Processing math: 57%
Research article

Weighted pseudo almost periodic solutions of octonion-valued neural networks with mixed time-varying delays and leakage delays

  • Received: 22 February 2023 Revised: 27 March 2023 Accepted: 05 April 2023 Published: 21 April 2023
  • MSC : 34A34, 34C25, 34D23, 34K20

  • In this paper, we propose a class of octonion-valued neural networks with leakage delays and mixed delays. Considering that the multiplication of octonion algebras does not satisfy the associativity and commutativity, we can obtain the existence and global exponential stability of weighted pseudo almost periodic solutions for octonion-valued neural networks with leakage delays and mixed delays by using the Banach fixed point theorem, the proof by contradiction and the non-decomposition method. Finally, we will give one example to illustrate the feasibility and effectiveness of the main results.

    Citation: Jin Gao, Lihua Dai. Weighted pseudo almost periodic solutions of octonion-valued neural networks with mixed time-varying delays and leakage delays[J]. AIMS Mathematics, 2023, 8(6): 14867-14893. doi: 10.3934/math.2023760

    Related Papers:

    [1] Yanshou Dong, Junfang Zhao, Xu Miao, Ming Kang . Piecewise pseudo almost periodic solutions of interval general BAM neural networks with mixed time-varying delays and impulsive perturbations. AIMS Mathematics, 2023, 8(9): 21828-21855. doi: 10.3934/math.20231113
    [2] Xiaofang Meng, Yongkun Li . Pseudo almost periodic solutions for quaternion-valued high-order Hopfield neural networks with time-varying delays and leakage delays on time scales. AIMS Mathematics, 2021, 6(9): 10070-10091. doi: 10.3934/math.2021585
    [3] Hedi Yang . Weighted pseudo almost periodicity on neutral type CNNs involving multi-proportional delays and D operator. AIMS Mathematics, 2021, 6(2): 1865-1879. doi: 10.3934/math.2021113
    [4] Nina Huo, Bing Li, Yongkun Li . Global exponential stability and existence of almost periodic solutions in distribution for Clifford-valued stochastic high-order Hopfield neural networks with time-varying delays. AIMS Mathematics, 2022, 7(3): 3653-3679. doi: 10.3934/math.2022202
    [5] Yongkun Li, Xiaoli Huang, Xiaohui Wang . Weyl almost periodic solutions for quaternion-valued shunting inhibitory cellular neural networks with time-varying delays. AIMS Mathematics, 2022, 7(4): 4861-4886. doi: 10.3934/math.2022271
    [6] Qi Shao, Yongkun Li . Almost periodic solutions for Clifford-valued stochastic shunting inhibitory cellular neural networks with mixed delays. AIMS Mathematics, 2024, 9(5): 13439-13461. doi: 10.3934/math.2024655
    [7] Ramazan Yazgan . An analysis for a special class of solution of a Duffing system with variable delays. AIMS Mathematics, 2021, 6(10): 11187-11199. doi: 10.3934/math.2021649
    [8] Huahai Qiu, Li Wan, Zhigang Zhou, Qunjiao Zhang, Qinghua Zhou . Global exponential periodicity of nonlinear neural networks with multiple time-varying delays. AIMS Mathematics, 2023, 8(5): 12472-12485. doi: 10.3934/math.2023626
    [9] Zhigang Zhou, Li Wan, Qunjiao Zhang, Hongbo Fu, Huizhen Li, Qinghua Zhou . Exponential stability of periodic solution for stochastic neural networks involving multiple time-varying delays. AIMS Mathematics, 2024, 9(6): 14932-14948. doi: 10.3934/math.2024723
    [10] Shihe Xu, Zuxing Xuan, Fangwei Zhang . Analysis of a free boundary problem for vascularized tumor growth with time delays and almost periodic nutrient supply. AIMS Mathematics, 2024, 9(5): 13291-13312. doi: 10.3934/math.2024648
  • In this paper, we propose a class of octonion-valued neural networks with leakage delays and mixed delays. Considering that the multiplication of octonion algebras does not satisfy the associativity and commutativity, we can obtain the existence and global exponential stability of weighted pseudo almost periodic solutions for octonion-valued neural networks with leakage delays and mixed delays by using the Banach fixed point theorem, the proof by contradiction and the non-decomposition method. Finally, we will give one example to illustrate the feasibility and effectiveness of the main results.



    During the past decades, neural networks have attracted the attention of researchers and have been extensively applied, such as pattern recognition, associative memory, signal processing and so on. There are many good results about exponential stability and synchronization of the equilibrium point, periodic or anti-periodic solutions, almost periodic solutions and weighted pseudo almost periodic solutions for neural networks (see [1,2,3,4,5,6,7,8,9,10]).

    Leakage delay is the time delay in the leakage term of the systems and a considerable factor affecting dynamics in the systems. Leakage delay has a great impact on the dynamic behavior of neural networks. Some good results of neural networks with leakage delay have been studied. For example, some authors have studied the periodic (or anti-periodic solutions) for neural networks with leakage terms (see [11,12,13]), some authors have studied almost periodic solutions for neural networks with leakage delays (see [14,15,16]), some authors have studied the almost sure stability of stochastic neural networks with time delays in the leakage terms (see [17]) and some authors have studied the fractional-order neural networks with leakage delays (see [18,19,20,21,22]).

    Octonion-valued neural networks, which were first proposed by Popa in [23], represent a generalization of real-valued neural networks, complex-valued neural networks and quaternion-valued neural networks. The octonions are the largest of the four normed division algebras. While somewhat neglected due to their nonassociativity, they stand at the crossroads of many interesting fields of mathematics [24,25]. Recently, some authors have studied the equilibrium point for octonion-valued neural networks (see [26,27,28,29,30]).

    As is well known, the properties of weighted pseudo almost periodic solutions have been successfully applied in many neural networks with delays. The stability analysis of weighted pseudo-almost periodic solutions is more general and interesting than that of equilibrium points. Recently, some authors have studied the existence and global exponential stability of weighted pseudo almost periodic solutions for neural networks with delays (see [31,32,33,34,35,36]).

    With inspiration from previous research, to fill the gap in the research field of octonion-valued neural networks, the work of this article comes from two main motivations. (1) In practical applications, a weighted pseudo almost periodic motion is an interesting and significant dynamical property for differential equations. (2) Recently, in [26,27,28,29], Popa has studied the global exponential stability of the equilibrium point for octonion-valued neural networks. Therefore, it is worth studying the weighted pseudo almost periodic motion of octonion-valued neural network models via a non-decomposition method.

    Compared with the previous kinds of literature, the main contributions of this paper are listed as follows. (1) First, to the best of our knowledge, this is the first time study on the weighted pseudo almost periodic solutions for octonion-valued neural networks. (2) Second, without separating the octonion-valued neural networks into real-valued neural networks (or complex-valued neural networks), the results are less conservative and more general. (3) Third, in [26,27,28,29,30], some authors studied octonion-valued neural network systems by using the decomposition method. Therefore, to avoid the complexity of the calculation, this paper discusses octonion-valued neural network systems by using the non-decomposition method, the Banach fixed point theorem and the proof by contradiction. (4) Fourth, our method in this paper can be used to study the weighted pseudo almost periodic solutions for other types of octonion-valued neural networks. (5) Fifth, examples and numerical simulations are given to verify the effectiveness of the conclusion.

    Motivated by the above statement, in this paper, we will study the following octonion-valued neural networks with leakage delays and mixed delays:

    xi(t)=ci(t)xi(tηi(t))+nj=1aij(t)fj(xj(t))+nj=1bij(t)gj(xj(tτij(t)))+nj=1dij(t)ttδij(t)hj(xj(s))ds+Ii(t), (1.1)

    where i=1,2,,n, xi(t)O is the state vector of the ith unit at time t, ci(t)>0 represents the rate which the ith unit will reset its potential to the resting state in isolation when disconnected from the network and external inputs, aij,bij,dijO denote the strength of connectivity between unit i and j at time t, the activation functions fj,gj,hjO show how the jth neuron reacts to input, IiO denotes the ith component of an external input source introduced from outside the network to the unit i at time t, ηi(t):RR+ denote the leakage delay, τij(t):RR are the time-varying delays and δij(t):RR are the distributed delays.

    The initial conditions of the system (1.1) are of the form

    xi(s)=φi(s), s[θ,0], (1.2)

    where i=1,2,,n, φiO, θ=max{η+,τ,δ+}, η+=max1i,jn{suptRηi(t)}, τ=max1i,jn{suptRτij(t)}, δ+=max1i,jn{suptRδij(t)}.

    This paper is organized as follows: In Section 2, we introduce some definitions and lemmas. In Section 3, we establish some sufficient conditions for the existence and global exponential stability of weighted pseudo almost periodic solutions for system (1.1). In Section 4, one numerical example is provided to verify the effectiveness of the theoretical results. Finally, we draw a conclusion in Section 5.

    Notations: R denotes the set of real numbers, R+=[0,+) denotes the set of non-negative real numbers, O denotes the set of octonion numbers, O8 denotes the 8 dimensional octonion numbers, O represents the vector octonion norm. For xO, we define xO=|x| and for x=(x1,x2,,xn)TOn, we define xOn=ni=1xiO.

    In this section, we will introduce some basic definitions and lemmas.

    The algebra of octonion is defined as

    O={x=7p=0[x]pep:[x]0,[x]1,,[x]7R},

    where ep are the octonion units, 0p7, and when p=0, we have e0=1. The octonion units obey the octonion multiplication rules: epeq=eqepeqep,0<pq7, from which we deduce that O is not commutative, and that (epeq)ek=ep(eqek)ep(eqek), for k,p,q distinct, 0<k,p,q7, or epeq±ek, thus O is also not associative.

    Octonion addition is defined by x+y=7p=0([x]p+[y]p)ep, scalar multiplication is given by αx=7p=0(α[x]p)ep, and octonion multiplication is given by the multiplication of the octonion units (see Table 1):

    Table 1.  The multiplication of the octonion units.
    × e0 e1 e2 e3 e4 e5 e6 e7
    e0 e0 e1 e2 e3 e4 e5 e6 e7
    e1 e1 e0 e3 e2 e5 e4 e7 e6
    e2 e2 e3 e0 e1 e6 e7 e4 e5
    e3 e3 e2 e1 e0 e7 e6 e5 e4
    e4 e4 e5 e6 e7 e0 e1 e2 e3
    e5 e5 e4 e7 e6 e1 e0 e3 e2
    e6 e6 e7 e4 e5 e2 e3 e0 e1
    e7 e7 e6 e5 e4 e3 e2 e1 e0

     | Show Table
    DownLoad: CSV

    The conjugate of an octonion x is defined as ˉx=[x]0e07p=1[x]pep, its norm as |x|=xˉx=7p=0[x]2p, and its inverse as x1=ˉx|x|2. We can now see that O is a normed division algebra, and it can be proved that the only three division algebras that can be defined over the reals are the complex, quaternion and octonion algebras.

    Definition 2.1. ([37]) Let fBC(R,Rn). Function f is said to be almost periodic if, for any ϵ>0, it is possible to find a real number l=l(ϵ)>0, for any interval with length l(ϵ), there exists a number τ=τ(ϵ) in this interval such that

    f(t+τ)f(t)∣<ϵ, tR.

    We denote by AP(R,Rn) the set of all almost periodic functions from R to Rn, AP1(R,Rn) the set of all continuously differentiable functions f:RRn satisfying f,fAP(R,Rn).

    Definition 2.2. Let fBC(R,On). Function f is said to be almost periodic if, for any ϵ>0, it is possible to find a real number l=l(ϵ)>0, for any interval with length l(ϵ), there exists a number τ=τ(ϵ) in this interval such that

    f(t+τ)f(t)On<ϵ, tR.

    We denote by AP(R,On) the set of all almost periodic functions from R to On, AP1(R,On) the set of all continuously differentiable functions f:ROn satisfying f,fAP(R,On).

    Lemma 2.1. Suppose that αR, f, gAP(R,O), then αf,f+g,fgAP(R,O).

    Proof. Since f, gAP(R,O). Therefore, f, gBC(R,O), namely, there exist two positive constants M1,M2 such that

    fOM1, gOM2.

    For any ϵ>0, we have

    f(t+τ)f(t)O<ϵ2M2, g(t+τ)g(t)O<ϵ2M1.

    Hence, we have

    f(t+τ)g(t+τ)f(t)g(t)Of(t+τ)g(t+τ)f(t)g(t+τ)O+f(t)g(t+τ)f(t)g(t)Of(t+τ)f(t)Og(t+τ)O+f(t)Og(t+τ)g(t)O<ϵ2+ϵ2=ϵ,

    which implies that fgAP(R,O).

    Similarly, we can show that αf,f+gAP(R,O). The proof is complete.

    Lemma 2.2. If fC(O,O) satisfies the Lipschitz condition, xAP(R,O), then f(x())AP(O,O).

    Proof. Since fC(O,O) satisfies the Lipschitz condition, xAP(R,O). Let u,vO, for any ϵ>0, there exists a positive constant L such that

    x(t+τ)x(t)O<ϵL, f(u)f(v)OLuvO.

    Hence, we have

    f(x(t+τ))f(x(t))OLx(t+τ)x(t)O<ϵ,

    which implies that f(x())AP(O,O). The proof is complete.

    Lemma 2.3. If xAP(R,O), ρAP(R,R), then x(ρ())AP(R,O).

    Proof. Since xAP(R,O), it follows that x is uniformly continuous. For any ϵ>0, there exists a constant 0<δ=δ(ϵ)<ϵ2 such that

    x(t1)x(t2)O<ϵ2, t1, t2R, |t1t2|<δ. (2.1)

    For this δ>0, there exists a l=l(δ)=l(δ(ϵ))>0, for any interval with length l(δ), there exists a number τ=τ(ϵ) in this interval such that

    |ρ(t+τ)ρ(t)|<δ, x(t+τ)x(t)O<δ<ϵ2, tR. (2.2)

    From (2.1) and (2.2), we have

    x(t+τρ(t+τ))x(tρ(t))Ox(t+τρ(t+τ))x(t+τρ(t))O+x(t+τρ(t))x(tρ(t))O<ϵ2+ϵ2=ϵ,

    which implies that x(ρ())AP(R,O). The proof is complete.

    Let W denote the collection of functions (weights) μ:R(0,+), which are locally integrable over R such that μ>0 almost everywhere. For μW and r>0, we denote

    μ([r,r]):=rrμ(x)dx.

    The space of weights W is defined by

    W:={μW:inftRμ(t)=μ0>0,limr+μ([r,r])=+}.

    Definition 2.3. Fix μW. Function fBC(R,On) is said to be weighted pseudo almost periodic, if it can be written as f=f1+f2 with f1AP(R,On) and f2PAP0(R,On,μ), where the space PAP0(R,On,μ) is defined by

    PAP0(R,On,μ):={fBC(R,On):limr+1μ([r,r])rrf(t)Onμ(t)dt=0}.

    We denote by PAP(R,On,μ) the set of all weighted pseudo almost periodic functions from R to On, PAP1(R,On,μ) the set of all continuously differentiable functions f:ROn satisfying f,fPAP(R,On,μ).

    Lemma 2.4. Suppose that xPAP(R,O,μ), τAP1(R,R+) and β:=inftR(1˙τ(t))>0, then x(tτ(t))PAP(R,O,μ).

    Proof. Since xPAP(R,O,μ), by Definition 2.3, we have x=x1+x2, where x1AP(R,O) and x2PAP0(R,O,μ). Clearly, x1(tτ(t))AP(R,O).

    Let α=1β×suptRμ(t)μ(tτ(t)), τ=suptRτ(t), s=tτ(t), we have

    01μ([r,r])rrx2(tτ(t))Oμ(t)dt1μ([r,r])rrx2(tτ(t))Oμ(tτ(t))dtsuptRμ(t)μ(tτ(t))1μ([r,r])rτ(t)rτ(t)11˙τ(s)x2(s)Oμ(s)dssuptRμ(t)μ(tτ(t))α1μ([r,r])rτ(t)rτ(t)x2(s)Oμ(s)dsα1μ([r,r])r+τrτx2(s)Oμ(s)dsαsupr1μ([rτ,r+τ]μ([r,r])1μ([rτ,r+τ])r+τrτx2(s)Oμ(s)ds,

    together with the fact that

    limr+1μ([rτ,r+τ])r+τrτx2(s)Oμ(s)ds=0,

    which implies that

    limr+1μ([r,r])rrx2(tτ(t))Oμ(t)dt=0.

    Hence, x2(tτ(t))PAP0(R,O,μ). The proof is completed.

    Lemma 2.5. Suppose that αR, f, gPAP(R,O,μ), then αf,f+g,fgPAP(R,O,μ).

    Proof. Since f, gPAP(R,O,μ), by Definition 2.3, we have f=f1+f2, g=g1+g2, where f1,g1AP(R,O), f2,g2PAP0(R,O,μ).

    Therefore,

    fg=(f1+f2)(g1+g2)=f1g1+f1g2+f2(g1+g2)=f1g1+f1g2+f2g.

    Clearly, f1g1AP(R,O).

    Next, we will show f1g2+f2gPAP0(R,O,μ). Note that f1AP(R,O), gPAP(R,O,μ), we have that f1,gBC(R,O). There exist two positive constants L1,L2 such that

    f1(t)OL1, g(t)OL2,tR.

    Hence, we have

    01μ([r,r])rrf1(t)g2(t)+f2(t)g(t)Oμ(t)dt1μ([r,r])rrf1(t)g2(t)Oμ(t)dt+1μ([r,r])rrf2(t)g(t)Oμ(t)dtL1μ([r,r])rrg2(t)Oμ(t)dt+L2μ([r,r])rrf2(t)Oμ(t)dt,

    together with the fact that

    limr+1μ([r,r])rrf2(t)Oμ(t)dt=0,

    and

    limr+1μ([r,r])rrg2(t)Oμ(t)dt=0,

    which implies that

    limr+1μ([r,r])rrf1(t)g2(t)+f2(t)g(t)Oμ(t)dt=0.

    Hence, f1g2+f2gPAP0(R,O,μ).

    Similarly, we can show that αf,f+gPAP(R,O,μ). The proof is completed.

    Lemma 2.6. Suppose that xPAP(R,O,μ), fC(O,O) satisfies the Lipschitz condition, then f(x())PAP(R,O,μ).

    Proof. Since xPAP(R,O,μ), by Definition 2.3, we have x=x1+x2, where x1AP(R,O) and x2PAP0(R,O,μ). Let

    f(x())=f(x1()+x2())=f(x1())+f(x1()+x2())f(x1()),

    clearly, f(x1())AP(R,O).

    Next, we will show f(x1()+x2())f(x1())PAP0(R,O,μ). Since fC(O,O) satisfies the Lipschitz condition, for u,vO, there exists a positive constant L such that

    f(u)f(v)OLuvO.

    Hence, we have

    01μ([r,r])rrf(x1(t)+x2(t))f(x1(t))Oμ(t)dt1μ([r,r])rrLx2(t)Oμ(t)dt,

    together with the fact that

    limr+1μ([r,r])rrx2(t)Oμ(t)dt=0,

    which implies that

    limr+1μ([r,r])rrf(x1(t)+x2(t))f(x1(t))Oμ(t)dt=0.

    Hence, f(x1()+x2())f(x1())PAP0(R,O,μ). The proof is completed.

    Let

    X={ϕC1(R,On)ϕ,ϕPAP(R,On,μ)}

    be a Banach space equipped with the norm

    ϕX=suptRmax{ϕ(t)On,ϕ(t)On},

    and

    ϕ0(t)=(testc1(ν)dνI1(s)dstestc2(ν)dνI2(s)dstestcn(ν)dνIn(s)ds).

    Definition 2.4. Let x(t)=(x1(t),x2(t),,xn(t))T be a weighted pseudo almost periodic solution of system (1.1) with the initial value φ(s)=(φ1(s),φ2(s),,φn(s))T and y(t)=(y1(t),y2(t),,yn(t))T be arbitrary solution of system (1.1) with the initial value ψ(s)=(ψ1(s),ψ2(s),,ψn(s))T, where φ,ψC([θ,0],On). If there exist constants λ>0 and M>0 such that

    x(t)y(t)XMφψXeλt,t>0,

    then the weighted pseudo almost periodic solution of system (1.1) is said to be globally exponentially stable, where

    xyX=suptRmax{x(t)y(t)On,(x(t)y(t))On}

    and

    φψX=sups[θ,0]max{φ(s)ψ(s)On,(φ(s)ψ(s))On}.

    In order to study the existence of weighted pseudo almost periodic solutions for system (1.1), we need the following assumptions:

    ● Assumption 1: For i,j=1,2,,n, ci,δijAP(R,R+), ηi,τijAP1(R,R+), aij,bij,dij,IiC(R,O) are weighted pseudo almost periodic.

    ● Assumption 2: For j=1,2,,n, there exist positive constants Lf,Lg,Lh such that

    fj(u)fj(v)OLfuvO,
    gj(u)gj(v)OLguvO,
    hj(u)hj(v)OLhuvO.

    ● Assumption 3: There exists a positive constant ξ(0,1) such that

    0<max{Θc,(1+c+c)Θ}<ξ<1,

    where

    Θ:=c+η++nj=1a+Lf+nj=1b+Lg+nj=1d+δ+Lh+nj=1a+Mf(1ξ)L+nj=1b+Mg(1ξ)L+nj=1d+δ+Mh(1ξ)L,
    c=min1ininftRci(t),c+=max1insuptRci(t),ϕ0XL,
    a+=max1i,jnsuptRaij(t)O,b+=max1i,jnsuptRbij(t)O,
    d+=max1i,jnsuptRdij(t)O,Mf=max1jnfj(0)O,
    Mg=max1jngj(0)O,Mh=max1jnhj(0)O.

    In this section, we will investigate the existence and global exponential stability of weighted pseudo almost periodic solutions for delayed octonion-valued neural networks (1.1) by applying the non-decomposition method, Banach fixed point theorem and the proof by contradiction.

    Theorem 3.1. Let μW. Assume that Assumptions 1–3 hold. Then system (1.1) has a unique weighted pseudo almost periodic solution in the region X={ϕϕX,ϕϕ0XξL1ξ}.

    Proof. System (1.1) can be transformed into the following system:

    xi(t)=ci(t)xi(t)+ci(t)ttηi(t)xi(s)ds+nj=1aij(t)×fj(xj(t))+nj=1bij(t)gj(xj(tτij(t)))+nj=1dij(t)ttδij(t)hj(xj(s))ds+Ii(t). (3.1)

    It is well known that a solution of system (3.1) is equivalent to find a solution of the integral equation:

    xi(t)=testci(ν)dν[ci(s)ssηi(s)xi(ν)dν+nj=1aij(s)×fj(xj(s))+nj=1bij(s)gj(xj(sτij(s)))+nj=1dij(s)ssδij(s)hj(xj(ν))dν+Ii(s)]ds, (3.2)

    where i=1,2,,n.

    Now, we define a mapping Ψ:XX as follows

    (Ψϕ)(t)=(xϕ1(t),xϕ2(t),,xϕn(t))T,

    where i=1,2,,n,xϕi(t)O and

    xϕi(t)=testci(ν)dν[ci(s)ssηi(s)ϕi(ν)dν+nj=1aij(s)×fj(ϕj(s))+nj=1bij(s)gj(ϕj(sτij(s)))+nj=1dij(s)ssδij(s)hj(ϕj(ν))dν+Ii(s)]ds, (3.3)

    where ϕiX.

    Let

    Fi(s)=ci(s)ssηi(s)ϕi(ν)dν+nj=1aij(s)×fj(ϕj(s))+nj=1bij(s)gj(ϕj(sτij(s)))+nj=1dij(s)ssδij(s)hj(ϕj(ν))dν+Ii(s), i=1,2,,n.

    By Lemmas 2.4–2.6, for i=1,2,,n, we can get Fi(t)PAP(R,O,μ). Let Fi=F1i+F2i, where F1iAP(R,O) and F2iPAP0(R,O,μ). Then we have

    xϕi(t)=testci(ν)dνF1i(s)ds+testci(ν)dνF2i(s)ds:=Γ1i(t)+Γ2i(t).

    First, we will show that Γ1iAP(R,O) and Γ2iPAP0(R,O,μ). Since ci,F1iAP(R,O), let αi=suptRF1i(t)O, for any ϵ>0, it is possible to find a real number l=l(ϵ)>0, for any interval with length l(ϵ), there exists a number ϱ=ϱ(ϵ) in this interval such that

    ci(t+ϱ)ci(t)∣≤(c)22αiϵ, F1i(t+ϱ)F1i(t)Oc2ϵ.

    Hence, we have that

    Γ1i(t+ϱ)Γ1i(t)O=t+ϱest+ϱci(ν)dνF1i(s)dstestci(ν)dνF1i(s)dsO=tes+ϱt+ϱci(ν)dνF1i(s+ϱ)dstestci(ν)dνF1i(s)dsOtes+ϱt+ϱci(ν)dνF1i(s+ϱ)dstes+ϱt+ϱci(ν)dνF1i(s)dsO+tes+ϱt+ϱci(ν)dνF1i(s)dstestci(ν)dνF1i(s)dsOtes+ϱt+ϱci(ν)dνF1i(s+ϱ)F1i(s)Ods+tes+ϱt+ϱci(ν)dνestci(ν)dνF1i(s)Odsϵ2+tsteζtci(ν)dνci(ζ+ϱ)ci(ζ)dζF1i(s)Odsϵ2+(c)22ϵtsteζtci(ν)dνdζdsϵ2+ϵ2=ϵ,

    which implies that Γ1iAP(R,O), i=1,2,,n.

    Since F2iPAP0(R,O,μ), let ζ=ts, we have

    01μ([r,r])rrΓ2i(t)Oμ(t)dt1μ([r,r])rrtestci(ν)dνF2i(s)dsOμ(t)dt1μ([r,r])rr(testci(ν)dνF2i(s)Ods)μ(t)dt1μ([r,r])rr(+0ecζF2i(tζ)Odζ)μ(t)dt+0ecζ(1μ([r,r])rrF2i(tζ)Oμ(t)dt)dζ,

    together with the fact that

    limr+1μ([r,r])rrF2i(tζ)Oμ(t)dt=0,

    which implies that

    limr+1μ([r,r])rrΓ2i(t)Oμ(t)dt=0.

    Hence, Γ2iPAP0(R,O,μ), xϕiPAP(R,O,μ), i=1,2,,n.

    Second, we will show that (xϕi)PAP(R,O,μ). For i=1,2,,n, we have

    (xϕi(t))=Fi(t)ci(t)testci(ν)dνFi(s)ds=ci(t)xϕi(t)+Fi(t).

    Since ci(t)AP(R,O), xϕi,FiPAP(R,O,μ). Therefore, we can conclude that (xϕi)PAP(R,O,μ).

    Third, we show that the mapping Ψ is a self-mapping from X to X. By Assumptions 1–3, for ϕX, we have

    ϕXϕϕ0X+ϕ0XξL1ξ+L=L1ξ.

    Hence,

    (Ψϕ)(t)ϕ0(t)On=ni=1testci(ν)dν[ci(s)ssηi(s)ϕi(ν)dν+nj=1aij(s)fj(ϕj(s))+nj=1bij(s)gj(ϕj(sτij(s)))+nj=1dij(s)ssδij(s)hj(ϕj(ν))dν]dsOni=1testci(ν)dν[ci(s)ssηi(s)ϕi(ν)Odν+nj=1aij(s)Ofj(ϕj(s))O+nj=1bij(s)O×gj(ϕj(sτij(s)))O+nj=1dij(s)O×ssδij(s)hj(ϕj(ν))Odν]dsni=1testci(ν)dν[c+η+ϕi(s)O+nj=1a+Lf×ϕj(s)O+nj=1b+Lgϕj(sτij(s))O+nj=1d+δ+Lhϕj(s)O+nj=1a+Mf+nj=1b+Mg+nj=1d+δ+Mh]dstestci(ν)dν[c+η+ϕX+nj=1a+LfϕX+nj=1b+LgϕX+nj=1d+δ+LhϕX+nj=1a+×Mf+nj=1b+Mg+nj=1d+δ+Mh]ds1c[c+η++nj=1a+Lf+nj=1b+Lg+nj=1d+×δ+Lh+nj=1a+Mf(1ξ)L+nj=1b+Mg(1ξ)L+nj=1d+δ+Mh(1ξ)L]L1ξξL1ξ,

    and

    ((Ψϕ)(t)ϕ0(t))On=ni=1ci(t)ttηi(t)ϕi(ν)dν+nj=1aij(t)fj(ϕj(t))+nj=1bij(t)gj(ϕj(tτij(t)))+nj=1dij(t)×ttδij(t)hj(ϕj(ν))dνci(t)testci(ν)dν×[ci(s)ssηi(s)ϕi(ν)dν+nj=1aij(s)fj(ϕj(s))+nj=1bij(s)gj(ϕj(sτij(s)))+nj=1dij(s)×ssδij(s)hj(ϕj(ν))dν]dsO[c+η++nj=1a+Lf+nj=1b+Lg+nj=1d+δ+Lh+nj=1a+Mf(1ξ)L+nj=1b+Mg(1ξ)L+nj=1d+δ+Mh(1ξ)L]L1ξ+c+c[c+η++nj=1a+Lf+nj=1b+Lg+nj=1d+δ+Lh+nj=1a+Mf(1ξ)L+nj=1b+Mg(1ξ)L+nj=1d+δ+Mh(1ξ)L]L1ξ(1+c+c)[c+η++nj=1a+Lf+nj=1b+Lg+nj=1d+δ+Lh+nj=1a+Mf(1ξ)L+nj=1b+×Mg(1ξ)L+nj=1d+δ+Mh(1ξ)L]L1ξξL1ξ.

    Hence, we have

    \|\Psi\phi-\phi_{0}\|_{\mathbb{X}}\leq\frac{\xi L}{1-\xi},

    which implies that the mapping \Psi is a self-mapping from \mathbb{X}^{*} to \mathbb{X}^{*} .

    Finally, we show \Psi is a contraction mapping. By Assumption 2 and Assumption 3, for any \phi, \chi\in\mathbb{X}^{*} ,

    \begin{eqnarray*} &&\|(\Psi\phi)(t)-(\Psi\chi)(t)\|_{\mathbb{O}^{n}} = \sum\limits_{i = 1}^{n}\|x_{i}^{\phi}(t)-x_{i}^{\chi}(t)\|_{\mathbb{O}}\\ & = &\sum\limits_{i = 1}^{n}\bigg\|\int_{-\infty}^{t}e^{\int_{t}^{s}c_{i}(\nu)d\nu} \bigg[c_{i}(s)\int_{s-\eta_{i}(s)}^{s}\big(\phi_{i}'(\nu)-\chi_{i}'(\nu)\big)d\nu\nonumber\\ &&+\sum\limits_{j = 1}^{n}a_{ij}(s)\Big(f_{j}\big(\phi_{j}(s)\big)-f_{j}\big(\chi_{j}(s)\big)\Big)+\sum\limits_{j = 1}^nb_{ij}(s)\nonumber\\ &&\times\Big(g_{j}\big(\phi_{j}\big(s-\tau_{ij}(s)\big)\big)-g_{j}\big(\chi_{j}\big(s-\tau_{ij}(s)\big)\big)\Big)\\ &&+\sum\limits_{j = 1}^nd_{ij}(s)\int_{s-\delta_{ij}(s)}^{s}\Big(h_{j}\big(\phi_{j}(\nu)\big)-h_{j}\big(\chi_{j}(\nu)\big)\Big)d\nu\bigg]ds\bigg\|_{\mathbb{O}}\\ &\leq&\sum\limits_{i = 1}^{n}\int_{-\infty}^{t}e^{\int_{t}^{s}c_{i}(\nu)d\nu} \bigg[c^{+}\int_{s-\eta_{i}(s)}^{s}\|\big(\phi_{i}'(\nu)-\chi_{i}'(\nu)\big)\|_{\mathbb{O}}d\nu\nonumber\\ &&+\sum\limits_{j = 1}^{n}a^{+}\Big\|\Big(f_{j}\big(\phi_{j}(s)\big)-f_{j}\big(\chi_{j}(s)\big)\Big)\Big\|_{\mathbb{O}}+\sum\limits_{j = 1}^nb^{+}\nonumber\\ &&\times\Big\|\Big(g_{j}\big(\phi_{j}\big(s-\tau_{ij}(s)\big)\big)-g_{j}\big(\chi_{j}\big(s-\tau_{ij}(s)\big)\big)\Big)\Big\|_{\mathbb{O}}\\ &&+\sum\limits_{j = 1}^nd^{+}\int_{s-\delta_{ij}(s)}^{s}\Big\|\Big(h_{j}\big(\phi_{j}(\nu)\big)-h_{j}\big(\chi_{j}(\nu)\big)\Big)\Big\|_{\mathbb{O}}d\nu\bigg]ds\\ &\leq&\sum\limits_{i = 1}^{n}\int_{-\infty}^{t}e^{\int_{t}^{s}c_{i}(\nu)d\nu} \bigg[c^{+}\eta^{+}\|\big(\phi_{i}'(\nu)-\chi_{i}'(\nu)\big)\|_{\mathbb{O}}\nonumber\\ &&+\sum\limits_{j = 1}^{n}a^{+}L_f\|\phi_{j}(s)-\chi_{j}(s)\|_{\mathbb{O}}+\sum\limits_{j = 1}^nb^{+}L_g\nonumber\\ &&\times \|\phi_{j}\big(s-\tau_{ij}(s)\big)-\chi_{j}\big(s-\tau_{ij}(s)\big)\|_{\mathbb{O}}\\ &&+\sum\limits_{j = 1}^nd^{+}\delta^{+}L_h\|\phi_{j}(\nu)-\chi_{j}(\nu)\|_{\mathbb{O}}\bigg]ds\\ &\leq&\int_{-\infty}^{t}e^{\int_{t}^{s}c_{i}(\nu)d\nu} \bigg[c^{+}\eta^{+}+\sum\limits_{j = 1}^{n}a^{+}L_f+\sum\limits_{j = 1}^nb^{+}L_g\nonumber\\ &&+\sum\limits_{j = 1}^nd^{+}\delta^{+}L_h\bigg]\|\phi-\chi\|_{\mathbb{X}}ds\\ &\leq&\frac{1}{c^{-}} \bigg[c^{+}\eta^{+}+\sum\limits_{j = 1}^{n}a^{+}L_f+\sum\limits_{j = 1}^nb^{+}L_g\nonumber\\ &&+\sum\limits_{j = 1}^nd^{+}\delta^{+}L_h\bigg]\|\phi-\chi\|_{\mathbb{X}}\\ &\leq&\xi\|\phi-\chi\|_{\mathbb{X}}, \end{eqnarray*}

    and

    \begin{eqnarray*} &&\|((\Psi\phi)(t)-(\Psi\chi)(t))'\|_{\mathbb{O}^{n}} = \sum\limits_{i = 1}^{n}\big\|(x_{i}^{\phi}(t)-x_{i}^{\chi}(t))'\big\|_{\mathbb{O}}\\ & = &\sum\limits_{i = 1}^{n}\bigg\|c_{i}(t)\int_{t-\eta_{i}(t)}^{t}\big(\phi_{i}'(\nu)-\chi_{i}'(\nu)\big)d\nu+\sum\limits_{j = 1}^{n}a_{ij}(t)\nonumber\\ &&\times\Big(f_{j}\big(\phi_{j}(t)\big)-f_{j}\big(\chi_{j}(t)\big)\Big)+\sum\limits_{j = 1}^nb_{ij}(t)\nonumber\\ &&\times\Big(g_{j}\big(\phi_{j}\big(t-\tau_{ij}(t)\big)\big)-g_{j}\big(\chi_{j}\big(t-\tau_{ij}(t)\big)\big)\Big)\\ &&+\sum\limits_{j = 1}^nd_{ij}(t)\int_{t-\delta_{ij}(t)}^{t}\Big(h_{j}\big(\phi_{j}(\nu)\big)-h_{j}\big(\chi_{j}(\nu)\big)\Big)d\nu\\ &&-c_{i}(t)\int_{-\infty}^{t}e^{\int_{t}^{s}c_{i}(\nu)d\nu} \bigg[c_{i}(s)\int_{s-\eta_{i}(s)}^{s}\big(\phi_{i}'(\nu)-\chi_{i}'(\nu)\big)d\nu\nonumber\\ &&+\sum\limits_{j = 1}^{n}a_{ij}(s)\Big(f_{j}\big(\phi_{j}(s)\big)-f_{j}\big(\chi_{j}(s)\big)\Big)+\sum\limits_{j = 1}^nb_{ij}(s)\nonumber\\ &&\times\Big(g_{j}\big(\phi_{j}\big(s-\tau_{ij}(s)\big)\big)-g_{j}\big(\chi_{j}\big(s-\tau_{ij}(s)\big)\big)\Big)\\ &&+\sum\limits_{j = 1}^nd_{ij}(s)\int_{s-\delta_{ij}(s)}^{s}\Big(h_{j}\big(\phi_{j}(\nu)\big)-h_{j}\big(\chi_{j}(\nu)\big)\Big)d\nu\bigg]ds\bigg\|_{\mathbb{O}}\\ &\leq&\bigg(1+\frac{c^{+}}{c^{-}}\bigg) \bigg[c^{+}\eta^{+}+\sum\limits_{j = 1}^{n}a^{+}L_f+\sum\limits_{j = 1}^nb^{+}L_g\nonumber\\ &&+\sum\limits_{j = 1}^nd^{+}\delta^{+}L_h\bigg]\|\phi-\chi\|_{\mathbb{X}}\\ &\leq&\xi\|\phi-\chi\|_{\mathbb{X}}. \end{eqnarray*}

    Hence, we have

    \begin{eqnarray*} \|\Psi\phi-\Psi\chi\|_{\mathbb{X}}\leq\xi\|\phi-\chi\|_{\mathbb{X}}, \end{eqnarray*}

    which implies that \Psi is a contraction mapping.

    Therefore, by Banach fixed point theorem, system (1.1) has a unique weighted pseudo almost periodic solution. The proof is completed.

    Remark 3.1. Compared with literature [26,27,28,29,30], this paper discusses the existence of weighted pseudo almost periodic solutions for octonion-valued neural networks with mixed time-varying delays and leakage delays via the non-decomposition method. Therefore, the results are less conservative and more general.

    Theorem 3.2. Assume that Assumptions 1–3 hold. If the following condition is satisfied:

    Assumption 4: There exists a positive constant \lambda such that

    0 < \max\bigg\{\frac{\Pi}{c^{-}-\lambda},\bigg(1+\frac{c^{+}}{c^{-}-\lambda}\bigg)\Pi\bigg\} < 1,

    where

    \Pi: = c^{+}\eta^{+}+\sum\limits_{j = 1}^{n}a^{+}L_f+\sum\limits_{j = 1}^nb^{+}L_g +\sum\limits_{j = 1}^nd^{+}\delta^{+}L_h.

    Then system (1.1) has a unique weighted pseudo almost periodic solution that is globally exponentially stable.

    Proof. By \mathrm{Theorem}\, 3.1 , system (1.1) has at least a weighted pseudo almost periodic solution. Let x(t) be a weighted pseudo almost periodic solution of system (1.1) with the initial value \varphi(t) and y(t) be an arbitrary solution of system (1.1) with the initial value \psi(t) . Set z(t) = \big(z_{1}(t), z_{2}(t), \cdots, z_{n}(t)\big)^{T} , where z_{i}(t) = x_{i}(t)-y_{i}(t) with the initial condition:

    \begin{eqnarray} \phi_{i}(s) = \varphi_{i}(s)-\psi_{i}(s), \,\ s\in [-\theta,0], \end{eqnarray} (3.4)

    where i = 1, 2, \ldots, n.

    Let M = \min\bigg\{c^{-}, \bigg(1+\frac{c^{+}}{c^{-}}\bigg)^{-1}\bigg\}\Pi^{-1} , by Assumption 4, we have M > 1 ,

    \frac{1}{M}\leq\frac{1}{c^{-}-\lambda}\bigg(c^{+}\eta^{+}+\sum\limits_{j = 1}^{n}a^{+}L_f+\sum\limits_{j = 1}^nb^{+}L_g +\sum\limits_{j = 1}^nd^{+}\delta^{+}L_h\bigg),

    and

    \frac{1}{M}\leq\bigg(1+\frac{c^{+}}{c^{-}-\lambda}\bigg)\bigg(c^{+}\eta^{+}+\sum\limits_{j = 1}^{n}a^{+}L_f+\sum\limits_{j = 1}^nb^{+}L_g +\sum\limits_{j = 1}^nd^{+}\delta^{+}L_h\bigg).

    For any t\geq0 , we have that

    \begin{eqnarray} z_{i}'(t)& = &-c_{i}(t)z_{i}(t)+c_{i}(t)\int_{t-\eta_{i}(t)}^{t}z_{i}'(s)ds+\sum\limits_{j = 1}^{n}a_{ij}(t)\\ &&\times\Big(f_{j}\big(x_{j}(t)\big)-f_{j}\big(y_{j}(t)\big)\Big)+\sum\limits_{j = 1}^nb_{ij}(t)\\ &&\times\Big(g_{j}\big(x_{j}\big(t-\tau_{ij}(t)\big)\big)-g_{j}\big(y_{j}\big(t-\tau_{ij}(t)\big)\big)\Big)\\ &&+\sum\limits_{j = 1}^nd_{ij}(t)\int_{t-\delta_{ij}(t)}^{t}\Big(h_{j}\big(x_{j}(s)\big)-h_{j}\big(y_{j}(s)\big)\Big)ds. \end{eqnarray} (3.5)

    Multiplying both sides of (3.5) by e^{\int_{0}^{t}c_{i}(\xi)d\xi} and integrating on [0, t] , we have

    \begin{eqnarray*} z_{i}(t)& = &\phi_{i}(0)e^{-\int_{0}^{t}c_{i}(\xi)d\xi}+\int_{0}^{t}e^{-\int_{s}^{t}c_{i}(\xi)d\xi} \bigg[c_{i}(s)\nonumber\\ &&\times\int_{s-\eta_{i}(s)}^{s}z_{i}'(u)du+\sum\limits_{j = 1}^{n}a_{ij}(s)\Big(f_{j}\big(x_{j}(s)\big)\nonumber\\ &&-f_{j}\big(y_{j}(s)\big)\Big)+\sum\limits_{j = 1}^nb_{ij}(s)\Big(g_{j}\big(x_{j}\big(s-\tau_{ij}(s)\big)\big)\nonumber\\ &&-g_{j}\big(y_{j}\big(s-\tau_{ij}(s)\big)\big)\Big)+\sum\limits_{j = 1}^nd_{ij}(s) \nonumber\\ &&\times\int_{s-\delta_{ij}(s)}^{s}\Big(h_{j}\big(x_{j}(u)\big)-h_{j}\big(y_{j}(u)\big)\Big)du\bigg]ds, \end{eqnarray*}

    where i = 1, 2, \ldots, n.

    It is easy to see that

    \begin{eqnarray*} \|z(t)\|_{\mathbb{X}} = \|\phi(t)\|_{\mathbb{X}}\leq M\|\phi(t)\|_{\mathbb{X}}e^{-\lambda t}, \,\ t\in[-\theta,0]. \end{eqnarray*}

    We claim that

    \begin{eqnarray} \|z(t)\|_{\mathbb{X}}\leq M\|\phi(t)\|_{\mathbb{X}}e^{-\lambda t}, \,\ t\in[0,+\infty). \end{eqnarray} (3.6)

    To prove (3.6) holds, we show that for any \epsilon > 1 , the following inequality holds

    \begin{eqnarray} \|z(t)\|_{\mathbb{X}} < \epsilon M\|\phi(t)\|_{\mathbb{X}}e^{-\lambda t}, \,\ t > 0. \end{eqnarray} (3.7)

    If it is not true, then there must be some t_{1} > 0 such that

    \begin{eqnarray} \|z(t_{1})\|_{\mathbb{X}}& = &\max\{\|z(t_{1})\|_{\mathbb{O}^{n}}, \|z'(t_{1})\|_{\mathbb{O}^{n}}\}\\ & = &\epsilon M\|\phi(t_{1})\|_{\mathbb{X}}e^{-\lambda t_{1}} \end{eqnarray} (3.8)

    and

    \begin{eqnarray*} \|z(t)\|_{\mathbb{X}} < \epsilon M\|\phi(t)\|_{\mathbb{X}}e^{-\lambda t}, \,\ t\in[-\theta,t_{1}). \end{eqnarray*}

    Hence, we have that

    \begin{eqnarray*} &&\|z(t_{1})\|_{\mathbb{O}^{n}} = \max\limits_{1\leq i\leq n}\{\|z_{i}(t_{1})\|_{\mathbb{O}}\}\\ &\leq&\|\phi\|_{\mathbb{X}}e^{-c^{-}t_{1}}+\epsilon M\|\phi\|_{\mathbb{X}}\int_{0}^{t_{1}}e^{-(t_{1}-s)c^{-}}\\ &&\times\bigg[c^{+}\eta^{+}+\sum\limits_{j = 1}^na^{+}L_{f}+\sum\limits_{j = 1}^nb^{+}L_{g}e^{\lambda\tau}\\ &&+\sum\limits_{j = 1}^nd^{+}\delta^{+} L_{h}\bigg]e^{-\lambda s}ds\\ &\leq&\epsilon M\|\phi\|_{\mathbb{X}}e^{-\lambda t_{1}}\bigg[\frac{e^{(\lambda-c^{-})t_{1}}}{\epsilon M}+\frac{1}{c^{-}-\lambda} \bigg(c^{+}\eta^{+} \\ &&+\sum\limits_{j = 1}^na^{+}L_{f}+\sum\limits_{j = 1}^nb^{+}L_{g}e^{\lambda\tau} +\sum\limits_{j = 1}^nd^{+}\delta^{+} L_{h}\bigg)\\ &&\times(1-e^{(\lambda-\underline{c})t_{1}})\bigg]\\ &\leq&\epsilon M\|\phi\|_{\mathbb{X}}c^{-}e^{-\lambda t_{1}}\bigg[e^{(\lambda-c^{-})t_{1}}\bigg(\frac{1}{M}-\frac{1}{c^{-}-\lambda} \bigg(c^{+}\eta^{+} \\ &&+\sum\limits_{j = 1}^na^{+}L_{f}+\sum\limits_{j = 1}^nb^{+}L_{g}e^{\lambda\tau}+\sum\limits_{j = 1}^nd^{+}\delta^{+} L_{h}\bigg)\bigg)\\ &&+\frac{1}{c^{-}-\lambda}\bigg(c^{+}\eta^{+} +\sum\limits_{j = 1}^na^{+}L_{f}+\sum\limits_{j = 1}^nb^{+}L_{g}e^{\lambda\tau}\\ &&+\sum\limits_{j = 1}^nd^{+}\delta^{+} L_{h}\bigg)\bigg]\\ &\leq&\epsilon M\|\phi\|_{\mathbb{X}}e^{-\lambda t_{1}}\bigg[\frac{1}{c^{-}-\lambda}\bigg(c^{+}\eta^{+} +\sum\limits_{j = 1}^na^{+}L_{f}\\ &&+\sum\limits_{j = 1}^nb^{+}L_{g}e^{\lambda\tau}+\sum\limits_{j = 1}^nd^{+}\delta^{+} L_{h}\bigg)\bigg]\\ & < &\epsilon M\|\phi\|_{\mathbb{X}}e^{-\lambda t_{1}}, \end{eqnarray*}

    and

    \begin{eqnarray*} &&\|(z(t_{1}))'\|_{\mathbb{O}^{n}} = \max\limits_{1\leq i\leq n}\{\|(z_{i}(t_{1}))'\|_{\mathbb{O}}\}\\ &\leq&c^{+}\|\phi\|_{\mathbb{X}}e^{-c^{-}t_{1}}+\epsilon M\|\phi\|_{\mathbb{X}}e^{-\lambda t_{1}}\bigg[c^{+}\eta^{+}\\ &&+\sum\limits_{j = 1}^na^{+}L_{f}+\sum\limits_{j = 1}^nb^{+}L_{g}e^{\lambda\tau}+\sum\limits_{j = 1}^nd^{+}\delta^{+} L_{h}\bigg]\\ &&+\epsilon M\|\phi\|_{\mathbb{X}}\int_{0}^{t_{1}}c^{+}e^{-(t_{1}-s)c^{-}}\bigg[c^{+}\eta +\sum\limits_{j = 1}^na^{+}L_{f}\\ &&+\sum\limits_{j = 1}^nb^{+}L_{g}e^{\lambda\tau}+\sum\limits_{j = 1}^nd^{+}\delta^{+} L_{h}\bigg]e^{-\lambda s}ds\\ &\leq&\epsilon M\|\phi\|_{\mathbb{X}}e^{-\lambda t_{1}}\bigg[^{+}\eta^{+} +\sum\limits_{j = 1}^na^{+}L_{f}+\sum\limits_{j = 1}^nb^{+}L_{g}e^{\lambda\tau}\\ &&+\sum\limits_{j = 1}^nd^{+}\delta^{+} L_{h}\bigg]+\epsilon M\|\phi\|_{\mathbb{X}}e^{-\lambda t_{1}}\bigg[\frac{c^{+}e^{(\lambda-c^{-})t_{1}}}{ M}+\frac{c^{+}}{c^{-}-\lambda}\\ &&\times\bigg(c^{+}\eta^{+}+\sum\limits_{j = 1}^na^{+}L_{f} +\sum\limits_{j = 1}^nb^{+}L_{g}e^{\lambda\tau}+\sum\limits_{j = 1}^nd^{+}\delta^{+} L_{h}\bigg)\\ &&\times(1-e^{(\lambda-c^{-})t_{1}})\bigg]\\ &\leq&\epsilon M\|\phi\|_{\mathbb{X}}e^{-\lambda t_{1}}\bigg[\bigg(1+\frac{c^{+}}{c^{-}-\lambda}\bigg)\bigg(c^{+}\eta^{+} +\sum\limits_{j = 1}^na^{+}L_{f}\\ &&+\sum\limits_{j = 1}^nb^{+}L_{g}e^{\lambda\tau}+\sum\limits_{j = 1}^nd^{+}\delta^{+} L_{h}\bigg)\bigg]\\ & < &\epsilon M\|\phi\|_{\mathbb{X}}e^{-\lambda t_{1}}. \end{eqnarray*}

    Hence, we have

    \begin{eqnarray*} \|z(t_{1})\|_{\mathbb{X}} < \epsilon M\|\phi(t_{1})\|_{\mathbb{X}}e^{-\lambda t_{1}}, \end{eqnarray*}

    which contradicts the equality (3.8), and so (3.7) holds. Letting \epsilon\longrightarrow 1 , then (3.6) holds.

    Therefore, by Definition 2.4, the weighted pseudo almost periodic solution of system (1.1) is globally exponentially stable. The proof is completed.

    Remark 3.2. In [26,27,28,29,30], some authors have shown stability of octonion-valued neural networks by using the Lyapunov function method. However, unlike the method of the above literature, we obtain the global exponential stability of weighted pseudo almost periodic solutions for octonion-valued neural networks with leakage delays and mixed delays by using the proof by contradiction.

    In this section, we give one example to show the feasibility and effectiveness of main results.

    Example 4.1. Consider the following delayed octonion-valued neural networks with two neurons:

    \begin{eqnarray} x_{i}'(t)& = &-c_{i}(t)x_{i}(t-\eta_{i}(t))+\sum\limits_{j = 1}^{2}a_{ij}(t)f_{j}\big(x_{j}(t)\big)\\ &&+\sum\limits_{j = 1}^2b_{ij}(t)g_{j}\big(x_{j}\big(t-\tau_{ij}(t)\big)\big)\\ &&+\sum\limits_{j = 1}^nd_{ij}(t)\int_{t-\delta_{ij}(t)}^{t}h_{j}\big(x_{j}(s)\big)ds+I_{i}(t), \end{eqnarray} (4.1)

    where i = 1, 2, c_{1}(t) = 1.5+0.3\sin\sqrt{2}t , c_{2}(t) = 1.4+0.2\cos\sqrt{5}t , \eta_{1}(t) = \eta_{2}(t) = 0.02\sin2t , \tau_{ij}(t) = \frac{1}{2}\sin\sqrt{5}t , \delta_{ij}(t) = 0.03\cos\sqrt{7}t , and

    a_{11}(t) = 0.1(\sqrt{6}\cos t,2\sin \sqrt{2}t,0,\sin t,\cos \sqrt{3}t,\sqrt{3}\cos t,0,2\sin t)^{T},
    a_{12}(t) = 0.1(0,\sqrt{2}\sin t,\sqrt{5}\cos t,\sin \sqrt{5}t,2\cos t,0,\sqrt{2}\cos t,\sin \sqrt{7}t)^{T},
    a_{21}(t) = 0.1(\sin 2t,\sqrt{2}\cos t,0,\sin \sqrt{6}t,\sin \sqrt{2}t,0,2\sin \sqrt{3}t,\sqrt{3}\cos t)^{T},
    a_{22}(t) = 0.1(2\cos \sqrt{2}t,\sin \sqrt{3}t,0,\sqrt{3}\sin \sqrt{2}t,\sqrt{6}\cos 2t,0,\sin \sqrt{5}t,\sqrt{2}\cos 2t)^{T},
    b_{11}(t) = 0.1(0,\sqrt{2}\sin t,\sin \sqrt{7}t,\sqrt{5}\cos 2t,0,\sin t,\sqrt{2}\cos\sqrt{3}t,\sqrt{3}\sin\sqrt{2}t)^{T},
    b_{12}(t) = 0.1(2\cos t,\sin \sqrt{5}t,0,\sqrt{3}\cos 2t,\sqrt{2}\cos \sqrt{3}t,\sin\sqrt{6} t,\sqrt{3}\sin t,0)^{T},
    b_{21}(t) = 0.1(\sin 2t,0,\sqrt{2}\sin t,\sqrt{5}\cos t,\sin \sqrt{7}t,2\cos \sqrt{3}t,0,\sqrt{3}\cos\sqrt{6} t)^{T},
    b_{22}(t) = 0.1(\sqrt{2}\cos \sqrt{6}t,\sqrt{3}\cos 2t,0,\sin\sqrt{5}t,\sqrt{5}\cos 2t,\sin\sqrt{2}t,0,2\sin\sqrt{3}t)^{T},
    d_{11}(t) = 0.1(\sqrt{3}\sin 2t,0,\sin \sqrt{6}t,0,2\cos \sqrt{2}t,\cos\sqrt{5}t,\sqrt{2}\sin t,\sqrt{3}\cos 2t)^{T},
    d_{12}(t) = 0.1(\cos \sqrt{5}t,\sin2t,0,\sqrt{3}\cos \sqrt{6}t,\sqrt{2}\sin 3t,\cos t,0,\sqrt{2}\sin\sqrt{3}t)^{T},
    d_{21}(t) = 0.1(\sqrt{6}\sin 2t,\sqrt{3}\sin 3t,0,\cos \sqrt{5}t,\sqrt{2}\sin2t,\cos\sqrt{7}t,\sqrt{2}\sin 3t,0)^{T},
    d_{22}(t) = 0.1(0,\sqrt{3}\cos 3t,\cos t,\cos \sqrt{5}t,0,\sqrt{3}\sin2t,\sqrt{2}\cos t,2\sin\sqrt{5}t)^{T},
    I_{1}(t) = \frac{1}{40}(\sin\sqrt{2}t,\cos 3t,3\sin t,\cos\sqrt{5}t,\cos\sqrt{3} t,\sin 2t,\sin t,\sin\sqrt{6}t)^{T},
    I_{2}(t) = \frac{1}{35}(\cos\sqrt{3}t,\sin2t,\sin\sqrt{6}t,\cos 3t,\cos\sqrt{5}t,\sin\sqrt{7}t,\cos 3t,\cos 4t)^{T},
    [f_{j}(x_{j})]_{p} = \frac{1}{60}\sin([x_{j}]_{p}), \,\ [g_{j}(x_{j})]_{p} = \frac{1}{50}\tanh([x_{j}]_{p}),
    [h_{j}(x_{j})]_{p} = \frac{1}{45}\cos([x_{j}]_{p}).

    Let \lambda = 0.5 , \xi = 0.8 , and by calculating, we have

    c^{+} = 1.8, \,\ c^{-} = 1.2, \,\ \tau = \frac{1}{2}, \,\ \eta^{+} = 0.02, \,\ \delta^{+} = 0.03,
    a^{+} = \frac{\sqrt{19}}{10}, \,\ b^{+} = \frac{2}{5}, \,\ d^{+} = \frac{\sqrt{15}}{10}, \,\ M_{f} = \frac{\sqrt{2}}{30}, \,\ M_{g} = \frac{\sqrt{2}}{25},
    M_{h} = \frac{2\sqrt{2}}{45}, \,\ L_{f} = \frac{1}{60}, \,\ L_{g} = \frac{1}{50}, \,\ L_{h} = \frac{1}{45} ,\,\ L = \frac{1}{10}.
    0 < \max\bigg\{\frac{\Theta}{c^{-}},\bigg(1+\frac{c^{+}}{c^{-}}\bigg)\Theta\bigg\}\thickapprox0.6183 < \xi < 1,
    0 < \max\bigg\{\frac{\Pi}{c^{-}-\lambda},\bigg(1+\frac{c^{+}}{c^{-}-\lambda}\bigg)\Pi\bigg\}\thickapprox0.2395 < 1,

    where

    \begin{eqnarray*} \Theta&: = &c^{+}\eta^{+}+\sum\limits_{j = 1}^{n}a^{+}L_{f}+\sum\limits_{j = 1}^nb^{+}L_{g}+\sum\limits_{j = 1}^nd^{+}\delta^{+}L_{h}\\ &&+\sum\limits_{j = 1}^{n}\frac{a^{+}M_{f}(1-\xi)}{L}+\sum\limits_{j = 1}^n\frac{b^{+}M_{g}(1-\xi)}{L}\\ &&+\sum\limits_{j = 1}^n\frac{d^{+}\delta^{+}M_{h}(1-\xi)}{L},\\ \Pi&: = &c^{+}\eta^{+}+\sum\limits_{j = 1}^{n}a^{+}L_f+\sum\limits_{j = 1}^nb^{+}L_g +\sum\limits_{j = 1}^nd^{+}\delta^{+}L_h. \end{eqnarray*}

    It is not difficult to verify that all conditions Assumptions 1–4 are satisfied. Therefore, by Theorem 1 and Theorem 2 , system (4.1) has a unique weighted pseudo almost periodic solution that is globally exponentially stable (see Figures 14).

    Figure 1.  Transient states of the solutions ([x_{1}]_{p}, [x_{2}]_{p})^{T} with the initial value (0.3, -0.3)^{T} , where p = 0, 1, 2, 3 .
    Figure 2.  Transient states of the solutions ([x_{1}]_{p}, [x_{2}]_{p})^{T} with the initial value (0.3,-0.3)^{T} , where p = 4,5,6,7 .
    Figure 3.  Transient states of the solutions ([x_{1}]_{p}, [x_{2}]_{p})^{T} with the initial value (0.15,-0.15)^{T} , where p = 0,1,2,3 .
    Figure 4.  Transient states of the solutions ([x_{1}]_{p}, [x_{2}]_{p})^{T} with the initial value (0.15, -0.15)^{T} , where p = 4, 5, 6, 7 .

    In this paper, we consider a class of octonion-valued neural networks with leakage delays and mixed delays. By using the Banach fixed point theorem, the proof by contradiction and the direct method, we obtain some sufficient conditions for the existence and global exponential stability of weighted pseudo almost periodic solutions for octonion-valued neural networks. To demonstrate the usefulness of the presented results, some examples are given. Our method can be extended to study the almost periodic solutions or anti-periodic solutions for other types of octonion-valued neural networks.

    Meanwhile, future directions will include the study of octonion-valued neural network systems with impulses, reaction-diffusion terms, Markovian jump parameters and so on. We can specifically explore the stability and synchronization of the above systems, which will be a direction worth exploring.

    This research is supported by the Science Research Fund of Education Department of Yunnan Province of China [grant number 2022J0986] and Youth academic and technical leader of Pu'er College (No. QNRC21-01).

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.



    [1] C. Huang, X. Long, J. Cao, Stability of antiperiodic recurrent neural networks with multiproportional delays, Math. Methods Appl. Sci., 43 (2020), 6093–6102. https://doi.org/10.1002/mma.6350 doi: 10.1002/mma.6350
    [2] X. Fu, F. Kong, Global exponential stability analysis of anti-periodic solutions of discontinuous bidirectional associative memory (BAM) neural networks with time-varying delays, Int. J. Nonlinear Sci. Numer. Simul., 21 (2020), 807–820. https://doi.org/10.1515/ijnsns-2019-0220 doi: 10.1515/ijnsns-2019-0220
    [3] N. Radhakrishnan, R. Kodeeswaran, R. Raja, C. Maharajan, A. Stephen, Global exponential stability analysis of anti-periodic of discontinuous BAM neural networks with time-varying delays, J. Phys.: Conf. Ser., 1850 (2021), 012098. https://doi.org/10.1088/1742-6596/1850/1/012098 doi: 10.1088/1742-6596/1850/1/012098
    [4] M. Khuddush, K. R. Prasad, Global exponential stability of almost periodic solutions for quaternion-valued RNNs with mixed delays on time scales, Bol. Soc. Mat. Mex., 28 (2022), 75. https://doi.org/10.1007/s40590-022-00467-y doi: 10.1007/s40590-022-00467-y
    [5] L. T. H. Dzung, L. V. Hien, Positive solutions and exponential stability of nonlinear time-delay systems in the model of BAM-Cohen-Grossberg neural networks, Differ. Equ. Dyn. Syst., 159 (2022). https://doi.org/10.1007/s12591-022-00605-y doi: 10.1007/s12591-022-00605-y
    [6] L. Li, D. W. C. Ho, J. Cao, J. Lu, Pinning cluster synchronization in an array of coupled neural networks under event-based mechanism, Neural Networks, 76 (2016), 1–12. https://doi.org/10.1016/j.neunet.2015.12.008 doi: 10.1016/j.neunet.2015.12.008
    [7] R. Li, X. Gao, J. Cao, Exponential synchronization of stochastic memristive neural networks with time-varying delays, Neural Process. Lett., 50 (2019), 459–475. https://doi.org/10.1007/s11063-019-09989-5 doi: 10.1007/s11063-019-09989-5
    [8] Y. Sun, L. Li, X. Liu, Exponential synchronization of neural networks with time-varying delays and stochastic impulses, Neural Networks, 132 (2020), 342–352. https://doi.org/10.1016/j.neunet.2020.09.014 doi: 10.1016/j.neunet.2020.09.014
    [9] Q. Xiao, T. Huang, Z. Zeng, Synchronization of timescale-type nonautonomous neural networks with proportional delays, IEEE Trans. Syst., Man, Cybern.: Syst., 52 (2021), 2167–2173. https://doi.org/10.1109/tsmc.2021.3049363 doi: 10.1109/tsmc.2021.3049363
    [10] J. Gao, L. Dai, Anti-periodic synchronization of quaternion-valued high-order Hopfield neural networks with delays, AIMS Math., 7 (2022), 14051–14075. https://doi.org/10.3934/math.2022775 doi: 10.3934/math.2022775
    [11] B. Liu, S. Gong, Periodic solution for impulsive cellar neural networks with time-varying delays in the leakage terms, Abstr. Appl. Anal., 2013 (2013), 1–10. https://doi.org/10.1155/2013/701087 doi: 10.1155/2013/701087
    [12] L. Peng, W. Wang, Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays in leakage terms, Neurocomputing, 111 (2013), 27–33. https://doi.org/10.1016/j.neucom.2012.11.031 doi: 10.1016/j.neucom.2012.11.031
    [13] Y. Xu, Periodic solutions of BAM neural networks with continuously distributed delays in the leakage terms, Neural Process. Lett., 41 (2015), 293–307. https://doi.org/10.1007/s11063-014-9346-9 doi: 10.1007/s11063-014-9346-9
    [14] H. Zhang, J. Shao, Almost periodic solutions for cellular neural networks with time-varying delays in leakage terms, Appl. Math. Comput., 219 (2013), 11471–11482. https://doi.org/10.1016/j.amc.2013.05.046 doi: 10.1016/j.amc.2013.05.046
    [15] P. Jiang, Z. Zeng, J. Chen, Almost periodic solutions for a memristor-based neural networks with leakage, time-varying and distributed delays, Neural Networks, 68 (2015), 34–45. https://doi.org/10.1016/j.neunet.2015.04.005 doi: 10.1016/j.neunet.2015.04.005
    [16] H. Zhou, Z. Zhou, W. Jiang, Almost periodic solutions for neutral type BAM neural networks with distributed leakage delays on time scales, Neurocomputing, 157 (2015), 223–230. https://doi.org/10.1016/j.neucom.2015.01.013 doi: 10.1016/j.neucom.2015.01.013
    [17] M. Song, Q. Zhu, H. Zhou, Almost sure stability of stochastic neural networks with time delays in the leakage terms, Discrete Dyn. Nat. Soc., 2016 (2016), 1–10. https://doi.org/10.1155/2016/2487957 doi: 10.1155/2016/2487957
    [18] H. Li, H. Jiang, J. Cao, Global synchronization of fractional-order quaternion-valued neural networks with leakage and discrete delays, Neurocomputing, 383 (2020), 211–219. https://doi.org/10.1016/j.neucom.2019.12.018 doi: 10.1016/j.neucom.2019.12.018
    [19] W. Zhang, H. Zhang, J. Cao, H. Zhang, D. Chen, Synchronization of delayed fractional-order complex-valued neural networks with leakage delay, Phys. A: Stat. Mech. Appl., 556 (2020), 124710. https://doi.org/10.1016/j.physa.2020.124710 doi: 10.1016/j.physa.2020.124710
    [20] A. Singh, J. N. Rai, Stability analysis of fractional order fuzzy cellular neural networks with leakage delay and time varying delays, Chinese J. Phys., 73 (2021), 589–599. https://doi.org/10.1016/j.cjph.2021.07.029 doi: 10.1016/j.cjph.2021.07.029
    [21] C. Xu, M. Liao, P. Li, S. Yuan, Impact of leakage delay on bifurcation in fractional-order complex-valued neural networks, Chaos, Solitons Fract., 142 (2021), 110535. https://doi.org/10.1016/j.chaos.2020.110535 doi: 10.1016/j.chaos.2020.110535
    [22] C. Xu, Z. Liu, C. Aouiti, P. Li, L. Yao, J. Yan, New exploration on bifurcation for fractional-order quaternion-valued neural networks involving leakage delays, Cogn. Neurodyn., 16 (2022), 1233–1248. https://doi.org/10.1007/s11571-021-09763-1 doi: 10.1007/s11571-021-09763-1
    [23] C. A. Popa, Octonion-valued neural networks, In: A. Villa, P. Masulli, A. Pons Rivero, Artificial Neural Networks and Machine Learning–ICANN 2016, Lecture Notes in Computer Science, Cham: Springer, 2016,435–443. https://doi.org/10.1007/978-3-319-44778-0_51
    [24] J. C. Baez, The octonions, Bull. Am. Math. Soc., 39 (2002), 145–205.
    [25] A. K. Kwaśniewski, Glimpses of the octonions and quaternions history and today's applications in quantum physics, Adv. Appl. Clifford Algebras, 22 (2012), 87–105. https://doi.org/10.1007/s00006-011-0299-z doi: 10.1007/s00006-011-0299-z
    [26] C. A. Popa, Global asymptotic stability for octonion-valued neural networks with delay, In: F. Cong, A. Leung, Q. Wei, Advances in Neural Networks–ISNN 2017, Lecture Notes in Computer Science, Cham: Springer, 2017,439–448. https://doi.org/10.1007/978-3-319-59072-1_52
    [27] C. A. Popa, Exponential stability for delayed octonion-valued recurrent neural networks, In: I. Rojas, G. Joya, A. Catala, Advances in Computational Intelligence–IWANN 2017, Lecture Notes in Computer Science, Cham: Springer, 2017,375–385. https://doi.org/10.1007/978-3-319-59153-7_33
    [28] C. A. Popa, Global exponential stability of octonion-valued neural networks with leakage delay and mixed delays, Neural Networks, 105 (2018), 277–293. https://doi.org/10.1016/j.neunet.2018.05.006 doi: 10.1016/j.neunet.2018.05.006
    [29] C. A. Popa, Global exponential stability of neutral-type octonion-valued neural networks with time-varying delays, Neurocomputing, 309 (2018), 117–133. https://doi.org/10.1016/j.neucom.2018.05.004 doi: 10.1016/j.neucom.2018.05.004
    [30] J. Wang, X. Liu, Global \mu-stability and finite-time control of octonion-valued neural networks with unbounded delays, arXiv Preprint, 2020. https://doi.org/10.48550/arXiv.2003.11330
    [31] M. S. M'hamdi, C. Aouiti, A. Touati, A. M. Alimi, V. Snasel, Weighted pseudo almost-periodic solutions of shunting inhibitory cellular neural networks with mixed delays, Acta Math. Sci., 36 (2016), 1662–1682. https://doi.org/10.1016/s0252-9602(16)30098-4 doi: 10.1016/s0252-9602(16)30098-4
    [32] G. Yang, W. Wan, Weighted pseudo almost periodic solutions for cellular neural networks with multi-proportional delays, Neural Process. Lett., 49 (2019), 1125–1138. https://doi.org/10.1007/s11063-018-9851-3 doi: 10.1007/s11063-018-9851-3
    [33] X. Yu, Q. Wang, Weighted pseudo-almost periodic solutions for shunting inhibitory cellular neural networks on time scales, Bull. Malay. Math. Sci. Soc., 42 (2019), 2055–2074. https://doi.org/10.1007/s40840-017-0595-4 doi: 10.1007/s40840-017-0595-4
    [34] C. Huang, H. Yang, J. Cao, Weighted pseudo almost periodicity of multi-proportional delayed shunting inhibitory cellular neural networks with D operator, Discrete Cont. Dyn. Syst.-Ser. S, 14 (2020), 1259–1272. https://doi.org/10.3934/dcdss.2020372 doi: 10.3934/dcdss.2020372
    [35] M. Ayachi, Existence and exponential stability of weighted pseudo-almost periodic solutions for genetic regulatory networks with time-varying delays, Int. J. Biomath., 14 (2021), 2150006. https://doi.org/10.1142/s1793524521500066 doi: 10.1142/s1793524521500066
    [36] M. M'hamdi, On the weighted pseudo almost-periodic solutions of static DMAM neural network, Neural Process. Lett., 54 (2022), 4443–4464. https://doi.org/10.1007/s11063-022-10817-6 doi: 10.1007/s11063-022-10817-6
    [37] A. Fink, Almost periodic differential equations, Berlin: Springer, 1974. https://doi.org/10.1007/BFb0070324
  • This article has been cited by:

    1. Călin-Adrian Popa, Stability and synchronization of octonion-valued neural networks with leakage and mixed delays on time scales, 2024, 43, 2238-3603, 10.1007/s40314-024-02820-5
    2. Jin Gao, Lihua Dai, Hongying Jiang, Stability analysis of pseudo almost periodic solutions for octonion-valued recurrent neural networks with proportional delay, 2023, 175, 09600779, 114061, 10.1016/j.chaos.2023.114061
    3. Călin-Adrian Popa, Asymptotic and Mittag–Leffler Synchronization of Fractional-Order Octonion-Valued Neural Networks with Neutral-Type and Mixed Delays, 2023, 7, 2504-3110, 830, 10.3390/fractalfract7110830
    4. Puja Bharti, Soniya Dhama, (ω,c)-Asymptotically periodic oscillation of cellular neural networks on time scales with leakage delays and mixed time-varying delays, 2025, 185, 08936080, 107174, 10.1016/j.neunet.2025.107174
    5. Jin Gao, Lihua Dai, Min Xiao, Dynamical analysis of almost periodic solutions for delayed octonion-valued BAM neural networks, 2025, 44, 2238-3603, 10.1007/s40314-025-03112-2
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1503) PDF downloads(58) Cited by(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog