Processing math: 82%
Research article

Attractor of the nonclassical diffusion equation with memory on time- dependent space

  • Received: 21 February 2023 Revised: 27 March 2023 Accepted: 31 March 2023 Published: 21 April 2023
  • MSC : 35B25, 35B40, 35B41, 35K57, 45K05

  • We consider the dynamic behavior of solutions for a nonclassical diffusion equation with memory

    utε(t)utu0κ(s)u(ts)ds+f(u)=g(x)

    on time-dependent space for which the norm of the space depends on the time t explicitly, and the nonlinear term satisfies the critical growth condition. First, based on the classical Faedo-Galerkin method, we obtain the well-posedness of the solution for the equation. Then, by using the contractive function method and establishing some delicate estimates along the trajectory of the solutions on the time-dependent space, we prove the existence of the time-dependent global attractor for the problem. Due to very general assumptions on memory kernel κ and the effect of time-dependent coefficient ε(t), our result will include and generalize the existing results of such equations with constant coefficients. It is worth noting that the nonlinear term cannot be treated by the common decomposition techniques, and this paper overcomes the difficulty by dealing with it as a whole.

    Citation: Jing Wang, Qiaozhen Ma, Wenxue Zhou. Attractor of the nonclassical diffusion equation with memory on time- dependent space[J]. AIMS Mathematics, 2023, 8(6): 14820-14841. doi: 10.3934/math.2023757

    Related Papers:

    [1] Amjad Ali, Muhammad Arshad, Awais Asif, Ekrem Savas, Choonkil Park, Dong Yun Shin . On multivalued maps for φ-contractions involving orbits with application. AIMS Mathematics, 2021, 6(7): 7532-7554. doi: 10.3934/math.2021440
    [2] Muhammad Nazam, Hijaz Ahmad, Muhammad Waheed, Sameh Askar . On the Perov's type (β,F)-contraction principle and an application to delay integro-differential problem. AIMS Mathematics, 2023, 8(10): 23871-23888. doi: 10.3934/math.20231217
    [3] Gunaseelan Mani, Arul Joseph Gnanaprakasam, Choonkil Park, Sungsik Yun . Orthogonal F-contractions on O-complete b-metric space. AIMS Mathematics, 2021, 6(8): 8315-8330. doi: 10.3934/math.2021481
    [4] Pragati Gautam, Vishnu Narayan Mishra, Rifaqat Ali, Swapnil Verma . Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial b-metric space. AIMS Mathematics, 2021, 6(2): 1727-1742. doi: 10.3934/math.2021103
    [5] Abdullah Shoaib, Tahair Rasham, Giuseppe Marino, Jung Rye Lee, Choonkil Park . Fixed point results for dominated mappings in rectangular b-metric spaces with applications. AIMS Mathematics, 2020, 5(5): 5221-5229. doi: 10.3934/math.2020335
    [6] Budi Nurwahyu, Naimah Aris, Firman . Some results in function weighted b-metric spaces. AIMS Mathematics, 2023, 8(4): 8274-8293. doi: 10.3934/math.2023417
    [7] Shaoyuan Xu, Yan Han, Suzana Aleksić, Stojan Radenović . Fixed point results for nonlinear contractions of Perov type in abstract metric spaces with applications. AIMS Mathematics, 2022, 7(8): 14895-14921. doi: 10.3934/math.2022817
    [8] Hongyan Guan, Jinze Gou, Yan Hao . On some weak contractive mappings of integral type and fixed point results in b-metric spaces. AIMS Mathematics, 2024, 9(2): 4729-4748. doi: 10.3934/math.2024228
    [9] Yunpeng Zhao, Fei He, Shumin Lu . Several fixed-point theorems for generalized Ćirić-type contraction in Gb-metric spaces. AIMS Mathematics, 2024, 9(8): 22393-22413. doi: 10.3934/math.20241089
    [10] Yan Han, Shaoyuan Xu, Jin Chen, Huijuan Yang . Fixed point theorems for b-generalized contractive mappings with weak continuity conditions. AIMS Mathematics, 2024, 9(6): 15024-15039. doi: 10.3934/math.2024728
  • We consider the dynamic behavior of solutions for a nonclassical diffusion equation with memory

    utε(t)utu0κ(s)u(ts)ds+f(u)=g(x)

    on time-dependent space for which the norm of the space depends on the time t explicitly, and the nonlinear term satisfies the critical growth condition. First, based on the classical Faedo-Galerkin method, we obtain the well-posedness of the solution for the equation. Then, by using the contractive function method and establishing some delicate estimates along the trajectory of the solutions on the time-dependent space, we prove the existence of the time-dependent global attractor for the problem. Due to very general assumptions on memory kernel κ and the effect of time-dependent coefficient ε(t), our result will include and generalize the existing results of such equations with constant coefficients. It is worth noting that the nonlinear term cannot be treated by the common decomposition techniques, and this paper overcomes the difficulty by dealing with it as a whole.



    Schur complement of a matrix is widely used and has attracted the attention of many scholars. In 1979, the Schur complement question of a strictly diagonally dominant (SDD) matrix was studied by Carlson and Markham [1]. They certified the Schur complement of SDD matrix is also an SDD matrix. Before long, some renowned matrices such as doubly diagonally dominant matrices and Dashnic-Zusmanovich (DZ) matrices were researched, and the results were analogous [2,3,4,5]. In 2020, Li et al. proved that the Schur complements and the diagonal-Schur complements of Dashnic-Zusmanovich type (DZ-type) matrices are DZ-type matrices under certain conditions in [6]. In 2023, Song and Gao [7] proved that the Schur complements and the diagonal-Schur complements of CKV-type matrices are CKV-B-type matrices under certain conditions. Furthermore, there are many conclusions on Schur complements and diagonal-Schur complements for other classes of matrices, see [8,9,10,11,12,13,14,15].

    The upper bound of the inverse infinite norm of the non-singular matrix is widely used in mathematics, such as the convergence analysis of matrix splitting and matrix multiple splitting iterative method for solving linear equations. A traditional way to find the upper bound of an infinite norm for the inverse of a nonsingular matrix is to use the definition and properties of a given matrix class, see [16,17,18,19] for details. The first work was by Varah [19], who in 1975 gave the upper bound of the infinite norm of the inverse of the SDD matrix. However, in some cases, the bounds of Varah may yield larger values. In 2020, Li [20] obtained two upper bounds of the infinite norm of the inverse of the SDD matrix based on Schur complement, and in 2021, Sang [21] obtained two upper bounds for the infinity norm of DSDD matrices. In 2022, based on the Schur complement, Li and Wang obtained some upper bounds for the infinity norm of the inverse of GDSDD matrices [22].

    In this paper, n is a positive integer and N={1,2,...,n}. Let S be any nonempty subset of N, SN, ¯S:=NS for the complement of S. Cn×n denotes the set of complex matrices of all n×n. Rn×n denotes the set of all n×n real matrices. IRn×n is an identity matrix, A=[aij]Cn×n, |A|=[|aij|]Rn×n and

    ri(A)=ki,kN|aik|,rSi(A)=ki,kS|aik|,iN.

    The matrix A is known as the strictly diagonal dominance SDD matrix, abbreviated as A SDD, if

    |aii|>ri(A),iN.

    Definition 1. [23] Let S be an arbitrary nonempty proper subset of the index set. A=[aij]Cn×n,n2, is called an S-SOB (S-Sparse Ostrowski-Brauer) matrix if

    (i) |aii|>rSi(A) for all iS;

    (ii) |ajj|>r¯Sj(A) for all jS;

    (iii) For all iS and all jˉS such that aij0,

    [|aii|rSi(A)]|ajj|>r¯Si(A)rj(A); (1.1)

    (iv) For all iS and all jˉS such that aji0,

    [|ajj|r¯Sj(A)]|aii|>rSj(A)ri(A). (1.2)

    Definition 2. [24] A matrix A is called GDSDD matrix if J and there exists proper subsets N1,N2 of N such that N1N2=,N1N2=N and for any iN1 and jN2,

    [|aii|rN1i(A)][|ajj|rN2j(A)]>rN2i(A)rN1j(A),

    where J:={iN:|aii|>ri(A)}.

    Definition 3. [25] A matrix A is called an H-matrix, if its comparison matrix μ(A)=[μij] defined by

    μii=|aii|,μij=|aij|,i,jN,ij

    is an M-matrix, i.e., [μ(A)]10.

    It is shown in [1] that if A is an H-matrix, then,

    [μ(A)]1|A1|. (1.3)

    Let A be an M-matrix, then det(A)>0.

    In addition, it was shown that S-SOB, SDD and GDSDD matrices are nonsingular H-matrix in [23,26]. Varah [19] gave the following upper bound for the infinity norm of the inverse of SDD matrices:

    Theorem 1. [19] Let A=[aij] be an SDD matrix. Then,

    A1maxiN1|aii|ri(A). (1.4)

    Theorem 2. [27] Let A=[aij]Cn×n,n2, be an S-SOB matrix, where SN, 1|S|n1. Then,

    A1{maxiS:rˉSi(A)=01|aii|rSi(A),maxjˉS:rSj(A)=01|ajj|rˉSj(A),maxiS,jˉS:aij0fij(A,S),maxiS,jˉS:aji0fji(A,ˉS)}, (1.5)

    where

    fij(A,S)=|ajj|+rˉSi(A)[|aii|rSi(A)]|ajj|rˉSi(A)rj(A),iS,jˉS.

    Theorem 3. [28] Let A=[aij]Cn×n, n2, be an GDSDD matrix, where SN, 1|S|n1. Then,

    A1max{maxiN1,jN2|ajj|rN2j(A)+rN2i(A)[|aii|rN1i(A)][|ajj|rN2j(A)]rN2i(A)rN1j(A),maxiN1,jN2|aii|rN1i(A)+rN1j(A)[|aii|rN1i(A)][|ajj|rN2j(A)]>rN2i(A)rN1j(A)}. (1.6)

    In this paper, based on the Schur complement, we present some upper bounds for the infinity norm of the inverse of S-SOB matrices, and numerical examples are given to show the effectiveness of the obtained results. In addition, applying these new bounds, a lower bound for the smallest singular value of S-SOB matrices is obtained.

    Given a matrix A=(aij)Cn×n that is nonsingular, α={i1,i2,...,ik} is any nonempty proper subset of N, |α| is the cardinality of α (the number of elements in α, i.e., |α|=k), ˉα=Nα={j1,,jl} is the complement of α with respect to N, A(α,ˉα) is the submatrix of A lying in the rows indexed by α and the columns indexed by ˉα, A(α) is the leading submatrix of A whose row and column are both indexed by α, and the elements of α and of ˉα are both conventionally arranged in increasing order. If A(α) is not singular, the matrix A/α is called the Schur complement of A with respect to A(α). At this point

    A/α=A(ˉα)A(ˉα,α)[A(α)]1A(α,ˉα).

    Lemma 1. (Quotient formula [28,29]) Let A be a square matrix. Let B is a nonsingular principal submatrix of A and C is a nonsingular principal submatrix of B. Then, B/C is a nonsingular principal submatrix of A/C and A/B=(A/C)/(B/C), where B/C is the Schur complement of C in matrix B.

    Lemma 2. Let A=(aij)Cn×n be an S-SOB matrix, n2 and where αS or αˉS. Then, A(α) is an SDD matrix.

    Proof. When αS, since A is an S-SOB matrix and |aii|>rSi(A)rαi(A)=ki,kα|aik| for all iα, we have ri[A(α)]=ki,kα|aik|=rαi(A) and |aii|>ri[A(α)]. It is easy to obtain that A(α) is an SDD matrix. Homoplastically, so is αˉS.

    Lemma 3. Let A=(aij)Cn×n be an S-SOB matrix, n2 and α be a subset of N. Then, A(α) is an S-SOB matrix.

    Proof. If Sα, since A is an S-SOB matrix, then,

    (i) For all iS, |aii|>rSi(A)=rSi(A(α)),

    (ii) For all jˉSα, |ajj|>rˉSj(A)>rˉSαj(A)=rˉSαj(A(α)),

    (iii) For all iS,jˉSα such that aij0,

    [|aii|rSi(A(α))]|ajj|=[|aii|rSi(A)]|ajj|>rˉSi(A)rj(A)>rˉSi(A)rS(ˉSα)j(A)=rˉSi(A(α))rS(ˉSα)j(A(α)),

    (iv) For all iS,jˉSα such that aji0,

    [|ajj|rˉSαj(A(α))]|aii|=[|ajj|rˉSαj(A)]|aii|>rSj(A)ri(A)>rSj(A)rS(ˉSα)i(A)=rSj(A(α))rS(ˉSα)i(A(α)).

    Thus, A(α) is an S-SOB matrix and A(α)\{S-SOB}.

    In a similar way, if ˉSα, A(α) is an ˉS-SOB matrix. Meanwhile, when α is contained neither in S nor in ˉS, A(α) is an (Sα)-SOB matrix. Finally, A(α){S-SOB}.

    Lemma 4. Let A=(aij)Cn×n be an S-SOB matrix, n2 and let A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. If α={i1}S, denote

    B=(bij)=(|ai1i1|rSαi1(A)rˉSi1(A)|ajti1||ajtjt|rSαjt(A)rˉSjt(A)|ajsi1|rSαjs(A)|ajsjs|rˉSjs(A)), (2.1)

    where jt(Sα),jsˉS, then B{SGDD3}.

    Proof. Since A is an S-SOB matrix, if SB={1,2}, for all iSB, then,

    [|b11|rSB1(B)][|b33|rˉSB3(B)]=[|ai1i1|rSαi1(A)][|ajsjs|rˉSjs(A)]=[|ai1i1|rSi1(A)][|ajsjs|rˉSjs(A)].
    [|b22|rSB2(B)][|b33|rˉSB3(B)]=[|ajtjt|rSαjt(A)||ajti1|][|ajsjs|rˉSjs(A)]=[|ajtjt|rSjt(A)][|ajsjs|rˉSjs(A)].

    There exist four different cases.

    Case 1. When |ajsi1|0, |ai1js|0.

    (i) If |ajsjs|<rjs(A), from Definition 1, we have |ai1i1|ri1(A),

    [|b11|rSB1(B)][|b33|rˉSB3(B)]=[|ajsjs|rˉSjs(A)]|ai1i1|[|ajsjs|rˉSjs(A)]rSi1(A)>rSjs(A)ri1(A)rSjs(A)rSi1(A)=rSjs(A)rˉSi1(A)>rSαjs(A)rˉSi1(A)=rˉSB1(B)rSB3(B).

    (ii) If |ajsjs|>rjs(A), |ai1i1|ri1(A), we get

    [|b11|rSB1(B)][|b33|rˉSB3(B)]=[|ai1i1|rSi1(A)][|ajsjs|rˉSjs(A)]>rSjs(A)rˉSi1(A)>rSαjs(A)rˉSi1(A)=rˉSB1(B)rSB3(B).

    (iii) If |ajsjs|>rjs(A), |ai1i1|ri1(A), we obtain

    [|b11|rSB1(B)][|b33|rˉSB3(B)]=[|ai1i1|rSi1(A)]|ajsjs|[|ai1i1|rSi1(A)]rˉSjs(A)>rˉSi1(A)rjs(A)rˉSi1(A)rˉSjs(A)=rˉSi1(A)rSjs(A)>rSαjs(A)rˉSi1(A)=rˉSB1(B)rSB3(B).

    Case 2. When |ajsi1|0, |ai1js|=0, |ai1i1|ri1(A) the proof is analogous to (i) and (ii) in Case 1. We obtain

    [|b11|rSB1(B)][|b33|rˉSB3(B)]>rˉSB1(B)rSB3(B).

    Case 3. If |ajsi1|=0, |ai1js|0, then, |ajsjs|>rjs(A). By the same proof method as (ii) and (iii) in Case 1, we have

    [|b11|rSB1(B)][|b33|rˉSB3(B)]>rˉSB1(B)rSB3(B).

    Case 4. If |ajsi1|=0, |ai1js|=0, then, |ai1i1|>ri1(A), |ajsjs|>rjs(A), and

    [|b11|rSB1(B)][|b33|rˉSB3(B)]>rˉSB1(B)rSB3(B).

    To sum up, the inequality [|b11|rSB1(B)][|b33|rˉSB3(B)]>rˉSB1(B)rSB3(B) is held. In the same way, the inequality [|b22|rSB2(B)][|b33|rˉSB3(B)]>rˉSB2(B)rSB3(B) also holds. At last, we obtain B{GDSDD3} and B=μ(B) is an M-matrix. By Definition 3, we know that detB>0. The proof is completed.

    Theorem 4. Let A=(aij)Cn×n be an S-SOB matrix, n2 and let A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs). If αS, then, A/α{ GDSDD(Sα),ˉSnk}.

    Proof. Note that α contains only one element. If α=i1S, for all jtSα, jsˉS, then we have

    [|ajtjt|rSαjt(A/α)][|ajsjs|rˉSjs(A/α)]rˉSjt(A/α)rSαjs(A/α)=[|ajtjt|jwSα,wt|ajtjw|][|ajsjs|jwˉS,ws|ajsjw|]jwˉS|ajtjw|jwSα|ajsjw|=[|ajtjtajti1ai1jtai1i1|jwSα,wt|ajtjwajti1ai1jwai1i1|]×[|ajsjsajsi1ai1jsai1i1|jwˉS,wt|ajsjwajsi1ai1jwai1i1|]jwˉS|ajtjwajti1ai1jwai1i1|jwSα|ajsjwajsi1ai1jwai1i1|[|ajtjt|rSαjt(A)|ajti1|rSαi1(A)|ai1i1|]×[|ajsjs|rˉSjs(A)|ajsi1|rˉSi1(A)|ai1i1|][rˉSjt(A)+|ajti1|rˉSi1(A)|ai1i1|]×[rSαjs(A)+|ajsi1|rSαi1(A)|ai1i1|]=det[B/{1}]=1|ai1i1|detB>0.

    We have A/{i1}{ GDSDD(S{i1}),ˉSn1} for any i1S. Consider that α contains more than one element. If i1α, by the quotient formula (in [9] Theorem 2 (ii)), we have A/α=(A/{i1})/((A(α)/i1){GDSDD(Sα),ˉSnk}. The proof is completed.

    Corollary 1. Let A=(aij)Cn×n be an S-SOB matrix, n2 and let A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs). If αˉS, jtS,jsˉSα, then, A/α{GDSDDS,(ˉSα)nk}.

    Proof. The conclusion can be drawn by using the same proof method as Theorem 4.

    Corollary 2. Let A=(aij)Cn×n be an S-SOB matrix, n2 and let A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs). If α is contained neither in S nor in ˉS, jtSα,jsˉSα, then A/α{GDSDD(Sα),(ˉSα)nk}.

    Proof. The proof is similar to ([9], Theorem 2 (iii)), so we get A/α=(A/(Sα))/((A(α)/(Sα)){GDSDD(Sα),(ˉSα)nk}.

    Theorem 5. Let A=(aij)Cn×n be an S-SOB matrix, n2 and denote A/α=(ajtjs). If α=S or α=ˉS, then A/α is an SDD matrix.

    Proof. If {i1}=α=S, for all jtˉα, then we have

    |ajtjt|rjt(A/α)=|ajtjt|jwˉα,wt|ajtjw|=|ajtjtajti1ai1jtai1i1|jwˉα,wt|ajtjwajti1ai1jwai1i1||ajtjt|rˉαjt(A)jwˉα|ajti1ai1jw||ai1i1|=|ajtjt|rˉαjt(A)|ajti1|rˉαi1(A)|ai1i1|=|ajtjt|rˉSjt(A)|ajti1|rˉSi1(A)|ai1i1|.

    If ajti1=0, then we get

    |ajtjt|rjt(A/α)|ajtjt|rˉSjt(A)0>0.

    If ajti10, then we obtain

    |ajtjt|rjt(A/α)rSjt(A)ri1(A)|ai1i1||ajti1|rˉSi1(A)|ai1i1|>0.

    Hence, for any {i1}=α=S, A/{i1} is an SDD matrix. Taking i1α=S and using the fact that A is SDD, we know its Schur complement is as well. At last, we have A/α=(A/{i1})/(A(α)/{i1}){SDD}. By the same argument, so is α=ˉS.

    Corollary 3. Let A=(aij)Cn×n be an S-SOB matrix, n2 and denote A/α=(ajtjs). If Sα or ˉSα, then A/α is an SDD matrix.

    Proof. From Theorem 5, A/S is an SDD matrix, consequently, A/α=[A/S]/[(A(α)/S]{SDD}. Similarly, if ˉSα, we have A/α=[A/ˉS]/[(A(α)/ˉS]{SDD}.

    Finally, making a summary of part of the content: if αS or αˉS, then A(α){SDD}, A/α{ GDSDD}; if Sα or ˉSα, then A(α){S-SOB}, A/α{SDD}; if S=α or ˉS=α, then A(α){SDD}, A/α{SDD}; if α is contained neither in S nor in ˉS, then A(α){S-SOB}, A/α{GDSDD}.

    In order to obtain the upper bound of the infinite norm of the inverse of the S-SOB matrix, we need to give the definition of a permutation matrix in which every row and every column of it has only one element of 1 and all the other elements are 0. It is easy to see from the definition that permutation matrices are also elementary matrices, so multiplication of any matrix only changes the position of the matrix elements, but does not change the size of the matrix elements.

    For a given nonempty proper subset α, there is a permutation matrix P such that

    PTAP=(A(α)A(α,ˉα)A(ˉα,α)A(ˉα)).

    We might as well assume that A(α) is nonsingular, let

    E(PTAP)F=(A(α)00A(ˉα)A(ˉα,α)A(α)1A(α,ˉα)), (3.1)

    under the circumstances

    E=(I10A(ˉα,α)A(α)1I2)

    and

    F=(I1A(α)1A(α,ˉα)0I2),

    where I1 (resp.I2) is the identity matrix of order l (resp.m). We know that if P is a permutation matrix, then PT is also a permutation matrix, and ||P||=1. From the above we can obtain

    ||A1||=||PF(EPTAPF)1EPT||,
    ||A1||||F||||(EPTAPF)1||||E||. (3.2)

    Therefore, if the upper bounds of ||F||, ||(EPTAPF)1||, and ||E|| can be obtained, the upper bounds of ||A1|| can also be obtained, that is, the product of the above three norm bounds needs to be calculated. It's not hard to figure out

    ||E||=1+||A(ˉα,α)A(α)1||, (3.3)
    ||F||=1+||A(α)1A(α,ˉα)||, (3.4)

    and

    ||(EPTAPF)1||=max{||A(α)1||,||(A/α)1||}. (3.5)

    In [20], Li gives an upper bound for ||E|| as follows:

    Lemma 5. [20] Let A=[aij]Cn×n be nonsingular with aii0, for iN, and αN. If A(α) is nonsingular and

    1>maxiαmaxjα,ji|aji||aii|(k1), (3.6)

    then,

    ||E||ζ(α)=1+kmaxiαmaxjˉα|aji||aii|(1maxiαmaxjα,ji|aji||aii|(k1))1. (3.7)

    Theorem 6. Let A=[aij]Cn×n be an S-SOB matrix and D=[dij]Cn×m. Then,

    A1Dmax{maxiS,jˉS:aij0|ajj|Ri(D)+rˉSi(A)Rj(D)[|aii|rSi(A)]|ajj|rˉSi(A)rj(A),maxiS,jˉS:aji0|aii|Rj(D)+rSj(A)Ri(D)[|ajj|rˉSj(A)]|aii|rSj(A)ri(A),maxiS:rˉSi(A)=0Ri(D)|aii|rSi(A),maxjˉS:rSj(A)=0Rj(D)|ajj|rˉSj(A)}, (3.8)

    where Ri(D)=kM|dik|.

    Proof. Since A=[aij]Cn×n is an S-SOB matrix, we know from [1] that A is an H-matrix, [μ(A)]1|A1|. Let

    φφ=|A1D|e=(φ1,φ2,...,φn)T,
    ψψ=(μ(A))1|D|e=(ψ1,ψ2,...,ψn)T,

    and e=(1,...,1)T be an m-dimensional vector, consequently,

    ψψ=μ(A)1|D|e|A1||D|e|A1D|e=φφ,andμ(A)ψψ=|D|e.

    Because of SN, ψp=maxkS{ψk},ψq=maxkˉS{ψk}, it implies that

    |aii|ψikN,ki|aik|ψk=kM|dik|,iN.

    If ψpψq, then,

    kM|dpk|=|app|ψpkN,kp|apk|ψk=|app|ψpkS,kp|apk|ψkkˉS,kp|apk|ψk|app|ψpkS,kp|apk|ψpkˉS,kp|apk|ψq=[|app|rSp(A)]ψprˉSp(A)ψq.

    That is to say, if ψpψq, rˉSp(A)=0, then,

    kM|dpk|[|app|rSp(A)]ψp,

    and

    ||A1D||=maxiNψiψpkM|dpk||app|rSp(A)maxiS:rˉSi(A)=0kM|dik||aii|rSi(A). (3.9)

    If ψpψq, rˉSp(A)0, then,

    kM|dpk|[|app|rSp(A)]ψprˉSp(A)ψq, (3.10)

    and

    kM|dqk|=|aqq|ψqkN,kq|aqk|ψk|aqq|ψqrq(A)ψp. (3.11)

    By Eq (3.10) ×|aqq| + Eq (3.11)×rˉSp(A), we have

    |aqq|kM|dpk|+rˉSp(A)kM|dqk|{|aqq|[|app|rSp(A)]rˉSp(A)rq(A)}ψp.

    Thus,

    ||A1D||=maxiNψiψp|aqq|kM|dpk|+rˉSp(A)kM|dqk||aqq|[|app|rSp(A)]rˉSp(A)rq(A)maxiS,jˉS:aij0|ajj|kM|dik|+rˉSi(A)kM|djk||ajj|[|aii|rSi(A)]rˉSi(A)rj(A). (3.12)

    If ψqψp, equally,

    kM|dqk|=|aqq|ψqkN,kq|aqk|ψk|aqq|ψqkˉS,kq|aqk|ψqkS,kq|aqk|ψp=[|aqq|rˉSq(A)]ψqrSq(A)ψp.

    When rSq(A)=0, kM|dqk|[|aqq|rˉSq(A)]ψq.

    ||A1D||=maxiNψiψqkM|dqk||aqq|rˉSq(A)maxiS:rSq(A)=0kM|djk||ajj|rˉSj(A). (3.13)

    When rSq(A)0, then

    kM|dpk||app|ψprp(A)ψq, (3.14)
    kM|dqk|[|aqq|rˉSq(A)]ψqrSq(A)ψp. (3.15)

    Eq (3.14) ×rSq(A) + Eq (3.15)×|app|, we have

    rSq(A)kM|dpk|+|app|kM|dqk|{|app|[|aqq|rˉSq(A)]rSq(A)rq(A)}ψq.

    Consequently,

    ||A1D||=maxiNψiψqrSq(A)kM|dpk|+|app|kM|dqk||app|[|aqq|rˉSq(A)]rSq(A)rq(A)maxiS,jˉS:aji0|aii|kM|djk|+rSj(A)kM|dik||aii|[|ajj|rˉSj(A)]rSj(A)ri(A). (3.16)

    The conclusion follows from inequalities Eqs (3.9), (3.12), (3.13) and (3.16).

    Replacing A and D in Theorem 6 with A(α) and A(α,ˉα), respectively, yields Corollary 4.

    Corollary 4. Let A=[aij]Cn×n be an S-SOB matrix and αN, then, ||F||1+max{maxiαRi[A(α,ˉα)]|aii|ri[A(α)],β(α),γ(α),λ(α)}, where

    β(α)=max{maxiS,j(ˉSα):aij0|ajj|Ri[A(α,ˉα)]+r(ˉSα)i[A(α)]Rj[A(α,ˉα)][|aii|rSi[A(α)]]|ajj|r(ˉSα)i[A(α)]rj[A(α)],maxiS,j(ˉSα):aji0|aii|Rj[A(α,ˉα)]+rSj[A(α)]Ri[A(α,ˉα)][|ajj|r(ˉSα)j[A(α)]]|aii|rSj[A(α)]ri[A(α)],maxiS:r(ˉSα)i[A(α)]=0Ri[A(α,ˉα)]|aii|rSi[A(α)],maxjˉSα:rSj[A(α)]=0Rj[A(α,ˉα)]|ajj|r(ˉSα)j[A(α)]},
    γ(α)=max{maxiˉS,j(Sα):aij0|ajj|Ri[A(α,ˉα)]+r(Sα)i[A(α)]Rj[A(α,ˉα)][|aii|rˉSi[A(α)]]|ajj|r(Sα)i[A(α)]rj[A(α)],maxiˉS,j(Sα):aji0|aii|Rj[A(α,ˉα)]+rˉSj[A(α)]Ri[A(α,ˉα)][|ajj|r(Sα)j[A(α)]]|aii|rˉSj[A(α)]ri[A(α)],maxiˉS:r(Sα)i[A(α)]=0Ri[A(α,ˉα)]|aii|rˉSi[A(α)],maxjS:rSj[A(α)]=0Rj[A(α,ˉα)]|ajj|r(Sα)j[A(α)]},
    λ(α)=max{maxi(Sα),j(ˉSα):aij0|ajj|Ri[A(α,ˉα)]+r(ˉSα)i[A(α)]Rj[A(α,ˉα)][|aii|r(Sα)i[A(α)]]|ajj|r(ˉSα)i[A(α)]rj[A(α)],maxi(Sα),j(ˉSα):aji0|aii|Rj[A(α,ˉα)]+r(Sα)j[A(α)]Ri[A(α,ˉα)][|ajj|r(ˉSα)j[A(α)]]|aii|r(Sα)j[A(α)]ri[A(α)],maxi(Sα):r(ˉSα)i[A(α)]=0Ri[A(α,ˉα)]|aii|r(Sα)i[A(α)],maxjˉSα:r(Sα)j[A(α)]=0Rj[A(α,ˉα)]|ajj|r(ˉSα)j[A(α)]}.

    Proof. Let αS or αˉS, A(α) be an SDD matrix (from Lemma 2). Thus,

    ||F||=1+||A(α)1A(α,ˉα)||1+maxiαRi[A(α,ˉα)]|aii|ri[A(α)].

    From Lemma 3, we have

    (1) if Sα, A(α) is an S-SOB matrix, then

    ||F||=1+||A(α)1A(α,ˉα)||1+max{maxiS,j(ˉSα):aij0|ajj|Ri[A(α,ˉα)]+r(ˉSα)i[A(α)]Rj[A(α,ˉα)][|aii|rSi[A(α)]]|ajj|r(ˉSα)i[A(α)]rj[A(α)],maxiS,j(ˉSα):aji0|aii|Rj[A(α,ˉα)]+rSj[A(α)]Ri[A(α,ˉα)][|ajj|r(ˉSα)j[A(α)]]|aii|rSj[A(α)]ri[A(α)],maxiS:r(ˉSα)i[A(α)]=0Ri[A(α,ˉα)]|aii|rSi[A(α)],maxjˉS:rSj[A(α)]=0Rj[A(α,ˉα)]|ajj|r(ˉSα)j[A(α)]}.

    Hence, ||F||1+β(α).

    (2) If ˉSα, A(α) is an ˉS-SOB matrix, then

    ||F||=1+||A(α)1A(α,ˉα)||1+max{maxiˉS,j(Sα):aij0|ajj|Ri[A(α,ˉα)]+r(Sα)i[A(α)]Rj[A(α,ˉα)][|aii|rˉSi[A(α)]]|ajj|r(Sα)i[A(α)]rj[A(α)],maxiˉS,j(Sα):aji0|aii|Rj[A(α,ˉα)]+rˉSj[A(α)]Ri[A(α,ˉα)][|ajj|r(Sα)j[A(α)]]|aii|rˉSj[A(α)]ri[A(α)],maxiˉS:r(Sα)i[A(α)]=0Ri[A(α,ˉα)]|aii|rˉSi[A(α)],maxjS:rSj[A(α)]=0Rj[A(α,ˉα)]|ajj|r(Sα)j[A(α)]}.

    Accordingly, ||F||1+γ(α).

    (3) If α is contained neither in S nor in ˉS, A(α) is an (Sα)-SOB matrix, then we have

    ||F||=1+||A(α)1A(α,ˉα)||1+max{maxi(Sα),j(ˉSα):aij0|ajj|Ri[A(α,ˉα)]+r(ˉSα)i[A(α)]Rj[A(α,ˉα)][|aii|r(Sα)i[A(α)]]|ajj|r(ˉSα)i[A(α)]rj[A(α)],maxi(Sα),j(ˉSα):aji0|aii|Rj[A(α,ˉα)]+r(Sα)j[A(α)]Ri[A(α,ˉα)][|ajj|r(ˉSα)j[A(α)]]|aii|r(Sα)j[A(α)]ri[A(α)],maxi(Sα):r(ˉSα)i[A(α)]=0Ri[A(α,ˉα)]|aii|r(Sα)i[A(α)],maxjˉSα:r(Sα)j[A(α)]=0Rj[A(α,ˉα)]|ajj|r(ˉSα)j[A(α)]}=λ(α).

    Hence, ||F||1+λ(α). The proof is completed.

    Lemma 6. Let A=[aij]Cn×n be an S-SOB matrix and x=[μ(A(α))]1yT, where αS, or αˉS. Let x=(x1,x2,,xk), y=(y1,y2,,yk), yk>0, xg=maxikαxk, then

    0xkmaxivαyv|aiviv|rαiv(A),ikα. (3.17)

    Proof. Note that x=[μ(A(α))]1yT, so [μ(A(α))]x=yT. For all αS, or αˉS, from Lemma 2, μ(A(α)) is an H-matrix, so [μ(A(α))]10 by Eq (1.3). Then

    yg=|aigig|xgivα|aigiv|xv|aigig|xgivα|aigiv|xg,

    which gives xgyg|aigig|ivα|aigiv|=yg|aigig|rαig(A). Consequently, 0xkmaxivαyv|aiviv|rαiv(A),ikα.

    Lemma 7. Let A=[aij]Cn×n be an S-SOB matrix, x,yT from Lemma 6, if α is contained neither in S nor in ˉS, xg=maxikαxk, then

    0xkπyT(α),ikα, (3.18)

    where

    πyT(α)=max{maxi(Sα),j(ˉSα)|ajj|yi+r(ˉSα)i[A(α)]yj[|aii|r(Sα)i[A(α)]]|ajj|r(ˉSα)i[A(α)]rj[A(α)],maxi(Sα),j(ˉSα)|aii|yj+r(Sα)j[A(α)]yi[|ajj|r(ˉSα)j[A(α)]]|aii|r(Sα)j[A(α)]ri[A(α)]}.

    Proof. When α is contained neither in S nor in ˉS, A(α) is an (Sα)-SOB matrix, so is μ(A(α)). Thus,

    ||[μ(A(α))]1yT||=||x||=maxikαxk.

    Replacing A and D in Theorem 6 with [μ(A(α))]1 and yT, respectively, yields

    ||[μ(A(α))]1yT||max{maxi(Sα),j(ˉSα)|ajj|yi+r(ˉSα)i[A(α)]yj[|aii|r(Sα)i[A(α)]]|ajj|r(ˉSα)i[A(α)]rj[A(α)],maxi(Sα),j(ˉSα)|aii|yj+r(Sα)j[A(α)]yi[|ajj|r(ˉSα)j[A(α)]]|aii|rSj[A(α)]ri[A(α)]}=max{maxi(Sα),j(ˉSα)|ajj|yi+r(ˉSα)i(A)yj[|aii|r(Sα)i(A)]|ajj|r(ˉSα)i(A)rαj(A),maxi(Sα),j(ˉSα)|aii|yj+r(Sα)j(A)yi[|ajj|r(ˉSα)j(A)]|aii|r(Sα)j(A)rαi(A)}=πyT(α).

    Which implies that: 0xkπyT(α)),ikα.

    For the sake of convenience, assume that the symbol of A/α in this part is the same as in the second part and denote:

    vjt=(ajti1,ajti2,,ajtik),wjs=(ai1js,ai2js,,aikjs)T,
    |vjt|=(|ajti1|,|ajti2|,,|ajtik|),|wjs|=(|ai1js|,|ai2js|,,|aikjs|)T.

    I=(1,1,,1)T is an k order column vector.

    Theorem 7. Let A=(aij)Cn×n be an S-SOB matrix, n2 and A is a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs). If αS, then,

    ||A1||ζ(α)[1+maxiαRi[A(α,ˉα)]|aii|ri[A(α)]]θ1(α),

    where θ1(α)=max{maxiα1|aii|ri(A(α)),η1(α)},

    η1(α)=max{maxi(Sα),jˉS|ajj|rˉSj(A)+rˉSi(A)+maxvαrˉSv(A)|avv|rαv(A)[rαi(A)+rαj(A)]hi,j,maxi(Sα),jˉS|aii|r(Sα)i(A)+r(Sα)j(A)+maxvαr(Sα)v|avv|rαv(A)[rαi(A)+rαj(A)]hi,j}.
    hi,j=[|aii|r(Sα)i(A)|vi|[μ(A(α))]1k(Sα)|wk|]×[|ajj|rˉSj(A)|vj|[μ(A(α))]1kˉS|wk|][rˉSi(A)|vi|[μ(A(α))]1kˉS|wk|]×[rˉαj(A)+|vj|[μ(A(α))]1k(Sα)|wk|].

    Proof. By Lemma 2, we know A(α) is an SDD matrix. Applying Varah's bound to A(α), we get

    ||A(α)1||maxiα1|aii|ri(A(α)). (3.19)

    By Corollary 4, we have

    ||F||1+maxiαRi[A(α,ˉα)]|aii|ri[A(α)]. (3.20)

    By Theorem 4, it is easy to know A/α{ GDSDD(Sα),ˉSnk}. Therefore, from Theorem 3,

    ||(A/α)1||max{maxjt(Sα),jsˉS|ajsjs|rˉSjs(A/α)+rˉSjt(A/α)[|ajtjt|r(Sα)jt(A/α)][|ajsjs|rˉSjs(A/α)]rˉSjt(A/α)r(Sα)js(A/α),maxjt(Sα),jsˉS|ajtjt|r(Sα)jt(A/α)+r(Sα)js(A/α)[|ajtjt|r(Sα)jt(A/α)][|ajsjs|rˉSjs(A/α)]rˉSjt(A/α)r(Sα)js(A/α)}.

    And then

    [|ajtjt|r(Sα)jt(A/α)][|ajsjs|rˉSjs(A/α)]rˉSjt(A/α)r(Sα)js(A/α)[|ajtjt|r(Sα)jt(A)|vjt|[μ(A(α))]1jk(Sα)|wjk|]×[|ajsjs|rˉSjs(A)|vjs|[μ(A(α))]1jkˉS|wjk|][rˉSjt(A)+|vjt|[μ(A(α))]1jkˉS|wjk|]×[r(Sα)js(A)+|vjs|[μ(A(α))]1jk(Sα)|wjk|]>0.
    |ajsjs|rˉSjs(A/α)+rˉSjt(A/α)|ajsjs|rˉSjs(A)+rˉSjt(A)+|vjs|[μ(A(α))]1jkˉS|wjk|+|vjt|[μ(A(α))]1jkˉS|wjk|=|ajsjs|rˉSjs(A)+rˉSjt(A)+(|vjs|+|vjt|)[μ(A(α))]1jkˉS|wjk||ajsjs|rˉSjs(A)+rˉSjt(A)+(|vjs|+|vjt|)maxivαyv|aiviv|rαiv(A)I(by(3.17))=|ajsjs|rˉSjs(A)+rˉSjt(A)+maxivαrˉSiv(A)|aiviv|rαiv(A)[rαjt(A)+rαjs(A)]. (3.21)

    Similarly,

    |ajtjt|r(Sα)jt(A/α)+r(Sα)js(A/α)|ajtjt|r(Sα)jt(A)+r(Sα)js(A)+maxivαr(Sα)iv(A)|aiviv|rαiv(A)[rαjt(A)+rαjs(A)]. (3.22)

    Let

    hjt,js=[|ajtjt|r(Sα)jt(A)|vjt|[μ(A(α))]1jk(Sα)|wjk|]×[|ajsjs|rˉSjs(A)|vjs|[μ(A(α))]1jkˉS|wjk|][|vjt|[μ(A(α))]1jkˉS|wjk|]×[r(Sα)js(A)+|vjs|[μ(A(α))]1jk(Sα)|wjk|]>0. (3.23)

    Furthermore, by Eqs (3.21)–(3.23), we have

    ||(A/α)1||max{maxjt(Sα),jsˉS|ajsjs|rˉSjs(A)+rˉSjt(A)+maxivαrˉSiv(A)|aiviv|rαiv(A)[rαjt(A)+rαjs(A)]hjt,js,maxjt(Sα),jsˉS|ajtjt|r(Sα)jt(A)+r(Sα)js(A)+maxivαr(Sα)iv(A)|aiviv|rαiv(A)[rαjt(A)+rαjs(A)]hjt,js}=max{maxi(Sα),jˉS|ajj|rˉSj(A)+rˉSi(A)+maxvαrˉSv(A)|avv|rαv(A)[rαi(A)+rαj(A)]hi,j,maxi(Sα),jˉS|aii|r(Sα)i(A)+r(Sα)j(A)+maxvαr(Sα)v|avv|rαv(A)[rαi(A)+rαj(A)]hi,j}. (3.24)

    Finally, by Eqs (3.2), (3.3), (3.19), (3.20) and (3.24), the conclusion follows.

    The following inference can be naturally drawn from Theorem 7:

    Corollary 5. Let A=(aij)Cn×n be an S-SOB matrix, n2 and A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs). If αˉS, then,

    ||A1||ζ(α)[1+maxiαRi[A(α,ˉα)]|aii|ri[A(α)]]θ2(α),

    where θ2(α)=max{maxiα1|aii|ri(A(α)),η2(α)},

    η2(α)=max{maxiS,j(ˉSα)|ajj|r(ˉSα)j(A)+r(ˉSα)i(A)+maxvαr(ˉSα)v(A)|avv|rαv(A)[rαi(A)+rαj(A)]zi,j,maxiS,j(ˉSα)|aii|rSi(A)+rSj(A)+maxvαrSv(A)|avv|rαv(A)[rαi(A)+rαj(A)]zi,j}.
    zi,j=[|aii|rSi(A)|vi|[μ(A(α))]1kS|wk|]×[|ajj|r(ˉSα)j(A)|vj|[μ(A(α))]1k(ˉSα)|wk|][r(ˉSα)i(A)|vi|[μ(A(α))]1k(ˉSα)|wk|]×[rˉαj(A)+|vj|[μ(A(α))]1kS|wk|].

    Theorem 8. Let A=(aij)Cn×n be an S-SOB matrix, n2 and A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs). If α is contained neither in S nor in ˉS, then,

    ||A1||ζ(α)[1+λ(α)]θ3(α),

    where θ3(α)=max{δ1(α),η3(α)},

    δ1(α)=max{maxi(Sα),j(ˉSα)|ajj|+r(ˉSα)i(A(α))[|aii|r(Sα)i(A(α))]|ajj|r(ˉSα)i(A(α))rj(A(α)),maxi(Sα),j(ˉSα)|aii|+r(Sα)j[(A(α))][|ajj|r(ˉSα)j(A(α))]|aii|r(Sα)j(A(α))ri(A(α))}.
    η3(α)=max{maxi(Sα),j(ˉSα)|ajj|r(ˉSα)j(A)+rαi(A)+[rαi(A)+rαj(A)]πy1(α)fi,j,maxi(Sα),j(ˉSα)|aii|r(Sα)i(A)+r(Sα)j(A)+[rαi(A)+rαj(A)]πy2(α)fi,j}.
    fi,j=[|aii|r(Sα)i(A)|vi|[μ(A(α))]1k(Sα)|wk|]×[|ajj|r(ˉSα)j(A)|vj|[μ(A(α))]1k(ˉSα)|wk|][r(ˉSα)i(A)+|vi|[μ(A(α))]1k(ˉSα)|wk|]×[r(Sα)j(A)+|vj|[μ(A(α))]1k(Sα)|wk|].

    Proof. By Lemma 3, we know A(α) is an (Sα)-SOB matrix. Applying the bound of Theorem 2 to A(α), we get

    A(α)1max{maxi(Sα),j(ˉSα)|ajj|+r(ˉSα)i(A(α))[|aii|r(Sα)i(A(α))]|ajj|r(ˉSα)i(A(α))rj(A(α)),maxi(Sα),j(ˉSα)|aii|+r(Sα)j[(A(α))][|ajj|r(ˉSα)j(A(α))]|aii|r(Sα)j(A(α))ri(A(α))}=δ1(α). (3.25)

    By Corollary 4, we have

    ||F||1+λ(α). (3.26)

    By Corollary 2, we know A/α{ GDSDD(Sα),(ˉSα)nk}. Therefore,

    ||(A/α)1||max{maxjt(Sα),js(ˉSα)|ajsjs|r(ˉSα)js(A/α)+r(ˉSα)jt(A/α)[|ajtjt|r(Sα)jt(A/α)][|ajsjs|r(ˉSα)js(A/α)]r(ˉSα)jt(A/α)r(Sα)js(A/α),maxjt(Sα),js(ˉSα)|ajtjt|r(Sα)jt(A/α)+r(Sα)js(A/α)[|ajtjt|r(Sα)jt(A/α)][|ajsjs|r(ˉSα)js(A/α)]r(ˉSα)jt(A/α)r(Sα)js(A/α)}. (3.27)

    And then,

    [|ajtjt|r(Sα)jt(A/α)][|ajsjs|r(ˉSα)js(A/α)]r(ˉSα)jt(A/α)r(Sα)js(A/α)[|ajtjt|r(Sα)jt(A)|vjt|[μ(A(α))]1jk(Sα)|wjk|]×[|ajsjs|r(ˉSα)js(A)|vjs|[μ(A(α))]1jk(ˉSα)|wjk|][r(ˉSα)jt(A)+|vjt|[μ(A(α))]1jk(ˉSα)|wjk|]×[r(Sα)js(A)+|vjs|[μ(A(α))]1jk(Sα)|wjk|]>0.
    |ajsjs|r(ˉSα)js(A/α)+r(ˉSα)jt(A/α)|ajsjs|r(ˉSα)js(A)+r(ˉSα)jt(A)+|vjs|[μ(A(α))]1jk(ˉSα)|wjk|+|vjt|[μ(A(α))]1jk(ˉSα)|wjk|=|ajsjs|r(ˉSα)js(A)+r(ˉSα)jt(A)+(|vjs|+|vjt|)[μ(A(α))]1jk(ˉSα)|wjk|.

    Let yT=y1=jk(ˉSα)|wjk|, yT from Lemma 7, we get

    |ajsjs|r(ˉSα)js(A/α)+r(ˉSα)jt(A/α)|ajsjs|r(ˉSα)js(A)+r(ˉSα)jt(A)+(|vjs|+|vjt|)π(α)I=|ajsjs|r(ˉSα)js(A)+r(ˉSα)jt(A)+[rαjt(A)+rαjs(A)]πy1(α). (3.28)

    In like manner, let yT=y2=jk(Sα)|wjk|, yT from Lemma 7, we get

    |ajtjt|r(Sα)jt(A/α)+r(Sα)js(A/α)|ajtjt|r(Sα)jt(A)+r(Sα)js(A)+[rαjt(A)+rαjs(A)]πy2(α). (3.29)

    Let

    fjt,js=[|ajtjt|r(Sα)jt(A)|vjt|[μ(A(α))]1jk(Sα)|wjk|]×[|ajsjs|r(ˉSα)js(A)|vjs|[μ(A(α))]1jk(ˉSα)|wjk|][r(ˉSα)jt(A)+|vjt|[μ(A(α))]1jk(ˉSα)|wjk|]×[r(Sα)js(A)+|vjs|[μ(A(α))]1jk(Sα)|wjk|]. (3.30)

    Furthermore, by Eqs (3.28)–(3.30), we have

    ||(A/α)1||max{maxjt(Sα),js(ˉSα)|ajsjs|r(ˉSα)js(A)+rˉSαjt(A)+[rαjt(A)+rαjs(A)]πy1(α)fjt,js,maxjt(Sα),js(ˉSα)|ajtjt|r(Sα)jt(A)+r(Sα)js(A)+[rαjt(A)+rαjs(A)]πy2(α)fjt,js}=max{maxi(Sα),j(ˉSα)|ajj|r(ˉSα)j(A)+r(ˉSα)i(A)+[rαi(A)+rαj(A)]πy1(α)fi,j,maxi(Sα),j(ˉSα)|aii|r(Sα)i(A)+r(Sα)j(A)+[rαi(A)+rαj(A)]πy2(α)fi,j}. (3.31)

    Finally, by Eqs (3.2), (3.3), (3.25), (3.26) and (3.31), the conclusion follows.

    Theorem 9. Let A=[aij]Cn×n be an S-SOB matrix, ϕα=S. If Eq (3.7) holds, then,

    ||A1||ζ(α)[1+maxiαRi[A(α,ˉα)]|aii|ri[A(α)]]θ4(α),

    where θ4(α)=max{maxiα1|aii|ri(A(α)),η4(α)},

    η4(α)=maxjˉS1|ajj|rˉSj(A)|vj|[μ(A(α))]1kˉS|wk|.

    Expressly, when ϕα=S={i},

    ||A1||[1+maxjˉS|aji||aii|][1+maxjˉS|aji||aii|]θ4(α).

    θ4(α)=max{1|aii|,η4(α)},

    η4(α)=maxjˉS1|ajj|rˉSj(A)|aji|rˉSi(A)|aii|.

    Proof. By Lemma 2, we know A(α) is an SDD matrix. ||A(α)1|| is the same as Eq (3.19), and ||F|| is the same as Eq (3.20). By Theorem 5, knowing that A/α is an SDD matrix. Therefore,

    ||(A/α)1||maxjtˉα1|ajtjt|rjt(A/α)maxjtˉα1|ajtjt|rˉαjt(A)|vjt|[μ(A(α))]1jkˉS|wjk|=maxjtˉS1|ajtjt|rˉSjt(A)|vjt|[μ(A(α))]1jkˉS|wjk|=maxjˉS1|ajj|rˉSj(A)|vj|[μ(A(α))]1kˉS|wk|=η4. (3.32)

    Finally, by Eqs (3.2), (3.3), (3.19), (3.20) and (3.32), the conclusion follows.

    A proof similar to Theorem 9 leads to the results.

    Corollary 6. Let A=[aij]Cn×n be an S-SOB matrix, where ϕα=ˉS. If Eq (3.7) holds, then,

    ||A1||ζ(α)[1+maxiαri[A(α,ˉα)]|aii|ri[A(α)]]θ5(α),

    where θ5(α)=max{maxiα1|aii|ri(A(α)),η5(α)},

    η5(α)=maxiS1|aii|rSi(A)|vi|[μ(A(α))]1kS|wk|.

    Distinguishingly, when ϕα=ˉS={i},

    ||A1||[1+maxjS|aji||aii|][1+maxjS|aji||aii|]θ5(α).

    θ5(α)=max{1|aii|,η5(α)},

    η5(α)=maxjS1|ajj|rSj(A)|aji|rSi(A)|aii|.

    Theorem 10. Let A=[aij]Cn×n be an S-SOB matrix, where Sα. If Eq (3.7) holds, then,

    ||A1||ζ(α)[1+β(α)]θ6(α),

    where θ6(α)=max{δ2(α),η6(α)},

    δ2(α)=max{maxiS,j(ˉSα),:aij0|ajj|+r(ˉSα)i(A(α))[|aii|rSi(A(α))]|ajj|r(ˉSα)i(A(α))rj(A(α)),maxiS,j(ˉSα),:aji0|aii|+r(Sα)j[(A(α))][|ajj|r(ˉSα)j(A(α))]|aii|rSj(A(α))ri(A(α)),maxiS,j(ˉSα)r(ˉSα)i(A(α))=01|aii|rSi(A(α)),maxiS,j(ˉSα):rSj(A(α))=01|ajj|r(ˉSα)j(A(α))}.
    η6(α)=maxi(ˉSα)1|aii|r(ˉSα)i(A)|vi|[μ(A(α))]1k(ˉSα)|wk|.

    Proof. A(α) is an S-SOB matrix (by Lemma 3). Thus,

    A(α)1max{maxiS,j(ˉSα),:aij0|ajj|+r(ˉSα)i(A(α))[|aii|rSi(A(α))]|ajj|r(ˉSα)i(A(α))rj(A(α)),maxiS,j(ˉSα),:aji0|aii|+r(Sα)j[(A(α))][|ajj|r(ˉSα)j(A(α))]|aii|rSj(A(α))ri(A(α)),maxiS,j(ˉSα)r(ˉSα)i(A(α))=01|aii|rSi(A(α)),maxiS,j(ˉSα):rSj(A(α))=01|ajj|r(ˉSα)j(A(α))}=δ2(α). (3.33)

    From Corollary 4, we know

    ||F||1+β(α). (3.34)

    By Corollary 3, we obtain A/α is an SDD matrix. Therefore,

    ||(A/α)1||maxjt(ˉSα)1|ajtjt|r(ˉSα)jt(A)|vjt|[μ(A(α))]1jk(ˉSα)|wjk|=maxi(ˉSα)1|aii|r(ˉSα)i(A)|vi|[μ(A(α))]1k(ˉSα)|wk|. (3.35)

    Finally, by Eqs (3.2), (3.3), (3.33), (3.34) and (3.35), the conclusion follows.

    According to Theorem 10, the following result will come out naturally.

    Corollary 7. Let A=[aij]Cn×n be an S-SOB matrix, ˉSα. If Eq (3.7) holds, then

    ||A1||ζ(α)[1+γ(α)]θ7(α),

    where θ7(α)=max{δ3(α),η7(α)},

    δ3(α)=max{maxi(Sα),jˉS|ajj|+rˉSi(A(α))[|aii|r(Sα)i(A(α))]|ajj|rˉSi(A(α))rj(A(α)),maxi(Sα),jˉS|aii|+r(Sα)j[(A(α))][|ajj|rˉSj(A(α))]|aii|r(Sα)j(A(α))ri(A(α)),maxi(Sα),jˉS1|aii|r(Sα)i(A(α)),maxi(Sα),jˉS1|ajj|rˉSj(A(α))}.

    η7(α)=maxi(Sα)1|aii|r(Sα)i(A)|vi|[μ(A(α))]1k(Sα)|wk|.

    Theorem 11. Let A=(aij)Cn×n be an S-SOB matrix, n3 and let A satisfy that when aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs), then,

    ||A1||Γ(A)=miniNΓi(A).

    where Γi(A)=(1+maxjN,ji|aji||aii|)(1+maxjN,ji|aij||aii|)˜Γi(A),

    ˜Γi(A)=max{1|aii|,Γ(A)}.
    Γ(A)=max{maxj(S{i}),k(ˉS{i})|ckk|pˉS,pk,i|ckp|+pˉS,pi|cjp|(|cjj|pS,pj,i|cjp|)(|ckk|pˉS,pk,i|ckp|)pS,pi|ckp|pˉS,pi|cjp|,maxj(S{i}),k(ˉS{i})|cjj|pS,pj,i|cjp|+pS,pi|ckp|(|cjj|pS,pj,i|cjp|)(|ckk|pˉS,pk,i|ckp|)pS,pi|ckp|pˉS,pi|cjp|},

    and cjk=ajkajiaikaii.

    Proof. Since A is an S-SOB matrix, by Lemma 2 and Theorem 5, we know A(α) and A/α are nonsingular. Therefore, taking α={i}, then A(α)=aii, ˉα=N{i}, and

    A(α)11|aii|. (3.36)
    E=1+maxjsˉα|ajsi||aii|=1+maxjN,ji|aji||aii|. (3.37)
    F=1+maxjsˉα|aijs||aii|=1+maxjN,ji|aij||aii|. (3.38)

    Because A/α=(ajtjs), let |ajtjs|=|ajtjsajtiaijsaii|=|cjtjs|(jt,js(N{i})). By calculation, we obtain for jt(S{i}),js(ˉS{i}),

    r(S{i})jt(A/α)=jp(S{i}),jpjt|cjtjp|=jpS,jpjt,i|cjtjp|,
    r(ˉS{i})jt(A/α)=jp(ˉS{i})|cjtjp|=jpˉS,jpi|cjtjp|,
    r(ˉS{i})js(A/α)=jp(ˉS{i}),jpjs|cjsjp|=jpˉS,jpi|cjsjp|,
    r(S{i})js(A/α)=jp(S{i})|cjsjp|=jpS,jpi|cjsjp|.

    By Eq (3.27), we have

    ||(A/α)1||max{maxj(S{i}),k(ˉS{i})|ckk|pˉS,pk,i|ckp|+pˉS,pi|cjp|(|cjj|pS,pj,i|cjp|)(|ckk|pˉS,pk,i|ckp|)pS,pi|ckp|pˉS,pi|cjp|,maxj(S{i}),k(ˉS{i})|cjj|pS,pj,i|cjp|+pS,pi|ckp|(|cjj|pS,pj,i|cjp|)(|ckk|pˉS,pk,i|ckp|)pS,pi|ckp|pˉS,pi|cjp|}. (3.39)

    Finally, by Eqs (3.36), (3.37), (3.38) and (3.39) the conclusion follows.

    We illustrate our results by the following examples:

    Example 1. Consider matrix A as a tri-diagonal n×n matrix

    A=[n+|sin(1)|bcos(2)bcos(n1)bcos(n)sin(2)n+|sin(2)|bcos(n1)bcos(n)sin(n1)sin(n1)n+|sin(n1)|bcos(n)sin(n)sin(n)sin(n)n+|sin(n)|]n×n.

    Let b = 1.5, \; n = 10000 . We get that matrix A is an SDD matrix. It is easy to verify matrix A is an SDD matrix, so it is also a S -SOB, DSDD , GDSDD and DZ matrix. Therefore, from Theorem 1, we put the result in Table 1.

    Table 1.  Upper bounds of matrix A in Example 1.
    b=1.5 n=10000
    \text {Bound in Theorem 1} 0.2786
    \text {Bound in Theorem 2} 0.2685
    \text {Bound in Theorem 3} 0.2485
    \text {Bound in [20, Theorem 3]} 0.3954
    \text {Bound in [31, Corollary 1]} 0.2786
    \text {Bound in [21, Theorem 1.2]} 0.2731
    \text {Bound in [21, Corollary 2.6]} 0.1937
    \text {Bound in Theorem 11} 0.1904

     | Show Table
    DownLoad: CSV

    Actually, \|A^{-1}\|_{\infty} = 0.0002 . This example shows that the boundary in Theorem 11 is superior to other theorems in some cases.

    Example 2. Consider matrix

    A = \left[ \begin{matrix} 16.81 &0.15 &0.65 &0.7 &0.43 &0.27 &0.75 &0.84 &0.35 &0.07 \\ 1.9 &8 &0.03 &0.03 &3.38 &0.67 &0.25 &2.25 &0.83 &1.05 \\ 0.12 &0.95 &11.84 &0.27 &0.76 &0.65 &0.5 &0.81 &0.58 &0.53 \\ 0.91 &0.48 &0.93 &12.04 &0.79 &0.16 &0.69 &0.24 &0.54 &0.77\\ 0.63 &0.8 &0.67 &0.09 &9.18 &1.11 &0.89 &6.92 &0.91 &0.93\\ 0.09 &0.14 &0.75 &0.82 &0.48 &15.49 &0.95 &0.35 &0.28 &0.12\\ 0.27 &0.42 &0.74 &0.69 &0.44 &0.95 &12.54 &0.19 &0.75 &0.56\\ 0.54 &0.91 &0.39 &0.31 &0.64 &0.34 &0.13 &11.25 &0.75 &0.46\\ 0.95 &0.79 &0.65 &0.95 &0.70 &0.58 &0.14 &0.61 &10.38 &0.01\\ 0.96 &0.95 &0.17 &0.03 &0.75 &0.22 &0.25 &0.47 &0.56 &17.33\\ \end{matrix} \right].

    By computation, the matrix A is an S -SOB matrix and S = \{2, 3, 5\} . According to Theorem 2, we obtain

    ||{{A}^{-1}}|{{|}_{\infty }}\le 1.7202.

    According to Theorem 11, it is easy to get

    ||{{A}^{-1}}|{{|}_{\infty }}\le 0.5061.

    In practice, ||{{A}^{-1}}|{{|}_{\infty }} = 0.2155 . Obviously, the boundary in Theorem 11 is superior to Theorem 2 in some cases.

    Example 3. Consider matrix

    A = \left[ \begin{matrix} 38 &1 &3 &3 &-4 &2 &5 &-1 \\ 1 &40 &5 &4 &1 &3 &1 &-2 \\ 2 &1 &36 &1 &2 &1 &-4 &-3 \\ 1 &3 &2 &28 &3 &5 &1 &2\\ 4 &1.5 &-1 &2 &31 &-1 &-4 &4\\ -8 &6 &3 &5 &2 &49 &2 &7\\ 7 &9 &1 &-1 &-1 &7 &50 &5\\ 1 &13 &2 &3 &6 &1 &1 &44\\ \end{matrix} \right].

    Obviously, the matrix A is an SDD matrix, and it's also an S -SOB matrix and S = \{2, 3, 4, 5, 8\} . According to Theorem 1, we can obtain

    ||{{A}^{-1}}|{{|}_{\infty }}\le 0.0909.

    According to Theorem 2, we can obtain

    ||{{A}^{-1}}|{{|}_{\infty }}\le 0.0860.

    According to Theorem 11, we can obtain

    ||{{A}^{-1}}|{{|}_{\infty }}\le 0.0842.

    In fact, ||{{A}^{-1}}|{{|}_{\infty }} = 0.0497. This example shows that the boundary in Theorem 11 is superior to Theorems 1 and 2 in some cases.

    In this section, we will apply the result in Section 3 to the linear complementarity problems (LCPs), to obtain two kinds of error bounds for LCPs of S -SOB matrices. We first need to give some lemmas that would be used in the following theorems:

    Lemma 8. [29] Let \gamma > 0 and \eta\geq 0 , for any x\in [0, 1] ,

    \frac{1}{1-x+\gamma x}\leq\frac{1}{min\{\gamma, 1\}}, \; \frac{\eta x}{1-x+\gamma x}\leq\frac{\eta}{\gamma}.

    Lemma 9. Suppose that M = (m_{ij})\in \mathbb{R}^{n\times n} is an S-SOB matrix with positive diagonal entries, let

    \begin{eqnarray} \tilde{M} = I-D+DM = (\tilde{m}_{ij}), \end{eqnarray} (4.1)

    then, \tilde{M} is also a real S-SOB matrix with positive diagonal entries, where D = diag(d_{1}, \cdots, d_{n}) , d_{i}\in[0, 1] .

    Proof. Note that

    \tilde{m}_{ij} = \left\{\begin{array}{cc} 1-d_{i}+d_{i}m_{ij}, & i = j, \\\\ d_{i}m_{ij}, &i\neq j. \end{array} \right.

    Hence, for each i\in S , j\in \bar{S} ,

    |\tilde{m}_{ii}| = 1-d_{i}+d_{i}m_{ii}\geq d_{i}m_{ii} > d_{i}r_{i}^{S}(M) = r_{i}^{S}(\tilde{M}),
    |\tilde{m}_{jj}| = 1-d_{j}+d_{j}m_{jj}\geq d_{i}m_{ii} > d_{i}r_{i}^{\bar{S}}(M) = r_{j}^{\bar{S}}(\tilde{M}).

    Then, for any i\in S , j\in\bar{S} , d_{i}\in(0, 1) , we have

    \begin{eqnarray} (|\tilde{m}_{ii}|-r_{i}^{S}(\tilde{M}))|\tilde{m}_{jj}|& = & (d_{i}|m_{ii}|-d_{i}r_{i}^{S}(M))d_{j}|m_{jj}| \\ & = & d_{i}d_{j}(|m_{ii}|-r_{i}^{S}(M))|m_{jj}|\\ & > & d_{i}d_{j}r_{i}^{\bar{S}}(M)r_{j}(M) = r_{i}^{\bar{S}}(\tilde{M})r_{j}(\tilde{M}). \end{eqnarray}

    For any i\in S , j\in\bar{S} , we get

    \begin{eqnarray} (|\tilde{m}_{jj}|-r_{j}^{\bar{S}}(\tilde{M}))|\tilde{m}_{ii}| & = & (d_{j}|m_{jj}|-d_{j}r_{j}^{\bar{S}}(M)) d_{i}|m_{ii}|\\ & = &d_{i}d_{j}(|m_{jj}|-r_{j}^{\bar{S}}(M))|m_{ii}|\\ & > & d_{i}d_{j}r_{j}^{S}(M)r_{i}(M) = r_{j}^{S}(\tilde{M})r_{i}(\tilde{M}). \end{eqnarray}

    When d_{i} = 0 , \tilde{m}_{ii} = 1-d_{i}+d_{i}m_{ii} = 1 , we obtain

    (|\tilde{m}_{ii}|-r_{i}^{S}(\tilde{M})))|\tilde{m}_{jj}| = 1 > 0 = r_{j}^{\bar{S}}(\tilde{M})r_{i}(\tilde{M}),
    (|\tilde{m}_{jj}|-r_{j}^{\bar{S}}(\tilde{M}))|\tilde{m}_{ii}| = 1 > 0 = r_{i}^{S}(\tilde{M})r_{j}(\tilde{M}).

    When d_{i} = 1 , \tilde{m}_{ij} = 1-d_{i}+d_{i}m_{ij} = m_{ij} , then

    (|\tilde{m}_{ii}|-r_{i}^{S}(\tilde{M}))|\tilde{m}_{jj}| = (|m_{ii}|-r_{i}^{S}(M))|m_{jj}| > r_{j}^{\bar{S}}(M)r_{i}(M) = r_{j}^{\bar{S}}(\tilde{M})r_{i}(\tilde{M}),
    (|\tilde{m}_{jj}|-r_{j}^{\bar{S}}(\tilde{M}))|\tilde{m}_{ii}| = (|m_{jj}|-r_{j}^{\bar{S}}(M))|m_{ii}| > r_{i}^{S}(M)r_{j}(M) = r_{i}^{S}(\tilde{M})r_{j}(\tilde{M}).

    As d_{i}\in[0, 1] , conditions (i)–(iv) in Definition 1 are fulfilled for all i\in S and j\in \bar{S} . So the conclusion follows.

    Lemma 9 indicates that \tilde{M} is an S -SOB matrix when M is an S -SOB matrix. We will present an error bound for the linear complementarity problem of S -SOB matrices. The following theorem is one of our main results, which gives an upper bound on the condition constant \max_{d\in[0, 1]^{n}}\|(I-D+DA)^{-1}\|_{\infty} when A is an S -SOB matrix.

    Theorem 12. Let A = (a_{ij})\in\mathbb{R}^{n\times n} be an S-SOB matrix with positive diagonal entries, and \tilde{A} = [\tilde{a_{ij}}] = I-D+DA , where D = diag(d_{i}) with 0\leq d_{i}\leq 1 . Then

    \begin{eqnarray*} \max\limits_{d\in [0, 1]^{n}}\|(I-D+DA)^{-1}\|_{\infty}\leq \min\limits_{i\in N}{(1+\max\limits_{j\in N, \atop j\neq i}\{\frac{|d_{j}a_{ji}|}{a_{ii}}, d_{j}a_{ji})(1+\max\limits_{j\in N, \atop j\neq i}\{\frac{d_{i}a_{ij}}{a_{ii}}, d_{i}a_{ij}\})}\max\{\frac{1}{a_{ii}}, 1, \Delta(A), \Delta^{'}(A)\} \end{eqnarray*}

    where

    \begin{eqnarray*} & &\frac{1+\frac{a_{ki}a_{ij}}{a_{ii}a_{kk}}+\sum _{p\in\bar{S}, \atop p\neq i} \frac{a_{jp}}{a_{jj}}+\frac{a_{jp}a_{ji}}{a_{ii}a_{jj}}}{\varsigma_{j}^{S}(A)\varsigma_{j}^{\bar{S}}(A)-(\sum\frac{a_{kp}}{a_{kk}}+\sum\frac{a_{ki}a_{ip}}{a_{ii}a_{kk}})(\frac{a_{jp}}{a_{jj}}+ \sum\frac{a_{ji}a_{ip}}{a_{ii}a_{jj}})}\nonumber\\& = &\Delta(A), \end{eqnarray*}
    \begin{eqnarray*} & &\frac{1+\frac{a_{ji}a_{ik}}{a_{ii}a_{jj}}+\sum \frac{a_{kp}}{a_{kk}}+\frac{a_{kp}a_{ki}}{a_{ii}a_{kk}}}{\varsigma_{k}^{S}(A)\varsigma_{k}^{\bar{S}}(A)-(\sum\frac{a_{kp}}{a_{kk}}+\sum\frac{a_{ki}a_{ip}}{a_{ii}a_{kk}})(\frac{a_{jp}}{a_{jj}}+ \sum\frac{a_{ji}a_{ip}}{a_{ii}a_{jj}})}\nonumber\\ & = &\Delta^{'}(A), \end{eqnarray*}

    and \varsigma_{j}^{S}(A) = \frac{1-d_{j}+d_{j}a_{jj}}{1-d_{t}+d_{t}a_{tt}}-\frac{a_{ji}a_{ij}}{a_{ii}a_{jj}}-\sum\limits_{p\in S, \atop p\neq j, i} \frac{a_{jk}}{a_{jj}}-\sum\limits_{p\in S, \atop p\neq j, i}\frac{a_{ji}a_{ik}}{a_{ii}a_{jj}} .

    Proof. Because \tilde{A} = (\tilde{a_{ij}}) = (I-D+DA) , we know \tilde{A} is an S - SOB matrix with positive diagonal entries from Lemma 9. By Theorem 11, the following inequality holds

    \|\tilde{A}\|_{\infty}\leq\max\Gamma(\tilde{A}) = \min\limits_{i\in N}\Gamma_{i}(\tilde{A}),

    where \Gamma_{i}(\tilde{A}) = (1+\frac{\max\limits_{j\in N, \atop j\neq i}|\tilde{a_{ji}}|}{|\tilde{a_{ii}}|})(1+\frac{\max\limits_{j\in N, \atop j\neq i}|\tilde{a_{ij}}|}{|\tilde{a_{ii}}|})\tilde{\Gamma}_{i}(\tilde{A}),

    \begin{eqnarray*} &&\tilde{\Gamma}_{i}(\tilde{A}) = \max\{\frac{1}{|\tilde{a_{ii}}|}, \Gamma^{'}(\tilde{A})\}. \end{eqnarray*}
    \begin{eqnarray*} &&\Gamma^{'}(\tilde{A}) = \max\{\max\limits_{j\in (S\setminus \{i\}), \atop k\in(\bar{S}\setminus \{i\})}\frac{|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|+\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|} {(|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in S, \atop p\neq j, i}|\tilde{c_{jp}}|)(|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|)-\sum\limits_{p\in S, \atop p\neq i}|\tilde{c_{kp}}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|}, \nonumber\\ &&\max\limits_{j\in(S\setminus \{i\}) , \atop k\in(\bar{S}\setminus \{i\})}\frac{|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in S, \atop p\neq j, i}|\tilde{c_{jp}}|+\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|} {(|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in S, \atop p\neq j, i}|\tilde{c_{jp}}|)(|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|)-\sum\limits_{p\in S, \atop p\neq i}|\tilde{c_{kp}}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|} \}, \end{eqnarray*}

    and \tilde{c_{jk}} = \tilde{a_{jk}}-\frac{\tilde{a_{ji}}\tilde{a_{ik}}}{\tilde{a_{ii}}}.

    Since \tilde{A} is a S -SOB matrix, we have \tilde{a_{ii}} = 1-d_{i}+d_{i}a_{ii} and \tilde{a_{ij}} = d_{i}a_{ij} for all i, j\in N .

    \begin{eqnarray} & &1+\frac{\max\limits_{j\in N, \atop j\neq i}|\tilde{a_{ji}}|}{|\tilde{a_{ii}}|} = 1+\frac{\max\limits_{j\in N, \atop j\neq i}|d_{j}a_{ji}|}{1-d_{i}+d_{i}a_{ii}} \leq 1+\frac{\max\limits_{j\in N, \atop j\neq i}|d_{j}a_{ji}|}{\min\{a_{ii}, 1\}}\; \; (By\; \; Lemma\; \; 8)\\ & = & 1+\max\limits_{j\in N, \atop j\neq i}\{\frac{|d_{j}a_{ji}|}{a_{ii}}, d_{j}a_{ji}\}. \end{eqnarray} (4.2)

    Similarly, we have

    \begin{eqnarray} 1+\frac{\max\limits_{j\in N, \atop j\neq i}|\tilde{a_{ij}}|}{|\tilde{a_{ii}}|}\leq 1+\max\{\frac{d_{i}a_{ij}}{a_{ii}}, d_{i}a_{ij}\}. \end{eqnarray} (4.3)

    By Lemma 8, it is easy to get

    \begin{eqnarray} \frac{1}{\tilde{a_{ii}}} = \frac{1}{1-d_{i}+d_{i}a_{ii}}\leq \max\{\frac{1}{a_{ii}}, 1\}. \end{eqnarray} (4.4)

    Denote 1-d_{t}+d_{t}a_{tt} = \max_{i\in N}\{1-d_{i}+d_{i}a_{ii}\} . From Lemmas 8 and 9, we get

    \begin{eqnarray} & &\frac{|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|+\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|} {(|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in S, \atop p\neq j, i}|\tilde{c_{jp}}|)(|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|)-\sum\limits_{p\in S, \atop p\neq i}|\tilde{c_{kp}}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|}\\ &\leq &\frac{1+\frac{a_{ki}a_{ij}}{a_{ii}a_{kk}}+\sum\limits_{p\in\bar{S}, \atop p\neq i} \frac{a_{jp}}{a_{jj}}+\sum\limits_{p\in\bar{S}, \atop p\neq i}\frac{a_{jp}a_{ji}}{a_{ii}a_{jj}}}{\varsigma_{j}^{S}(A)\varsigma_{j}^{\bar{S}}-(\sum\limits_{p\in S, \atop p\neq i}\frac{a_{kp}}{a_{kk}}+\sum\limits_{p\in S, \atop p\neq i}\frac{a_{ki}a_{ip}}{a_{ii}a_{kk}})(\sum\limits_{p\in\bar{S}, \atop p\neq i}\frac{a_{jp}}{a_{jj}}+ \sum\limits_{p\in\bar{S}, \atop p\neq i}\frac{a_{ji}a_{ip}}{a_{ii}a_{jj}})}\\& = &\Delta(A), \end{eqnarray} (4.5)

    where \varsigma_{j}^{S}(A) = \frac{1-d_{j}+d_{j}a_{jj}}{1-d_{t}+d_{t}a_{tt}}-\frac{a_{ji}a_{ij}}{a_{ii}a_{jj}}-\sum\limits_{p\in S, \atop p\neq j, i} \frac{a_{jk}}{a_{jj}}-\sum\limits_{p\in S, \atop p\neq j, i}\frac{a_{ji}a_{ik}}{a_{ii}a_{jj}} . In similar way, we know

    \begin{eqnarray} & &\frac{|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{jp}}|+\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{kp}}|} {(|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in S, \atop p\neq j, i}|\tilde{c_{jp}}|)(|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|)-\sum\limits_{p\in S, \atop p\neq i}|\tilde{c_{kp}}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|}\\ &\leq &\frac{1+\frac{a_{ji}a_{ik}}{a_{ii}a_{jj}}+\sum\limits_{p\in\bar{S}, \atop p\neq k, i} \sum\limits_{p\in\bar{S}, \atop p\neq k, i} \frac{a_{kp}}{a_{kk}}+\frac{a_{kp}a_{ki}}{a_{ii}a_{kk}}}{\varsigma_{k}^{S}\varsigma_{k}^{\bar{S}}-(\sum\limits_{p\in S, \atop p\neq i}\frac{a_{kp}}{a_{kk}}+\sum\limits_{p\in S, \atop p\neq i}\frac{a_{ki}a_{ip}}{a_{ii}a_{kk}})(\sum\limits_{p\in\bar{S}, \atop p\neq i}\frac{a_{jp}}{a_{jj}}+ \sum\limits_{p\in\bar{S}, \atop p\neq i}\frac{a_{ji}a_{ip}}{a_{ii}a_{jj}})}\\ & = &\Delta^{'}(A). \end{eqnarray} (4.6)

    So, from Eqs (4.2)–(4.6) the conclusion follows. This proof is completed.

    Based on the fact that the Schur complement of the S -SOB matrix is a GDSDD matrix, we give an infinity norm bound for the inverse of the S -SOB matrix based on the Schur complement. By using the infinity norm bound for the inverse of the S -SOB matrix, an error bound is given for the linear complementarity problem of the S -SOB matrix.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the Natural Science Research Project of Department of Education of Guizhou Province (Grant No. QJJ2022015) and the Natural Science Research Project of Department of Education of Guizhou Province (Grant No. QJJ2022047). The Natural Science Research Project of Department of Education of Guizhou Province (Grant Nos. QJJ2023012, QJJ2023061, QJJ2023062).

    The authors declare no conflict of interest.



    [1] E. C. Aifantis, On the problem of diffusion in solids, Acta Mech., 37 (1980), 265–296.
    [2] C. T. Anh, D. T. P. Thanh, N. D. Toan, Global attractors for nonclassical diffusion equations with hereditary memory and a new class of nonlinearities, Ann. Pol. Math., 119 (2017), 1–21. http://dx.doi.org/10.4064/ap4015-2-2017 doi: 10.4064/ap4015-2-2017
    [3] C. T. Anh, D. T. P. Thanh, N. D. Toan, Averaging of nonclassical diffusion equations with memory and singularly oscillating forces, Z. Anal. Anwend., 37 (2018), 299–314. http://dx.doi.org/10.4171/ZAA/1615 doi: 10.4171/ZAA/1615
    [4] C. T. Anh, N. D. Toan, Nonclassical diffusion equations on \mathbb{R}^{N} with singularly oscillating external forces, Appl. Math. Lett., 38 (2014), 20–26. http://dx.org/10.1016/j.aml.2014.06.008 doi: 10.1016/j.aml.2014.06.008
    [5] M. S. Aktar, M. A. Akbar, M. S. Osman, Spatio-temporal dynamic solitary wave solutions and diffusion effects to the nonlinear diffusive predator-prey system and the diffusion-reaction equations, Chaos Soliton. Fract., 160 (2022), 112212. https://dx.doi.org/10.1016/j.chaos.2022.112212 doi: 10.1016/j.chaos.2022.112212
    [6] T. Caraballo, A. M. Marquez-Durán, F. Rivero, Asymptotic behaviour of a non-classical and non-autonomous diffusion equation containing some hereditary characteristic, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1817–1833. http://dx.doi.org/10.3934/dcdsb.2017108 doi: 10.3934/dcdsb.2017108
    [7] T. Chen, Z. Chen, Y. Tang, Finite dimensionality of global attractors for a non-classical reaction-diffusion equation with memory, Appl. Math. Lett., 25 (2012), 357–362. http://dx.doi.org/10.1016/j.aml.2011.09.014 doi: 10.1016/j.aml.2011.09.014
    [8] M. Conti, F. Dell'Oro, V. Pata, Nonclassical diffusion equations with memory lacking instantaneous damping, Commun. Pure Appl. Anal., 19 (2020), 2035–2050. http://dx.doi.org/10.3934/cpaa.2020090 doi: 10.3934/cpaa.2020090
    [9] M. Conti, E. M. Marchini, V. Pata, Nonclassical diffusion with memory, Math. Method. Appl. Sci., 38 (2014), 948–958. http://dx.doi.org/10.1002/mma.3120 doi: 10.1002/mma.3120
    [10] M. Conti, E. M. Marchini, A remark on nonclassical diffusion equations with memory, Appl. Math. Optim., 73 (2016), 1–21. http://dx.doi.org/10.1007/s00245-015-9290-8 doi: 10.1007/s00245-015-9290-8
    [11] M. Conti, V. Pata, R. Temam, Attractors for the process on time-dependent spaces, Applications to wave equation, J. Differ. Equations, 255 (2013), 1254–1277. http://dx.doi.org/10.1016/j.jde.2013.05.013 doi: 10.1016/j.jde.2013.05.013
    [12] M. Conti, V. Pata, On the time-dependent Cattaneo law in space dimension one, Appl. Math. Comput., 259 (2015), 32–44. http://dx.doi.org/10.1016/j.amc.2015.02.039 doi: 10.1016/j.amc.2015.02.039
    [13] V. V. Chepyzhov, V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity, Asymptot. Anal., 46 (2006), 251–273. http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2008.08.007 doi: 10.1016/j.jstrokecerebrovasdis.2008.08.007
    [14] V. V. Chepyzhov, M. I. Vishik, Attractor for equations of mathematical physics, Providence: American Mathematical Society, 2002.
    [15] V. V. Chepyzhov, E. Mainini, V. Pata, Stability of abstract linear semigroups arising from heat conduction with memory, Asymptot. Anal., 50 (2006), 269–291. http://dx.doi.org/10.1007/3-7908-1701-5-10 doi: 10.1007/3-7908-1701-5-10
    [16] T. Ding, Y. Liu, Time-dependent global attractor for the nonclassical diffusion equations, Appl. Anal., 94 (2015), 1439–1449. http://dx.doi.org/10.1080/00036811.2014.933475 doi: 10.1080/00036811.2014.933475
    [17] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297–308. http://dx.doi.org/10.1007/BF00251609 doi: 10.1007/BF00251609
    [18] S. Djennadi, N. Shawagfeh, M. Inc, M. S. Osman, J. F. G\acute{o}mez-Aguilar, O. A. Arqub, The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique, Phys. Scr., 96 (2021), 094006. http://dx.doi.org/10.1088/1402-4896/ac0867 doi: 10.1088/1402-4896/ac0867
    [19] S. Gatti, A. Miranville, V. Pata, S. Zelik, Attractors for semilinear equations of viscoelasticity with very low dissipation, Rocky Mountain J. Math., 38 (2008), 1117–1138. http://dx.doi.org/10.1216/RMJ-2008-38-4-1117 doi: 10.1216/RMJ-2008-38-4-1117
    [20] M. Grasselli, V. Pata, Uniform attractors of nonautonomous systems with memory, Evolution Equations, Semigroups and Functional Analysis, 50 (2002), 155–178. https://dx.doi.org/10.1007/978-3-0348-8221-7_9 doi: 10.1007/978-3-0348-8221-7_9
    [21] J. Jäckle, Heat conduction and relaxation in liquids of high viscosity, Physica A, 162 (1990), 377–404. http://dx.doi.org/10.1016/0378-4371(90)90424-Q doi: 10.1016/0378-4371(90)90424-Q
    [22] H. F. Ismael, T. A. Sulaiman, H. R. Nabi, W. Mahmoud, M. S. Osman, Geometrical patterns of time variable Kadomtsev-Petviashvili (Ⅰ) equation that models dynamics of waves in thin films with high surface tension, Nonlinear Dyn., 111 (2023), 9457–9466. http://dx.doi.org/10.1007/s11071-023-08319-8 doi: 10.1007/s11071-023-08319-8
    [23] T. Liu, Q. Ma, Time-dependent asymptotic behavior of the solution for plate equations with linear memory, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4595–4616. http://dx.doi.org/10.3934/dcds-b.2018178 doi: 10.3934/dcds-b.2018178
    [24] T. Liu, Q. Ma, Time-dependent attractor for plate equations on R^n, J. Math. Anal. Appl., 479 (2019), 315–332. http://dx.doi.org/10.1016/j.jmaa.2019.06.028 doi: 10.1016/j.jmaa.2019.06.028
    [25] J. L. Lions, Quelques m\acute{e}thodes de r\acute{e}solutions des probl\grave{e}ms aus limites nonlin\acute{e}aries, Paris: Dunod, 1969.
    [26] J. Liu, M. S. Osman, Nonlinear dynamics for different nonautonomous wave structures solutions of a 3D variable-coefficient generalized shallow water, Chinese J. Phys., 77 (2022), 1618–1624. http://dx.doi.org/10.1016/j.cjph.2021.10.026 doi: 10.1016/j.cjph.2021.10.026
    [27] F. Meng, M. Yang, C. Zhong, Attractors for wave equations with nonlinear damping on time-dependent, Discrete Contin. Dyn. Syst. Ser. B, 21 (2015), 205–225. http://dx.doi.org/10.3934/dcds-b.2016.21.205 doi: 10.3934/dcds-b.2016.21.205
    [28] F. Meng, C. Liu, Necessary and sufficient condition for the existence of time-dependent global attractor and application, J. Math. Phys., 58 (2017), 032702. http://dx.doi.org/10.1063/1.4978329 doi: 10.1063/1.4978329
    [29] Q. Ma, J. Wang, T. Liu, Time-dependent asymptotic behavior of the solution for wave equations with linear memory, Comput. Math. Appl., 76 (2018), 1372–1387. http://dx.doi.org/10.1016/j.camwa.2018.06.031 doi: 10.1016/j.camwa.2018.06.031
    [30] F. Meng, R. Wang, C. Zhao, Attractor for a model of extensible beam with damping on time-dependent space, Topol. Methods Nonlinear Anal., 57 (2021), 365–393. http://dx.doi.org/10.12775/TMNA.2020.037 doi: 10.12775/TMNA.2020.037
    [31] Q. Ma, X. Wang, L. Xu, Existence and regularity of time-dependent global attractors for the nonclassical reaction-diffusion equations with lower forcing term, Bound. Value Probl., 2016 (2016), 10. http://dx.doi.org/10.1186/s13661-015-0513-3 doi: 10.1186/s13661-015-0513-3
    [32] S. Malik, H. Almusawa, S. Kumar, A. M. Wazwaz, M. S. Osman, A (2+1)-dimensional Kadomtsev-Petviashvili equation with competing dispersion effect: Painlevé analysis, dynamical behavior and invariant solutions, Results Phys., 23 (2021), 104043. http://dx.doi.org/10.1016/j.rinp.2021.104043 doi: 10.1016/j.rinp.2021.104043
    [33] K. S. Nisar, O. A. Ilhan, S. T. Abdulazeez, J. Manafian, S. A. Mohammed, M. S. Osman, Novel multiple soliton solutions for some nonlinear PDEs via multiple Exp-function method, Results Phys., 21 (2021), 103769. http://dx.doi.org/10.1016/j.rinp.2020.103769 doi: 10.1016/j.rinp.2020.103769
    [34] C. Park, R. I. Nuruddeen, K. K. Ali, L. Muhammad, M. S. Osman, D. Baleanu, Novel hyperbolic and exponential ansatz methods to the fractional fifth-order Korteweg-de Vries equations, Adv. Differ. Equ., 2020 (2020), 627. http://dx.doi.org/10.1186/s13662-020-03087-w doi: 10.1186/s13662-020-03087-w
    [35] F. D. Plinio, G. Duan, R. Temam, Time dependent attractor for the oscillon equation, Discrete Cont. Dyn. A, 29 (2011), 141–167. http://dx.doi.org/10.3934/dcds.2011.29.141 doi: 10.3934/dcds.2011.29.141
    [36] V. Pata, M. Conti, Asymptotic structure of the attractor for process on time-dependent spaces, Nonlinear Anal. Real, 19 (2014), 1–10. http://dx.doi.org/10.1016/j.nonrwa.2014.02.002 doi: 10.1016/j.nonrwa.2014.02.002
    [37] Y. Qin, B. Yang, Existence and regularity of time-dependent pullback attractors for the non-autonomous nonclassical diffusion equations, P. Roy. Soc. Edinb. A, 152 (2022), 1533–1550. http://dx.doi.org/10.1017/prm.2021.65 doi: 10.1017/prm.2021.65
    [38] J. C. Robinson, Infinite-dimensional dynamical systems, Cambridge: Cambridge University Press, 2011.
    [39] Y. Sun, Z. Yang, Longtime dynamics for a nonlinear viscoelastic equation with time-dependent memory kernel, Nonlinear Anal. Real, 64 (2022), 1–26. http://dx.doi.org/10.1016/j.nonrwa.2021.103432 doi: 10.1016/j.nonrwa.2021.103432
    [40] N. D. Toan, Optimal control of nonclassical diffusion equations with memory, Acta Appl. Math., 169 (2020), 533–558. http://dx.doi.org/10.1007/s10440-020-00310-4 doi: 10.1007/s10440-020-00310-4
    [41] X. Wang, C. Zhong, Attractors for the non-autonomous nonclassical diffusion equations with fading memory, Nonlinear Anal., 71 (2009), 5733–5746. http://dx.doi.org/10.1016/j.na.2009.05.001 doi: 10.1016/j.na.2009.05.001
    [42] X. Wang, L. Yang, C. Zhong, Attractors for the nonclassical diffusion equations with fading memory, J. Math. Anal. Appl., 362 (2010), 327–337. http://dx.doi.org/10.1016/j.jmaa.2009.09.029 doi: 10.1016/j.jmaa.2009.09.029
    [43] J. Wang, Q. Ma, Asymptotic dynamic of the nonclassical diffusion equation with time-dependent coefficient, J. Appl. Anal. Comput., 11 (2021), 445–463. http://dx.doi.org/10.11948/20200055 doi: 10.11948/20200055
    [44] Z. Xie, J. Zhang, Y. Xie, Asymptotic behavior of quasi-linear evolution equations on time-dependent product spaces, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023), 2316–2334. http://dx.doi.org/10.3934/dcdsb.2022171 doi: 10.3934/dcdsb.2022171
    [45] J. Yuan, S. Zhang, Y. Xie, J. Zhang, Attractors for a class of perturbed nonclassical diffusion equations with memory, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 4995–5007. http://dx.doi.org/10.3934/dcdsb.2021261 doi: 10.3934/dcdsb.2021261
    [46] K. Zhu, Y. Xie, F. Zhou, Attractors for the nonclassical reaction-diffusion equations on time-dependent spaces, Bound. Value Probl., 2020 (2020), 95. http://dx.doi.org/10.1186/s13661-020-01392-7 doi: 10.1186/s13661-020-01392-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1580) PDF downloads(52) Cited by(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog