδ=0.01743,ˆγ=2.62844,ˆη=0.47484
    EW (1e(xσ)α)θ,x>0;σ,α,θ>0 ˆσ=143.317,ˆα=5.40643,ˆθ=0.14
    PGW 1e1(1+λxβ)α,x>0;λ,β,α>0 ˆλ=3.30541×104,ˆβ=0.93287,ˆα=38.4569
    EEV (1eexθσ)λ,x;σ,λ>0;θ ˆσ=243.088,ˆθ=376.646,ˆλ=316.176
    ENH (1e1(1+λx)α)β,x>0;λ,α,β>0 ˆλ=3.39624×104,ˆα=25.5174,ˆβ=0.79492
    ALTW 1log(α(α1)(1eλxβ))log(α),x>0;α,λ,β>0 ˆα=7.97175×106,ˆλ=0.40239,ˆβ=0.73571
    LNH ((λx+1)α1)γ1+((λx+1)α1)γ,x>0;α,λ,γ>0 ˆα=4452.57,ˆλ=3.33326×106,ˆγ=0.99148

     | Show Table
    DownLoad: CSV
    Table 6.  Discrimination measures for the EEEV distribution and other competing distributions for the Boag data.
    Distribution LL AIC CAIC BIC HQIC A W KS P-value
    EEEV -90.3573 186.715 188.429 189.386 187.083 0.1288 0.01754 0.08915 0.99881
    EW -90.8083 187.617 189.331 190.288 187.985 0.27977 0.0483 0.14525 0.84207
    PGW -91.9461 189.892 191.606 192.563 190.26 0.49861 0.08063 0.15535 0.77779
    EEV -94.3796 194.759 196.473 197.43 195.127 0.30166 0.04266 0.10852 0.98384
    ENH -91.7872 189.574 191.289 192.246 189.943 0.56923 0.11327 0.18993 0.53473
    ALTW -90.838 187.676 189.39 190.347 188.044 0.26158 0.04533 0.14565 0.83967
    LNH -93.9015 193.803 195.517 196.474 194.171 0.80132 0.14853 0.21699 0.36491

     | Show Table
    DownLoad: CSV
    Table 7.  The estimates of the EEEV parameters and goodness-of-fit measures for the Aarset data.
    Method δ γ η AIC A W KS P-value
    MLEs 0.08099 8.719 0.21721 452.193 1.54936 0.21139 0.14323 0.25654
    LSEs 0.0734 8.71268 0.18199 457.309 1.12336 0.1177 0.14026 0.27891
    WLSEs 0.07329 8.13016 0.21355 452.757 1.21875 0.15883 0.12743 0.39126
    CRVMEs 0.07194 8.4662 0.1899 456.338 1.08172 0.11632 0.13388 0.33159

     | Show Table
    DownLoad: CSV
    Table 8.  Estimated parameters for the EEEV distribution and other fitted distributions for the Aarset data.
    Distribution CDF MLE of the parameters
    EEEV (1eδxeδxγ)η,x>0;δ,γ,η>0 ˆδ=0.08099,ˆγ=8.719,ˆη=0.21721
    EW (1e(xσ)α)θ,x>0;σ,α,θ>0 ˆσ=91.7152,ˆα=5.16712,ˆθ=0.13253
    PGW 1e1(1+λxβ)α,x>0;λ,β,α>0 ˆλ=0.00179,ˆβ=0.89214,ˆα=12.4692
    EEV (1eexθσ)λ,x;σ,λ>0;θ ˆσ=2.50259,ˆθ=89.8441,ˆλ=0.05625
    ENH (1e1(1+λx)α)β,x>0;λ,α,β>0 ˆλ=3.2702×104,ˆα=36.963,ˆβ=0.67336
    ALTW 1log(α(α1)(1eλxβ))log(α),x>0;α,λ,β>0 ˆα=6.72977×109,ˆλ=0.72573,ˆβ=0.75982
    LNH ((λx+1)α1)γ1+((λx+1)α1)γ,x>0;α,λ,γ>0 ˆα=270.79,ˆλ=1.04928×104,ˆγ=0.74349

     | Show Table
    DownLoad: CSV
    Table 9.  Discrimination measures for the EEEV distribution and other competing distributions for the Aarset data.
    Distribution LL AIC CAIC BIC HQIC A W KS P-value
    EEEV -223.096 452.193 452.714 457.929 454.377 1.54936 0.21139 0.14323 0.25654
    EW -228.506 463.012 463.534 468.748 465.196 3.32963 0.54406 0.206 0.02871
    PGW -235.576 477.152 477.674 482.888 479.336 3.48817 0.47986 0.1896 0.05493
    EEV -239.225 484.449 484.971 490.185 486.634 1.91921 0.28121 0.16717 0.12225
    ENH -233.402 472.804 473.326 478.54 474.989 3.25763 0.57281 0.20848 0.02591
    ALTW -225.448 456.896 457.418 462.633 459.081 3.41246 0.48076 0.18678 0.06108
    LNH -239.529 485.058 485.579 490.794 487.242 3.81132 0.72771 0.22928 0.01042

     | Show Table
    DownLoad: CSV
    Table 10.  The estimates of the EEEV parameters and goodness-of-fit measures for the aircraft windshield data.
    Method δ γ η AIC A W KS P-value
    MLEs 0.2939 0.38145 1.02884 202.355 0.27061 0.03964 0.06804 0.93246
    LSEs 0.41537 1.15305 0.88251 203.766 0.33906 0.03147 0.05887 0.98114
    WLSEs 0.3448 0.74329 0.94181 202.557 0.27615 0.037 0.06403 0.95844
    CRVMEs 0.41966 1.13735 0.91225 204.301 0.38116 0.03042 0.05786 0.98427

     | Show Table
    DownLoad: CSV
    Table 11.  Estimated parameters for the EEEV distribution and other fitted distributions for the aircraft windshield data.
    Distribution CDF MLE of the parameters
    EEEV (1eδxeδxγ)η,x>0;δ,γ,η>0 ˆδ=0.2939,ˆγ=0.38145,ˆη=1.02884
    EW (1e(xσ)α)θ,x>0;σ,α,θ>0 ˆσ=3.42894,ˆα=3.17339,ˆθ=0.37166
    PGW 1e1(1+λxβ)α,x>0;λ,β,α>0 ˆλ=0.03607,ˆβ=1.29399,ˆα=6.44458
    EEV (1eexθσ)λ,x;σ,λ>0;θ ˆσ=8.99851,ˆθ=17.441,ˆλ=3874.54
    ENH (1e1(1+λx)α)β,x>0;λ,α,β>0 ˆλ=0.00401,ˆα=83.026,ˆβ=1.27068
    ALTW 1log(α(α1)(1eλxβ))log(α),x>0;α,λ,β>0 ˆα=76.795,ˆλ=1.02757,ˆβ=1.18699
    LNH ((λx+1)α1)γ1+((λx+1)α1)γ,x>0;α,λ,γ>0 ˆα=22783.3,ˆλ=1.68692×105,ˆγ=1.59565

     | Show Table
    DownLoad: CSV
    Table 12.  Discrimination measures for the EEEV distribution and other competing distributions for the aircraft windshield data.
    Distribution LL AIC CAIC BIC HQIC A W KS P-value
    EEEV -98.1775 202.355 202.762 208.784 204.884 0.27061 0.03964 0.06804 0.93246
    EW -98.3272 202.654 203.061 209.084 205.183 0.31054 0.04736 0.07604 0.85955
    PGW -98.4754 202.951 203.358 209.38 205.479 0.32891 0.04653 0.07955 0.82017
    EEV -101.243 208.485 208.892 214.914 211.014 0.29761 0.04203 0.07506 0.86983
    ENH -98.6164 203.233 203.64 209.662 205.762 0.41203 0.07274 0.09721 0.59099
    ALTW -98.4323 202.865 203.271 209.294 205.393 0.27959 0.04224 0.07571 0.86305
    LNH -102.64 211.28 211.687 217.71 213.809 0.92644 0.13163 0.12073 0.31745

     | Show Table
    DownLoad: CSV

    The estimated PDF, survival function, and HR function, along with the TTT plot for the EEEV distribution and all other considered models, are depicted in Figures 59 for the three datasets. The findings presented in Tables 5, 8, and 11 indicate that the EEEV distribution is the most suitable model for fitting the three datasets among all of the investigated distribution models. These findings are further supported by the graphical representations in Figures 79.

    In this paper, we have proposed and examined the EEEV distribution as an extension of the EEV distribution. Its associated HR function can be bathtub-shaped or increasing. Some of its statistical properties have been derived. The estimation of the parameters for the EEEV distribution was performed by using four different estimation methods. The behaviors of these estimators were assessed via simulation. The practical applicability of the EEEV distribution has been illustrated by analyzing three real-life datasets from the fields of medicine and engineering. The analytical measures indicated that our EEEV distribution provided a good fit compared to other competing distributions.

    M. G. M. Ghazal: Conceptualization, Data curation, Methodology, Investigation, Software, Writing-review & editing; Yusra A. Tashkandy: Conceptualization, Investigation, Methodology, Project administration, Funding acquisition, Writing-original draft; Oluwafemi Samson Balogun: Conceptualization, Data curation, Writing-original draft, Formal analysis, Investigation; M. E. Bakr: Methodology, Investigation, Funding acquisition, Writing an original draft. All authors have read and approved the final version of the manuscript for publication.

    The authors declare that they have not used artificial intelligence tools in the creation of this article.

    This research project was supported by the Researchers Supporting Project (RSP2024R488), King Saud University, Riyadh, Saudi Arabia.

    There is no conflict of interest declared by the authors.



    [1] R. E. D. Bishop, D. C. Johnson. The mechanics of vibration, Cambridge University Press, 1960.
    [2] W. Zhang, S. Zhang, J. Wei, Y. Huang, Flexural behavior of SFRC-NC composite beams: an experimental and numerical analytical study, Structures, 60 (2024), 105823. https://doi.org/10.1016/j.istruc.2023.105823 doi: 10.1016/j.istruc.2023.105823
    [3] P. Zhang, P. Schiavone, H. Qing, Dynamic stability analysis of porous functionally graded beams under hygro-thermal loading using nonlocal strain gradient integral model, Appl. Math. Mech., 44 (2023), 2071–2092. https://doi.org/10.1007/s10483-023-3059-9 doi: 10.1007/s10483-023-3059-9
    [4] A. Khanfer, L. Bougoffa, On the nonlinear system of fourth-order beam equations with integral boundary conditions, AIMS Math., 6 (2021), 11467–11481. https://doi.org/10.3934/math.2021664 doi: 10.3934/math.2021664
    [5] M. G¨urg¨uze, On the vibrations of restrained beams and rods with heavy masses, J. Sound Vib., 100 (1985), 588–589. https://doi.org/10.1016/S0022-460X(85)80009-2 doi: 10.1016/S0022-460X(85)80009-2
    [6] T. Liu, P. Feng, Y. Bai, S. Bai, J. Yang, F. Zhao, Flexural performance of curved-pultruded GFRP arch beams subjected to varying boundary conditions, Eng. Struct., 308 (2024), 117962. https://doi.org/10.1016/j.engstruct.2024.117962 doi: 10.1016/j.engstruct.2024.117962
    [7] H. R. ¨Oz, Calculation of the natural frequencies of a beam-mass system using the finite element method, Math. Comput. Appl., 5 (2000), 67–76. https://doi.org/10.3390/mca5020067 doi: 10.3390/mca5020067
    [8] E. ¨Ozkaya, Linear transverse vibrations of a simply supported beam carrying concentrated masses, Math. Comput. Appl., 6 (2001), 147–152. https://doi.org/10.3390/mca6020147 doi: 10.3390/mca6020147
    [9] R. O. Grossi, B. Arenas, A variational approach to the vibration of tapered beams with elastically restrained ends, J. Sound Vib., 195 (1996), 507–511. https://doi.org/10.1006/jsvi.1996.0439 doi: 10.1006/jsvi.1996.0439
    [10] R. C. Smith, K. L. Bowers, J. Lund, A fully Sinc-Galerkin method for Euler-Bernoulli beam models, Numer. Methods Partial Differ. Equations, 8 (1992), 171–202. https://doi.org/10.1002/num.1690080207 doi: 10.1002/num.1690080207
    [11] O. Moaaz, A. E. Abouelregal, F. Alsharari, Lateral vibration of an axially moving thermoelastic nanobeam subjected to an external transverse excitation, AIMS Math., 8 (2023), 2272–2295. https://doi.org/10.3934/math.2023118 doi: 10.3934/math.2023118
    [12] M. Baccouch, The local discontinuous Galerkin method for the fourth-order Euler–Bernoulli partial differential equation in one space dimension. Part I: superconvergence error analysis, J. Sci. Comput., 59 (2014), 795–840. https://doi.org/10.1007/s10915-013-9782-0 doi: 10.1007/s10915-013-9782-0
    [13] J. Xie, Z. Zhang, Efficient high-order physical property-preserving difference methods for nonlinear fourth-order wave equation with damping, Comput. Math. Appl., 142 (2023), 64–83. https://doi.org/10.1016/j.camwa.2023.04.012 doi: 10.1016/j.camwa.2023.04.012
    [14] D. Shi, L. Wang, X. Liao, New estimates of mixed finite element method for fourth-order wave equation, Math. Methods Appl. Sci., 40 (2023), 4448–4461. https://doi.org/10.1002/mma.4316 doi: 10.1002/mma.4316
    [15] Y. Liu, C. S. Gurram, The use of He's variational iteration method for obtaining the free vibration of an Euler-Bernoulli beam, Math. Comput. Modell., 50 (2009), 1545–1552. https://doi.org/10.1016/j.mcm.2009.09.005 doi: 10.1016/j.mcm.2009.09.005
    [16] M. N. Hamdan, L. A. Latif, On the numerical convergence of discretization methods for the free vibrations of beams with attached inertia elements, J. Sound Vib., 169 (1994), 527–545. https://doi.org/10.1006/jsvi.1994.1032 doi: 10.1006/jsvi.1994.1032
    [17] M. Jafari, H. Djojodihardjo, K. A. Ahmad, Vibration analysis of a cantilevered beam with spring loading at the tip as a generic elastic structure, Appl. Mech. Mater., 629 (2014), 407–413. https://doi.org/10.4028/www.scientific.net/AMM.629.407 doi: 10.4028/www.scientific.net/AMM.629.407
    [18] G. Kanwal, R. Nawaz, N. Ahmed, Analyzing the effect of rotary inertia and elastic constraints on a beam supported by a wrinkle elastic foundation: a numerical investigation, Buildings, 13 (2023), 1457. https://doi.org/10.3390/buildings13061457 doi: 10.3390/buildings13061457
    [19] P. K. Banerjee, R. Butterfield, Boundary element method in engineering science, McGraw-Hill Education, 1981.
    [20] O. C. Zeinkeinwicz, Finite element method, Butterworth Heineman, 2005.
    [21] M. Petyt, Introduction to finite element vibration analysis, 2 Eds., Cambridge Univrsiy Press, 2015. https://doi.org/10.1017/CBO9780511761195
    [22] L. Euler, De motu vibratorio laminarum elasticarum, ubi plures novae vibrationum species hactenus non pertractatae evolvuntur, Novi Commentarii Academiae Scientiarum Petropolitanae, 1773.
    [23] A. W. Leissa, M. S. Qatu, Vibrations of continuous systems, McGraw-Hill Education, 2011.
    [24] S. M. Han, H. Benaroya, T. Wei, Dynamics of transversely vibrating beams using four engineering theories, J. Sound Vib., 225 (1999), 935–988. https://doi.org/10.1006/jsvi.1999.2257 doi: 10.1006/jsvi.1999.2257
    [25] T. Nawaz, M. Afzal, R. Nawaz, The scattering analysis of trifurcated waveguide involving structural discontinuities, Adv. Mech. Eng., 11 (2019), 282. https://doi.org/10.1177/1687814019829282 doi: 10.1177/1687814019829282
    [26] A. J. Ferreira, N. Fantuzzi, MATLAB codes for finite element analysis, Springer, 2009. https://doi.org/10.1007/978-3-030-47952-7
    [27] E. Kreyszig, Advanced engineering mathematics, John Wiley & Sons, Inc., 2009.
    [28] A. Bosten, V. Denoël, A. Cosimo, J. Linn, O. Brüls, A beam contact benchmark with analytic solution, ZAMM J. Appl. Math. Mech., 103 (2023), e202200151. https://doi.org/10.1002/zamm.202200151 doi: 10.1002/zamm.202200151
    [29] M. Bobková, L. Pospíšil, Numerical solution of bending of the beam with given friction, Mathematics, 9 (2021), 898. https://doi.org/10.3390/math9080898 doi: 10.3390/math9080898
    [30] L. He, A. J. Valocchi, C. A. Duarte, A transient global-local generalized FEM for parabolic and hyperbolic PDEs with multi-space/time scales, J. Comput. Phys., 488 (2023), 112179. https://doi.org/10.1016/j.jcp.2023.112179 doi: 10.1016/j.jcp.2023.112179
    [31] L. He, A. J. Valocchi, C. A. Duarte, An adaptive global-local generalized FEM for multiscale advection-diffusion problems, Comput. Methods Appl. Mech. Eng., 418 (2024), 116548. https://doi.org/10.1016/j.cma.2023.116548 doi: 10.1016/j.cma.2023.116548
    [32] A. Yaseen, R. Nawaz, Acoustic radiation through a flexible shell in a bifurcated circular waveguide, Math. Meth. Appl. Sci., 46 (2023), 6262–6278. https://doi.org/10.1002/mma.8902 doi: 10.1002/mma.8902
    [33] M. Alkinidri, S. Hussain, R. Nawaz, Analysis of noise attenuation through soft vibrating barriers: an analytical investigation, AIMS Math., 8 (2023), 18066–18087. https://doi.org/10.3934/math.2023918 doi: 10.3934/math.2023918
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1330) PDF downloads(57) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog