Research article Special Issues

A study of coupled nonlinear generalized fractional differential equations with coupled nonlocal multipoint Riemann-Stieltjes and generalized fractional integral boundary conditions

  • This paper was concerned with the existence and uniqueness results for a coupled system of nonlinear generalized fractional differential equations supplemented with a new class of nonlocal coupled multipoint boundary conditions containing Riemann-Stieltjes and generalized fractional integrals. The nonlinearities in the given system depend on the unknown functions as well as their lower order generalized fractional derivatives. We made use of the Leray-Schauder alternative and Banach contraction mapping principle to obtain the desired results. An illustrative example was also discussed. The paper concluded with some interesting observations.

    Citation: Bashir Ahmad, Ahmed Alsaedi, Areej S. Aljahdali, Sotiris K. Ntouyas. A study of coupled nonlinear generalized fractional differential equations with coupled nonlocal multipoint Riemann-Stieltjes and generalized fractional integral boundary conditions[J]. AIMS Mathematics, 2024, 9(1): 1576-1594. doi: 10.3934/math.2024078

    Related Papers:

    [1] Huan Zhang, Yin Zhou, Yuhua Long . Results on multiple nontrivial solutions to partial difference equations. AIMS Mathematics, 2023, 8(3): 5413-5431. doi: 10.3934/math.2023272
    [2] Yameng Duan, Wieslaw Krawcewicz, Huafeng Xiao . Periodic solutions in reversible systems in second order systems with distributed delays. AIMS Mathematics, 2024, 9(4): 8461-8475. doi: 10.3934/math.2024411
    [3] Wangjin Yao . Variational approach to non-instantaneous impulsive differential equations with p-Laplacian operator. AIMS Mathematics, 2022, 7(9): 17269-17285. doi: 10.3934/math.2022951
    [4] Zaitao Liang, Xuemeng Shan, Hui Wei . Multiplicity of positive periodic solutions of Rayleigh equations with singularities. AIMS Mathematics, 2021, 6(6): 6422-6438. doi: 10.3934/math.2021377
    [5] Feliz Minhós, Nuno Oliveira . On periodic Ambrosetti-Prodi-type problems. AIMS Mathematics, 2023, 8(6): 12986-12999. doi: 10.3934/math.2023654
    [6] Yan Yan . Multiplicity of positive periodic solutions for a discrete impulsive blood cell production model. AIMS Mathematics, 2023, 8(11): 26515-26531. doi: 10.3934/math.20231354
    [7] Li Zhang, Huihui Pang, Weigao Ge . Multiple periodic solutions of differential delay systems with 2k lags. AIMS Mathematics, 2021, 6(7): 6815-6832. doi: 10.3934/math.2021399
    [8] Chunlian Liu, Shuang Wang . Multiple periodic solutions of second order parameter-dependent equations via rotation numbers. AIMS Mathematics, 2023, 8(10): 25195-25219. doi: 10.3934/math.20231285
    [9] Eleonora Amoroso, Giuseppina D'Aguì, Valeria Morabito . On a complete parametric Sturm-Liouville problem with sign changing coefficients. AIMS Mathematics, 2024, 9(3): 6499-6512. doi: 10.3934/math.2024316
    [10] Junjie Li, Gurpreet Singh, Onur Alp İlhan, Jalil Manafian, Yusif S. Gasimov . Modulational instability, multiple Exp-function method, SIVP, solitary and cross-kink solutions for the generalized KP equation. AIMS Mathematics, 2021, 6(7): 7555-7584. doi: 10.3934/math.2021441
  • This paper was concerned with the existence and uniqueness results for a coupled system of nonlinear generalized fractional differential equations supplemented with a new class of nonlocal coupled multipoint boundary conditions containing Riemann-Stieltjes and generalized fractional integrals. The nonlinearities in the given system depend on the unknown functions as well as their lower order generalized fractional derivatives. We made use of the Leray-Schauder alternative and Banach contraction mapping principle to obtain the desired results. An illustrative example was also discussed. The paper concluded with some interesting observations.



    Recent years have witnessed the development of distributed discrete fractional operators based on singular and nonsingular kernels with the aim of solving a large variety of discrete problems arising in different application fields such as biology, physics, robotics, economic sciences and engineering (see for example [1,2,3,4,5,6,7,8,9]). These operators depend on their corresponding kernels overcoming some limits of the order of discrete operators, for example the most popular operators are Riemann-Liouville and Caputo with standard kernels, Caputo-Fabrizio with exponential kernels, Attangana-Baleanu with Mittag-Leffler kernels (see for example [10,11,12,13]). We also refer the reader to [14,15,16,17,18] for discrete fractional operators. Modeling and positivity simulations have been developed or adapted for discrete fractional operators, ranging from continuous fractional models to discrete fractional frameworks; see for example [1,19,20]). For other results on positivity and monotonicity we refer the reader to [21,22,23,24,25] and for discrete fractional models with monotonicity and positivity which is important in the context of discrete fractional calculus we refer the reader to [26,27,28,29].

    In this work, we are interested in finding positivity and monotonicity results for the following single and composition of delta fractional difference equations:

    (CFC     aΔνG)(t)

    and

    (CFCa+1ΔνCFC     aΔμG)(t),

    where we will assume that G is defined on Na:={a,a+1,}, and ν and μ are two different positive orders.

    The paper is structured as follows. The mathematical backgrounds and preliminaries needed are given in Section 2. Section 3 presents the problem statement and the main results. Conclusions are provided in Section 4.

    Let us start this section by recalling the notions of discrete delta Caputo-Fabrizio fractional operators that we will need.

    Definition 2.1 (see [30,31]). Let (ΔG)(t)=G(t+1)G(t) be the forward difference operator. Then for any function G defined on Na with aR, the discrete delta Caputo-Fabrizio fractional difference in the Caputo sense and Caputo-Fabrizio fractional difference in the Riemann sense are defined by

    (CFC     aΔαG)(t)=B(α)1αt1κ=a(ΔκG)(κ)(1+λ)tκ1=B(α)12αt1κ=a(ΔκG)(κ)(1+λ)tκ,[tNa+1], (2.1)

    and

    (CFR      aΔαG)(t)=B(α)1αΔtt1κ=aG(κ)(1+λ)tκ1=B(α)12αΔtt1κ=aG(κ)(1+λ)tκ,[tNa+1], (2.2)

    respectively, where λ=α1α for α[0,1), and B(α) is a normalizing positive constant.

    Moreover, for the higher order case when q<α<q+1 with q0, we have

    (CFC     aΔαG)(t)=(CFC     aΔαqΔqG)(t),[tNa+1]. (2.3)

    Remark 2.1. It should be noted that

    0<1+λ=12α1α<1,

    if α(0,12), where (as above) λ=α1α.

    Definition 2.2 (see [29,32]). Let G be defined on Na and α[1,2]. Then G is αconvexiff(ΔG) is (α1)monotone increasing. That is,

    G(t+1)αG(t)+(α1)G(t1)0,[tNa+1].

    This section deals with convexity and positivity of the Caputo-Fabrizio operator in the Riemann sense (2.2). We first present some necessary lemmas.

    Lemma 3.1. Let G:NaR be a function satisfying

    (CFC     aΔαΔG)(t)0

    and

    (ΔG)(a)0,

    for α(0,12) and t in Na+2. Then (ΔG)(t)0, for every t in Na+1.

    Proof. From Definition 2.1, we have for each tNa+2:

    (CFC     aΔαΔG)(t)=B(α)12αt1κ=a(Δ2κf)(κ)(1+λ)tκ=B(α)12α[t1κ=a(ΔG)(κ+1)(1+λ)tκt1κ=a(ΔG)(κ)(1+λ)tκ]=B(α)12α[(1+λ)(ΔG)(t)+λt1κ=a(ΔG)(κ)(1+λ)tκ]=B(α)12α[(1+λ)(ΔG)(t)(1+λ)ta(ΔG)(a)+λt1κ=a+1(ΔG)(κ)(1+λ)tκ]. (3.1)

    Since B(α)12α>0,1+λ>0 and (CFC     aΔαΔG)(t)0 for all tNa+2, then (3.1) gives us

    (ΔG)(t)(1+λ)ta1(ΔG)(a)λ1+λt1κ=a+1(ΔG)(κ)(1+λ)tκ. (3.2)

    We will now show that (ΔG)(a+i+1)0 if we assume that (ΔG)(a+i)0 for some iN1. Note from our assumption we have that (ΔG)(a)0. But then from the lower bound for (ΔG)(a+i+1) in (3.2) and our assumption we have

    (ΔG)(a+i+1)(1+λ)i(ΔG)(a)0λ1+λa+iκ=a+1(ΔG)(κ)(1+λ)a+i+1κ000,

    where we used λ1+λ<0. Thus, the result follows by induction.

    Lemma 3.2. Let G be defined on Na and

    (CFC     aΔαG)(t)0withtheinitialvaluesG(a+1)G(a)0,

    for α(1,32) and tNa+1. Then G is monotone increasing, positive and (12α)convex on Na.

    Proof. From the definition with q=1 we have

    0(CFC     aΔαG)(t)=(CFC     aΔα1ΔG)(t),[tNa+1].

    Since (ΔG)(a)0 is given we have

    (ΔG)(t)0,[tNa+1],

    by Lemma 3.1. This implies that G is a monotone increasing function. Therefore,

    G(t)G(t1)G(a+1)G(a)0,[tNa+1],

    and hence G is positive.

    From the idea in Lemma 3.1 we have (here λ=α12α for α(1,32)),

    (ΔG)(t)(1+λ)ta1(ΔG)(a)λ1+λt1κ=a+1(ΔG)(κ)(1+λ)tκ=(1+λ)ta1(ΔG)(a)0λ(ΔG)(t1)λ1+λt2κ=a+1(ΔG)(κ)(1+λ)tκ0since(ΔG)(t)0λ(ΔG)(t1)=(α12α)(ΔG)(t1)=(12α1)(ΔG)(t1).

    Consequently we have that G is (12α)convex on the set Na.

    Lemma 3.3. Let G be defined on Na and

    (CFC     aΔαG)(t)0with(Δ2G)(a)0,

    for α(2,52) and tNa+1. Then, Then (Δ2G)(t)0, for all tNa. Furthermore, one has G convex on the set Na.

    Proof. Let (CFC     aΔαG)(t):=F(t) for each tNa+1. Since α(2,52), we have:

    (CFC     aΔαG)(t)=(CFC     aΔα2Δ2G)(t)=(CFC     aΔα2ΔF)(t)0,

    for each tNa+1, and by assumption we have

    (ΔF)(a)=(Δ2G)(a)0.

    Then, using Lemma 3.2, we get

    (ΔF)(t)=(Δ2G)(t)0

    for each tNa+1. Hence, G is convex on Na.

    Lemma 3.4. Let G be defined on Na and

    Δ2(CFC     aΔαG)(t)0

    and

    (ΔG)(a+1)(ΔG)(a)0,

    for α(0,12) and tNa+1. Then (Δ2G)(t)0, for each tNa.

    Proof. For tNa+1, we have

    Δ(CFC     aΔαG)(t)=B(α)12αΔ[t1κ=a(ΔκG)(κ)(1+λ)tκ]=B(α)12α[tκ=a(ΔκG)(κ)(1+λ)t+1κt1κ=a(ΔκG)(κ)(1+λ)tκ]=B(α)12α[(1+λ)(ΔG)(t)+t1κ=a(ΔκG)(κ)(1+λ)t+1κt1κ=a(ΔκG)(κ)(1+λ)tκ]=B(α)12α[(1+λ)(ΔG)(t)+λt1κ=a(ΔκG)(κ)(1+λ)tκ], (3.3)

    where λ=α1α. It follows from (3.3) that,

    Δ2(CFC     aΔαG)(t)=B(α)12αΔ[(1+λ)(ΔG)(t)+λt1κ=a(ΔκG)(κ)(1+λ)tκ]=(1+λ)B(α)12α(Δ2G)(t)+λB(α)12α[tκ=a(ΔκG)(κ)(1+λ)t+1κt1κ=a(ΔκG)(κ)(1+λ)tκ]=(1+λ)B(α)12α(Δ2G)(t)+λB(α)12α[(1+λ)t+1a(ΔG)(a)+t1κ=a(ΔκG)(κ+1)(1+λ)tκt1κ=a(ΔκG)(κ)(1+λ)tκ]=(1+λ)B(α)12α(Δ2G)(t)+λB(α)12α[(1+λ)t+1a(ΔG)(a)+t1κ=a(Δ2κG)(κ)(1+λ)tκ]. (3.4)

    Due to the nonnegativity of (1+λ)B(α)12α, from (3.4) we deduce

    (Δ2G)(t)λ1+λ[(1+λ)t+1a(ΔG)(a)+t1κ=a(Δ2κG)(κ)(1+λ)tκ]. (3.5)

    By substituting t=a+1 into (3.5), we get

    (Δ2G)(a+1)λ1+λ[(1+λ)2(ΔG)(a)+(Δ2G)(a)(1+λ)]=α(1α)>0[(1+λ)(ΔG)(a)0+(Δ2G)(a)0]0.

    Also, if we substitute t=a+2 into (3.5), we obtain

    (Δ2G)(a+2)λ1+λ[(1+λ)3(ΔG)(a)+(1+λ)2(Δ2G)(a)+(1+λ)(Δ2G)(a+1)]=α(1α)>0[(1+λ)2(ΔG)(a)0+(1+λ)(Δ2G)(a)0+(Δ2G)(a+1)0]0.

    By continuing this process, we obtain that (Δ2G)(t)0 for each tNa as desired.

    Now, we are in a position to state the first result on convexity. Furthermore, three representative results associated to different subregions in the space of (μ,ν)-parameter will be provided.

    Theorem 3.1. Let G be defined on Na with ν(0,12) and μ(2,52), and

    (CFCa+1ΔνCFC     aΔμG)(t)0

    and

    (Δ2G)(a+1)(Δ2G)(a)0,

    for each tNa+1. Then G is convex on the set Na.

    Proof. Let (CFC     aΔμG)(t):=F(t) for each tNa+1. Then, by assumption we have

    (CFCa+1ΔνCFC     aΔμG)(t)=(CFCa+1ΔνF)(t)0,

    for each tNa+1. From the definition with q=2 we have

    F(a+1)=(CFC     aΔμG)(a+1)=(CFC     aΔμ2Δ2G)(a+1)=B(μ2)52μaκ=a(Δ3κG)(κ)(1+λμ)aκ=B(μ2)52μ>0(Δ3G)(a)0byassumption0,

    where λμ=μ23μ. Since (Δ2G)(a)0, we find that (Δ2G)(t)0 for each tNa. Furthermore, we see that G is convex on Na from Lemma 3.3.

    Theorem 3.2. Let G be defined on Na with ν(1,32) and μ(2,52), and

    (CFCa+1ΔνCFC     aΔμG)(t)0,(Δ2G)(a+2)13μ(ΔG2)(a+1)0,

    and

    (Δ2G)(a+1)(Δ2G)(a)0,

    for each tNa+1. Then G is convex on Na.

    Proof. Let F(t):=(CFC     aΔμG)(t). Note that:

    (CFCa+1ΔνCFC     aΔμG)(t)=(CFCa+1ΔνF)(t)0,

    for tNa+1. Then we have

    F(a+1)=(CFC     aΔμ2Δ2G)(a+1)=B(μ2)52μaκ=a(Δ3G)(κ)(1+λμ)a+1κ=B(μ2)52μ(1+λμ)(Δ3G)(a)0, (3.6)

    and

    F(a+2)=(CFC     aΔμ2Δ2G)(a+2)=B(μ2)52μa+1κ=a(Δ3G)(κ)(1+λμ)a+2κ=B(μ2)52μ[(1+λμ)2(Δ3G)(a)+(1+λμ)(Δ3G)(a+1)]=(1+λμ)B(μ2)52μ[(1+λμ)[(Δ2G)(a+1)(Δ2G)(a)]+[(Δ2G)(a+2)(Δ2G)(a+1)]](1+λμ)B(μ2)52μ[13μ1]0, (3.7)

    where λμ=μ252μ. On the other hand, one has

    F(a+2)F(a+1)=(1+λμ)B(μ2)52μ[(1+λμ)(Δ3G)(a)+(Δ3G)(a+1)(Δ3G)(a)](1+λμ)B(μ2)52μ(λμ1+13μ)(Δ2G)(a+1)0. (3.8)

    Then, from Eqs (3.6)–(3.8), we see that F(a+2)F(a+1)0. Therefore, Lemma 3.2 gives

    F(t)=(CFCa+1ΔνG)(t)0

    for all t in Na+1. Moreover, by considering (Δ2G)(a)0 in Lemma 3.3, we can deduce that G is convex on the set Na.

    Theorem 3.3. Let G be defined on Na with ν(2,52) and μ(0,12), and

    (CFCa+1ΔνCFC     aΔμG)(t)0,(ΔG)(a+2)11μ(ΔG)(a+1)0,

    and

    (ΔG)(a+1)(ΔG)(a)0,

    for each tNa+1. Then we have that G is convex on Na.

    Proof. Again, we write F(t):=(CFC     aΔμG)(t), and therefore, (CFCa+1ΔνF)(t)0 by assumption, for each tNa+1. Then, we see that

    (Δ2F)(a+1)Δ2(CFC     aΔμG)(a+1)by=(3.4)(1+λμ)B(μ)12μ(Δ2G)(a+1)+λμB(μ)12μ[(1+λμ)2(ΔG)(a)+aκ=a(Δ2κG)(κ)(1+λμ)a+1κ]=(1+λμ)B(μ)12μ[(Δ2G)(a+1)+λμ(1+λμ)(ΔG)(a)+λμ(Δ2G)(a)]=(1+λμ)B(μ)12μ[(ΔG)(a+2)+(λμ1)(ΔG)(a+1)+λ2μ(ΔG)(a)](1+λμ)B(μ)12μ[11μ(ΔG)(a+1)+(λμ1)(ΔG)(a+1)+λ2μ(ΔG)(a)0](1+λμ)B(μ)12μ[11μ+λμ1](ΔG)(a+1)0,

    where λμ=μ1μ. It follows that,

    (Δ2F)(t)=Δ2(CFC     aΔμG)(t)0,

    for each tNa by Lemma 3.3. Considering, (Δ2G)(a)0, we can deduce that G is convex on Na by Lemma 3.4.

    In Figure 1, we demonstrate the regions of the (μ,ν)-parameter space in which the above three Theorems 3.1–3.3 are applied.

    Figure 1.  Three different regions concerning Theorems 3.1–3.3.

    In this study, we present some new positivity results for discrete fractional operators with exponential kernels in the sense of Caputo. In particular new positivity, αconvexity and αmonotonicity were presented. We now refer the reader to observations for discrete generalized fractional operators in [33] which combined with this paper may motivate future work.

    Conceptualization, P.O.M., D.O., A.B.B. and D.B.; methodology, P.O.M., D.O.; software, D.O., D.B., K.M.A., A.B.B.; validation, P.O.M., D.O., D.B. and A.B.B.; formal analysis, K.M.A.; investigation, P.O.M., D.O., K.M.A.; resources, A.B.B.; writing-original draft preparation, P.O.M., D.O., D.B., K.M.A., A.B.B.; writing-review and editing, D.O., D.B. and A.B.B.; funding acquisition, D.B. and K.M.A. All authors read and approved the final manuscript.

    This Research was supported by Taif University Researchers Supporting Project Number (TURSP-2020/217), Taif University, Taif, Saudi Arabia.

    The authors declare that they have no conflicts of interest.



    [1] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
    [2] R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000. https://doi.org/10.1142/3779
    [3] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006. https://doi.org/10.1016/s0304-0208(06)x8001-5
    [4] J. Sabatier, O. P. Agarwal, J. A. T. Machado, Advances in fractional calculus, theoretical developments and applications in physics and engineering, Springer, New York, 2007.
    [5] Z. Jiao, Y. Q. Chen, I. Podlubny, Distributed-order dynamic systems, Springer, New York, 2012. https://doi.org/10.1007/978-1-4471-2852-6_4
    [6] D. Kusnezov, A. Bulgac, G. D. Dang, Quantum Levy processes and fractional kinetics, Phys. Rev. Lett., 82 (1999), 1136–11399. https://doi.org/10.1103/physrevlett.82.1136 doi: 10.1103/physrevlett.82.1136
    [7] T. T. Hartley, C. F. Lorenzo, Q. H. Killory, Chaos in a fractional order Chua's system, IEEE Trans. CAS-I42 (1995), 485–490. https://doi.org/10.1109/81.404062 doi: 10.1109/81.404062
    [8] I. Grigorenko, E. Grigorenko, Chaotic dynamics of the fractional Lorenz system, Phys. Rev. Lett., 91 (2003), 034101. https://doi.org/10.1103/physrevlett.91.034101 doi: 10.1103/physrevlett.91.034101
    [9] Z. M. Ge, C. Y. Ou, Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal, Chaos Soliton. Fract., 35 (2008), 705–717. https://doi.org/10.1016/j.chaos.2006.05.101 doi: 10.1016/j.chaos.2006.05.101
    [10] M. Faieghi, S. Kuntanapreeda, H. Delavari, D. Baleanu, LMI-based stabilization of a class of fractional-order chaotic systems, Nonlinear Dyn., 72 (2013), 301–309. https://doi.org/10.1007/s11071-012-0714-6 doi: 10.1007/s11071-012-0714-6
    [11] Z. M. Ge, W. R. Jhuang, Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor, Chaos Soliton. Fract., 33 (2007), 270–289. https://doi.org/10.1016/j.chaos.2005.12.040 doi: 10.1016/j.chaos.2005.12.040
    [12] F. Zhang, G. Chen, C. Li, J. Kurths, Chaos synchronization in fractional differential systems, Phil. Trans. R. Soc. A, 371 (2013), 20120155. https://doi.org/10.1098/rsta.2012.0155 doi: 10.1098/rsta.2012.0155
    [13] M. Ostoja-Starzewski, Towards thermoelasticity of fractal media, J. Therm. Stress, 30 (2007), 889–896. https://doi.org/10.1080/01495730701495618 doi: 10.1080/01495730701495618
    [14] Y. Z. Povstenko, Fractional thermoelasticity, Springer, New York, 2015. https://doi.org/10.1007/978-3-319-15335-3_8
    [15] R. Metzler, J. Klafter, The random walks guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1–77. https://doi.org/10.1016/s0370-1573(00)00070-3 doi: 10.1016/s0370-1573(00)00070-3
    [16] I. M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics, Phys. Today., 55 (2002), 48–54. https://doi.org/10.1063/1.1535007 doi: 10.1063/1.1535007
    [17] Y. Alruwaily, B. Ahmad, S. K. Ntouyas, A. S. M. Alzaidi, Existence results for coupled nonlinear sequential fractional differential equations with coupled Riemann-Stieltjes integro-multipoint boundary conditions, Fractal Fract., 6 (2022), 123. https://doi.org/10.3390/fractalfract6020123 doi: 10.3390/fractalfract6020123
    [18] B. Ahmad, M. Alghanmi, A. Alsaedi, Existence results for a nonlinear coupled system involving both Caputo and Riemann-Liouville generalized fractional derivatives and coupled integral boundary conditions, Rocky Mountain J. Math., 50 (2020), 1901–1922. https://doi.org/10.1216/rmj.2020.50.1901 doi: 10.1216/rmj.2020.50.1901
    [19] S. Belmor, C. Ravichandran, F. Jarad, Nonlinear generalized fractional differential equations with generalized fractional integral conditions, J. Taibah Univ. Sci., 14 (2020), 114–123. https://doi.org/10.1080/16583655.2019.1709265 doi: 10.1080/16583655.2019.1709265
    [20] S. Asawasamrit, Y. Thadang, S. K. Ntouyas, J. Tariboon, Non-instantaneous impulsive boundary value problems containing Caputo fractional derivative of a function with respect to another function and Riemann-Stieltjes fractional integral boundary conditions, Axioms, 10 (2021), 130. https://doi.org/10.3390/axioms10030130 doi: 10.3390/axioms10030130
    [21] S. Belmor, F. Jarad, T. Abdeljawad, M. A. Alqudah, On fractional differential inclusion problems involving fractional order derivative with respect to another function, Fractals, 28 (2020), 2040002. https://doi.org/10.1142/s0218348x20400022 doi: 10.1142/s0218348x20400022
    [22] B. Ahmad, S. K. Ntouyas, Nonlocal nonlinear fractional-order boundary value problems, World Scientific, Singapore, 2021. https://doi.org/10.1142/12102
    [23] B. Shiri, G. C. Wu, D. Baleanu, Terminal value problems for the nonlinear systems of fractional differential equations, Appl. Numer. Math., 170 (2021), 162–178. https://doi.org/10.1016/j.apnum.2021.06.015 doi: 10.1016/j.apnum.2021.06.015
    [24] B. Shiri, D. Baleanu, Generalized fractional differential equations for past dynamic, AIMS Math., 7 (2022), 14394–14418. https://doi.org/10.3934/math.2022793 doi: 10.3934/math.2022793
    [25] H. Waheed, A. Zada, R. Rizwan, I. L. Popa, Hyers-Ulam stability for a coupled system of fractional differential equation with p-Laplacian operator having integral boundary conditions, Qual. Theory Dyn. Syst., 21 (2022), 92. https://doi.org/10.1007/s12346-022-00624-8 doi: 10.1007/s12346-022-00624-8
    [26] A. Alsaedi, M. Alnahdi, B. Ahmad, S. K. Ntouyas, On a nonlinear coupled Caputo-type fractional differential system with coupled closed boundary conditions, AIMS Math., 8 (2023), 17981–17995. https://doi.org/10.3934/math.2023914 doi: 10.3934/math.2023914
    [27] S. K. Ntouyas, B. Ahmad, J. Tariboon, Nonlocal integro-multistrip-multipoint boundary value problems for ¯ψ-Hilfer proportional fractional differential equations and inclusions, AIMS Math., 8 (2023), 14086–14110. https://doi.org/10.3934/math.2023720 doi: 10.3934/math.2023720
    [28] N. Nyamoradi, B. Ahmad, Generalized fractional differential systems with Stieltjes boundary conditions, Qual. Theory Dyn. Syst., 22 (2023), 6. https://doi.org/10.1007/s12346-022-00703-w doi: 10.1007/s12346-022-00703-w
    [29] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2015), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062
    [30] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15.
    [31] B. Lupinska, T. Odzijewicz, A Lyapunov-type inequality with the Katugampola fractional derivative, Math. Method. Appl. Sci., 41 (2018), 8985–8996. https://doi.org/10.1002/mma.4782 doi: 10.1002/mma.4782
    [32] X. Su, Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett., 33 (2009), 64–69. https://doi.org/10.1016/j.aml.2008.03.001 doi: 10.1016/j.aml.2008.03.001
    [33] A. Granas, J. Dugundji, Fixed point theory, Springer-Verlag, New York, 2003. https://doi.org/10.1007/978-0-387-21593-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1320) PDF downloads(62) Cited by(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog