One of the most harmful and widespread sexually transmitted diseases is syphilis. This infection is caused by the Treponema Palladum bacterium that spreads through sexual intercourse and is projected to affect 12 million people annually worldwide. In order to thoroughly examine the complex and all-encompassing dynamics of syphilis infection. In this article, we constructed the dynamics of syphilis using the fractional derivative of the Atangana-Baleanu for more accurate outcomes. The basic theory of non-integer derivative is illustrated for the examination of the recommended model. We determined the steady-states of the system and calculated the R0 for the intended fractional model with the help of the next-generation method. The infection-free steady-state of the system is locally stable if R0<1 through jacobian matrix method. The existence and uniqueness of the fractional order system are investigate by applying the fixed-point theory. The iterative solution of our model with fractional order was then carried out by utilising a newly generated numerical approach. Finally, numerical results are computed for various values of the factor Φ and other parameters of the system. The solution pathways and chaotic phenomena of the system are highlighted. Our findings show that fractional order derivatives provide more precise and realistic information regarding the dynamics of syphilis infection.
Citation: Rashid Jan, Adil Khurshaid, Hammad Alotaibi, Mustafa Inc. A robust study of the transmission dynamics of syphilis infection through non-integer derivative[J]. AIMS Mathematics, 2023, 8(3): 6206-6232. doi: 10.3934/math.2023314
[1] | He Yuan, Zhuo Liu . Lie n-centralizers of generalized matrix algebras. AIMS Mathematics, 2023, 8(6): 14609-14622. doi: 10.3934/math.2023747 |
[2] | Xinfeng Liang, Mengya Zhang . Triangular algebras with nonlinear higher Lie n-derivation by local actions. AIMS Mathematics, 2024, 9(2): 2549-2583. doi: 10.3934/math.2024126 |
[3] | Anas Al-Masarwah, Nadeen Kdaisat, Majdoleen Abuqamar, Kholood Alsager . Crossing cubic Lie algebras. AIMS Mathematics, 2024, 9(8): 22112-22129. doi: 10.3934/math.20241075 |
[4] | Shan Li, Kaijia Luo, Jiankui Li . Generalized Lie n-derivations on generalized matrix algebras. AIMS Mathematics, 2024, 9(10): 29386-29403. doi: 10.3934/math.20241424 |
[5] | He Yuan, Qian Zhang, Zhendi Gu . Characterizations of generalized Lie n-higher derivations on certain triangular algebras. AIMS Mathematics, 2024, 9(11): 29916-29941. doi: 10.3934/math.20241446 |
[6] | Nouf Almutiben, Ryad Ghanam, G. Thompson, Edward L. Boone . Symmetry analysis of the canonical connection on Lie groups: six-dimensional case with abelian nilradical and one-dimensional center. AIMS Mathematics, 2024, 9(6): 14504-14524. doi: 10.3934/math.2024705 |
[7] | Xianguo Hu . Universal enveloping Hom-algebras of regular Hom-Poisson algebras. AIMS Mathematics, 2022, 7(4): 5712-5727. doi: 10.3934/math.2022316 |
[8] | Nouf Almutiben, Edward L. Boone, Ryad Ghanam, G. Thompson . Classification of the symmetry Lie algebras for six-dimensional co-dimension two Abelian nilradical Lie algebras. AIMS Mathematics, 2024, 9(1): 1969-1996. doi: 10.3934/math.2024098 |
[9] | Baiying He, Siyu Gao . The nonisospectral integrable hierarchies of three generalized Lie algebras. AIMS Mathematics, 2024, 9(10): 27361-27387. doi: 10.3934/math.20241329 |
[10] | Mohd Arif Raza, Huda Eid Almehmadi . Lie (Jordan) σ−centralizer at the zero products on generalized matrix algebra. AIMS Mathematics, 2024, 9(10): 26631-26648. doi: 10.3934/math.20241295 |
One of the most harmful and widespread sexually transmitted diseases is syphilis. This infection is caused by the Treponema Palladum bacterium that spreads through sexual intercourse and is projected to affect 12 million people annually worldwide. In order to thoroughly examine the complex and all-encompassing dynamics of syphilis infection. In this article, we constructed the dynamics of syphilis using the fractional derivative of the Atangana-Baleanu for more accurate outcomes. The basic theory of non-integer derivative is illustrated for the examination of the recommended model. We determined the steady-states of the system and calculated the R0 for the intended fractional model with the help of the next-generation method. The infection-free steady-state of the system is locally stable if R0<1 through jacobian matrix method. The existence and uniqueness of the fractional order system are investigate by applying the fixed-point theory. The iterative solution of our model with fractional order was then carried out by utilising a newly generated numerical approach. Finally, numerical results are computed for various values of the factor Φ and other parameters of the system. The solution pathways and chaotic phenomena of the system are highlighted. Our findings show that fractional order derivatives provide more precise and realistic information regarding the dynamics of syphilis infection.
A Poisson algebra is a triple, (L,⋅,[−,−]), where (L,⋅) is a commutative associative algebra and (L,[−,−]) is a Lie algebra that satisfies the following Leibniz rule:
[x,y⋅z]=[x,y]⋅z+y⋅[x,z],∀x,y,z∈L. |
Poisson algebras appear naturally in the study of Hamiltonian mechanics and play a significant role in mathematics and physics, such as in applications of Poisson manifolds, integral systems, algebraic geometry, quantum groups, and quantum field theory (see [7,11,24,25]). Poisson algebras can be viewed as the algebraic counterpart of Poisson manifolds. With the development of Poisson algebras, many other algebraic structures have been found, such as Jacobi algebras [1,9], Poisson bialgebras [20,23], Gerstenhaber algebras, Lie-Rinehart algebras [16,17,26], F-manifold algebras [12], Novikov-Poisson algebras [28], quasi-Poisson algebras [8] and Poisson n-Lie algebras [10].
As a dual notion of a Poisson algebra, the concept of a transposed Poisson algebra was recently introduced by Bai et al. [2]. A transposed Poisson algebra (L,⋅,[−,−]) is defined by exchanging the roles of the two binary operations in the Leibniz rule defining the Poisson algebra:
2z⋅[x,y]=[z⋅x,y]+[x,z⋅y],∀x,y,z∈L, |
where (L,⋅) is a commutative associative algebra and (L,[−,−]) is a Lie algebra.
It is shown that a transposed Poisson algebra possesses many important identities and properties and can be naturally obtained by taking the commutator in the Novikov-Poisson algebra [2]. There are many results on transposed Poisson algebras, such as those on transposed Hom-Poisson algebras [18], transposed BiHom-Poisson algebras [21], a bialgebra theory for transposed Poisson algebras [19], the relation between 12-derivations of Lie algebras and transposed Poisson algebras [14], the relation between 12-biderivations and transposed Poisson algebras [29], and the transposed Poisson structures with fixed Lie algebras (see [6] for more details).
The notion of an n-Lie algebra (see Definition 2.1), as introduced by Filippov [15], has found use in many fields in mathematics and physics [4,5,22,27]. The explicit construction of n-Lie algebras has become one of the important problems in this theory. In [3], Bai et al. gave a construction of (n+1)-Lie algebras through the use of n-Lie algebras and some linear functions. In [13], Dzhumadil′daev introduced the notion of a Poisson n-Lie algebra which can be used to construct an (n+1)-Lie algebra under an additional strong condition. In [2], Bai et al. showed that this strong condition for n=2 holds automatically for a transposed Poisson algebra, and they gave a construction of 3-Lie algebras from transposed Poisson algebras with derivations. They also found that this constructed 3-Lie algebra and the commutative associative algebra satisfy the analog of the compatibility condition for transposed Poisson algebras, which is called a transposed Poisson 3-Lie algebra. This motivated them to introduce the concept of a transposed Poisson n-Lie algebra (see Definition 2.2) and propose the following conjecture:
Conjecture 1.1. [2] Let n≥2 be an integer and (L,⋅,μn) a transposed Poisson n-Lie algebra. Let D be a derivation of (L,⋅) and (L,μn). Define an (n+1)-ary operation:
μn+1(x1,⋯,xn+1):=n+1∑i=1(−1)i−1D(xi)μn(x1,⋯,ˆxi,⋯,xn+1),∀x1,⋯,xn+1∈L, |
where ˆxi means that the i-th entry is omitted. Then, (L,⋅,μn+1) is a transposed Poisson (n+1)-Lie algebra.
In this paper, based on the identities for transposed Poisson n-Lie algebras given in Section 2, we prove that Conjecture 1.1 holds under a certain strong condition described in Section 3 (see Definition 2.3 and Theorem 3.2).
Throughout the paper, all vector spaces are taken over a field of characteristic zero. To simplify notations, the commutative associative multiplication (⋅) will be omitted unless the emphasis is needed.
In this section, we first recall some definitions, and then we exhibit a class of identities for transposed Poisson n-Lie algebras.
Definition 2.1. [15] Let n≥2 be an integer. An n-Lie algebra is a vector space L, together with a skew-symmetric linear map [−,⋯,−]:⊗nL→L, such that, for any xi,yj∈L,1≤i≤n−1,1≤j≤n, the following identity holds:
[[y1,⋯,yn],x1,⋯,xn−1]=n∑i=1(−1)i−1[[yi,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,yn]. | (2.1) |
Definition 2.2. [2] Let n≥2 be an integer and L a vector space. The triple (L,⋅,[−,⋯,−]) is called a transposed Poisson n-Lie algebra if (L,⋅) is a commutative associative algebra and (L,[−,⋯,−]) is an n-Lie algebra such that, for any h,xi∈L,1≤i≤n, the following identity holds:
nh[x1,⋯,xn]=n∑i=1[x1,⋯,hxi,⋯,xn]. | (2.2) |
Some identities for transposed Poisson algebras in [2] can be extended to the following theorem for transposed Poisson n-Lie algebras.
Theorem 2.1. Let (L,⋅,[−,⋯,−]) be a transposed Poisson n-Lie algebra. Then, the following identities hold:
(1) For any xi∈L,1≤i≤n+1, we have
n+1∑i=1(−1)i−1xi[x1,⋯,ˆxi,⋯,xn+1]=0; | (2.3) |
(2) For any h,xi,yj∈L,1≤i≤n−1,1≤j≤n, we have
n∑i=1(−1)i−1[h[yi,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,yn]=[h[y1,⋯,yn],x1,⋯,xn−1]; | (2.4) |
(3) For any xi,yj∈L,1≤i≤n−1,1≤j≤n+1, we have
n+1∑i=1(−1)i−1[yi,x1,⋯,xn−1][y1,⋯,ˆyi,⋯,yn+1]=0; | (2.5) |
(4) For any x1,x2,yi∈L,1≤i≤n, we have
n∑i=1n∑j=1,j≠i[y1,⋯,yix1,⋯,yjx2,⋯,yn]=n(n−1)x1x2[y1,y2,⋯,yn]. | (2.6) |
Proof. (1) By Eq (2.2), for any 1≤i≤n+1, we have
nxi[x1,⋯,xi−1,xi+1,⋯,xn+1]=∑j≠i[x1,⋯,xi−1,xi+1,⋯,xixj,⋯,xn+1]. |
Thus, we obtain
n+1∑i=1(−1)i−1nxi[x1,⋯,ˆxi,⋯,xn+1]=n+1∑i=1n+1∑j=1,j≠i(−1)i−1[x1,⋯,ˆxi,⋯,xixj,⋯,xn+1]. |
Note that, for any i>j, we have
(−1)i−1[x1,⋯,xj−1,xixj,xj+1,⋯,ˆxi,⋯,xn]+(−1)j−1[x1,⋯,ˆxj,⋯,xi−1,xjxi,xi+1,⋯,xn]=(−1)i−1+(i−j−1)[x1,⋯,xj−1,xj+1,⋯,xi−1,xixj,xi+1,⋯,xn]+(−1)j−1[x1,⋯,ˆxj,⋯,xi−1,xjxi,xi+1,⋯,xn]=((−1)−j−2+(−1)j−1)[x1,⋯,xj−1,xj+1,⋯,xi−1,xixj,xi+1,⋯,xn]=0, |
which gives n+1∑i=1n+1∑j=1,j≠i(−1)i−1[x1,⋯,ˆxi,⋯,xixj,⋯,xn+1]=0.
Hence, we get
n+1∑i=1(−1)i−1nxi[x1,⋯,ˆxi,⋯,xn+1]=0. |
(2) By Eq (2.2), we have
−[h[y1,⋯,yn],x1,⋯,xn−1]−n−1∑i=1[[y1,⋯,yn],x1,⋯,hxi,⋯,xn−1]=−nh[[y1,⋯,yn],x1,⋯,xn−1], |
and, for any 1≤j≤n,
(−1)j−1([h[yj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn−1]+n∑i=1,i≠j[[yj,x1,⋯,xn−1],y1,⋯,hyi,⋯,ˆyj,⋯,yn−1])=(−1)j−1nh[[yj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn−1]. |
By taking the sum of the above n+1 identities and applying Eq (2.1), we get
−[h[y1,⋯,yn],x1,⋯,xn−1]−n−1∑i=1[[y1,⋯,yn],x1,⋯,hxi,⋯,xn−1]+n∑j=1(−1)j−1([h[yj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn−1]+n∑i=1,i≠j[[yj,x1,⋯,xn−1],y1,⋯,hyi,⋯,ˆyj,⋯,yn−1])=−nh[[y1,⋯,yn],x1,⋯,xn−1]+nhn∑j=1(−1)j−1[[yj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn−1]=0. |
We denote
Aj:=n∑i=1,i≠j(−1)i−1[[yi,x1,⋯,xn−1],y1,⋯,hyj,⋯,ˆyi,⋯,yn],1≤j≤n,Bi:=[[y1,⋯,yn],x1,⋯,hxi,⋯,xn−1],1≤i≤n−1. |
Then, the above equation can be rewritten as
n∑i=1(−1)i−1[h[yi,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,yn]−[h[y1,⋯,yn],x1,⋯,xn−1]+n∑j=1Aj−n−1∑i=1Bi=0. | (2.7) |
By applying Eq (2.1) to Aj,1≤j≤n, we have
Aj=n∑i=1,i≠j(−1)i−1[[yi,x1,⋯,xn−1],y1,⋯,hyj,⋯,ˆyi,⋯,yn]=[[y1,⋯,hyj,⋯,yn],x1,⋯,xn−1]+(−1)j[[hyj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn]. |
Thus, we get
n∑j=1Aj=n∑j=1[[y1,⋯,hyj,⋯,yn],x1,⋯,xn−1]+n∑j=1(−1)j[[hyj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn]=n[h[y1,⋯,yn],x1,⋯,xn−1]+n∑j=1(−1)j[[hyj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn]. |
By applying Eq (2.1) to Bi,1≤i≤n−1, we have
Bi=[[y1,⋯,yn],x1,⋯,hxi,⋯,xn−1]=n∑j=1(−1)j−1[[yj,x1,⋯,hxi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]. |
Thus, we get
n−1∑i=1Bi=n−1∑i=1n∑j=1(−1)j−1[[yj,x1,⋯,hxi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]=n∑j=1n−1∑i=1(−1)j−1[[yj,x1,⋯,hxi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]. |
Note that, by Eq (2.2), we have
n−1∑i=1(−1)j−1[[yj,x1,⋯,hxi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]=(−1)j−1n[h[yj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]+(−1)j[[hyj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]. |
Thus, we obtain
n−1∑i=1Bi=n∑j=1(−1)j−1n[h[yj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]+n∑j=1(−1)j[[hyj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]. |
By substituting these equations into Eq (2.7), we have
n∑i=1(−1)i−1[h[yi,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,yn]−[h[y1,⋯,yn],x1,⋯,xn−1]+n[h[y1,⋯,yn],x1,⋯,xn−1]+n∑j=1(−1)j[[hyj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn]−n∑j=1(−1)j−1n[h[yj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]−n∑j=1(−1)j[[hyj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]=0, |
which implies that
(n−1)(n∑i=1(−1)i[h[yi,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,yn]+[h[y1,⋯,yn],x1,⋯,xn−1])=0. |
Therefore, the proof of Eq (2.4) is completed.
(3) By Eq (2.2), for any 1≤j≤n+1, we have
(−1)j−1n[yj,x1,⋯,xn−1][y1,⋯,ˆyj,⋯,yn+1]=n+1∑i=1,i≠j(−1)j−1[y1,⋯,yi[yj,x1,⋯,xn−1],⋯,ˆyj,⋯,yn+1]. |
By taking the sum of the above n+1 identities, we obtain
n+1∑j=1(−1)j−1n[yj,x1,⋯,xn−1][y1,⋯,ˆyj,⋯,yn+1]=n+1∑j=1n+1∑i=1,i≠j(−1)j−1[y1,⋯,yi[yj,x1,⋯,xn−1],⋯,ˆyj,⋯,yn+1]. |
Thus, we only need to prove the following equation:
n+1∑j=1n+1∑i=1,i≠j(−1)j−1[y1,⋯,yi[yj,x1,⋯,xn−1],⋯,ˆyj,⋯,yn+1]=0. |
Note that
n+1∑j=1n+1∑i=1,i≠j(−1)j−1[y1,⋯,yi[yj,x1,⋯,xn−1],⋯,ˆyj,⋯,yn+1]=n+1∑i=1n+1∑j=1,j≠i(−1)j−1[y1,⋯,yi[yj,x1,⋯,xn−1],⋯,ˆyj,⋯,yn+1]=n+1∑i=1i−1∑j=1(−1)i+j−1[yi[yj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,ˆyi,⋯,yn+1]+n+1∑i=1n+1∑j=i+1(−1)i+j[yi[yj,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,ˆyj,⋯,yn+1](2.4)=n+1∑i=1(−1)i[yi[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,xn−1](2.3)=0. |
Hence, the conclusion holds.
(4) By applying Eq (2.2), we have
n2x1x2[y1,y2,⋯,yn]=nx1n∑j=1[y1,⋯,yjx2,⋯,yn]=n∑i=1n∑j=1,j≠i[y1,⋯,yix1,⋯,yjx2,⋯,yn]+n∑j=1[y1,⋯,yjx1x2,⋯,yn]=n∑i=1n∑j=1,j≠i[y1,⋯,yix1,⋯,yjx2,⋯,yn]+nx1x2[y1,⋯,yn], |
which gives
n(n−1)x1x2[y1,y2,⋯,yn]=n∑i=1n∑j=1,j≠i[y1,⋯,yix1,⋯,yjx2,⋯,yn]. |
Hence, the proof is completed.
To prove Conjecture 1.1, we need the following extra condition.
Definition 2.3. A transposed Poisson n-Lie algebra (L,⋅,[−,⋯,−]) is called strong if the following identity holds:
y1[hy2,x1,⋯,xn−1]−y2[hy1,x1,⋯,xn−1]+n−1∑i=1(−1)i−1hxi[y1,y2,x1,⋯,ˆxi,⋯,xn−1]=0 | (2.8) |
for any y1,y2,xi∈L,1≤i≤n−1.
Remark 2.1. When n=2, the identity is
y1[hy2,x1]+y2[x1,hy1]+hx1[y1,y2]=0, |
which is exactly Theorem 2.5 (11) in [2]. Thus, in the case of a transposed Poisson algebra, the strong condition always holds. So far, we cannot prove that the strong condition fails to hold for n≥3.
Proposition 2.1. Let (L,⋅,[−,⋯,−]) be a strong transposed Poisson n-Lie algebra. Then,
y1[hy2,x1,⋯,xn−1]−hy1[y2,x1,⋯,xn−1]=y2[hy1,x1,⋯,xn−1]−hy2[y1,x1,⋯,xn−1] | (2.9) |
for any y1,y2,xi∈L,1≤i≤n−1.
Proof. By Eq (2.3), we have
−hy1[y2,x1,⋯,xn−1]+hy2[y1,x1,⋯,xn−1]=n−1∑i=1(−1)i−1hxi[y1,y2,x1,⋯,ˆxi,⋯,xn−1]. |
Then, the statement follows from Eq (2.8).
In this section, we will prove Conjecture 1.1 for strong transposed Poisson n-Lie algebras. First, we recall the notion of derivations of transposed Poisson n-Lie algebras.
Definition 3.1. Let (L,⋅,[−,⋯,−]) be a transposed Poisson n-Lie algebra. The linear operation D:L→L is called a derivation of (L,⋅,[−,⋯,−]) if the following holds for any u,v,xi∈L,1≤i≤n:
(1) D is a derivation of (L,⋅), i.e., D(uv)=D(u)v+uD(v);
(2) D is a derivation of (L,[−,⋯,−]), i.e.,
D([x1,⋯,xn])=n∑i=1[x1,⋯,xi−1,D(xi),xi+1,⋯,xn]. |
Lemma 3.1. Let (L,⋅,[−,⋯,−]) be a transposed Poisson n-Lie algebra and D a derivation of (L,⋅,[−,⋯,−]). For any yi∈L,1≤i≤n+1, we have the following:
(1)
n+1∑i=1(−1)i−1D(yi)D([y1,⋯,ˆyi,⋯,yn+1])=n+1∑i=1n+1∑j=1,j≠i(−1)i−1D(yi)[y1,⋯,D(yj),⋯,ˆyi,⋯,yn+1]; | (3.1) |
(2)
n+1∑i=1(−1)i−1D(yi)D([y1,⋯,ˆyi,⋯,yn+1])=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)iyi[y1,⋯,D(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1], | (3.2) |
where, for any i>j, j∑i denotes the empty sum, which is equal to zero.
Proof. (1) The statement follows immediately from Definition 3.1.
(2) By applying Eq (3.1), we need to prove the following equation:
n+1∑i=1n+1∑j=1,j≠i(−1)i−1nD(yi)[y1,⋯,D(yj),⋯,ˆyi,⋯,yn+1]=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)inyi[y1,⋯,D(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1]. |
For any 1≤i≤n+1, denote Ai:=nn+1∑j=1,j≠i(−1)i−1D(yi)[y1,⋯,D(yj),⋯,ˆyi,⋯,yn+1]. Then, we have
n+1∑i=1n+1∑j=1,j≠i(−1)i−1nD(yi)[y1,⋯,D(yj),⋯,ˆyi,⋯,yn+1]=n+1∑i=1Ai. |
Note that
Ai=(−1)i−1(nD(yi)[D(y1),y2,⋯,ˆyi,⋯,yn+1]+nD(yi)[y1,D(y2),y3,⋯,ˆyi,⋯,yn+1]+⋯+nD(yi)[y1,⋯,ˆyi,⋯,yn,D(yn+1)])=(−1)i−1([D(yi)D(y1),y2,⋯,ˆyi,⋯,yn+1]+n+1∑k=2,k≠i[D(y1),y2,⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]+[y1,D(yi)D(y2),y3,⋯,ˆyi,⋯,yn+1]+n+1∑k=1,k≠2,i[y1,D(y2),y3,⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]+⋯+[y1,⋯,ˆyi,⋯,yn,D(yi)D(yn+1)]+n∑k=1,k≠i[y1,⋯,ykD(yi),⋯,ˆyi,⋯,yn,D(yn+1)])=(−1)i−1n+1∑j=1,j≠i[y1,⋯,D(yi)D(yj),⋯,ˆyi,⋯,yn+1]+(−1)i−1n+1∑j=1,j≠in+1∑k=1,k≠j,i[y1,⋯,D(yj),⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]. |
Thus, we have
n+1∑i=1Ai=n+1∑j=1n+1∑i=1,i≠j(−1)j−1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1]+n+1∑i=1n+1∑j=1,j≠in+1∑k=1,k≠i,j(−1)i−1[y1,⋯,D(yj),⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]=T1+T2, |
where
T1:=n+1∑j=1n+1∑i=1,i≠j(−1)j−1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1],T2:=n+1∑i=1n+1∑j=1,j≠in+1∑k=1,k≠i,j(−1)i−1[y1,⋯,D(yj),⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]. |
Note that
T1=n+1∑j,i=1Bji, |
where Bji=(−1)j−1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1] for any 1≤j≠i≤n+1, and Bii=0 for any 1≤i≤n+1.
For any 1≤i,j≤n+1, without loss of generality, assume that i<j; then, we have
Bji+Bij=(−1)j−1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1]+(−1)i−1[y1,⋯,ˆyi,⋯,D(yi)D(yj),⋯,yn+1]=(−1)j−1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1]+(−1)i−1+j−i+1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1]=0, |
which implies that T1=n+1∑j,i=1Bji=0.
Thus, we get that n+1∑i=1Ai=T2.
We rewrite
n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)inyi[y1,⋯,D(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1]=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠in+1∑t=1,t≠j,k,i(−1)i⋅[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1]+n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,yiD(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1]+n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=M1+M2+M3, |
where
M1:=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠in+1∑t=1,t≠j,k,i(−1)i⋅[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1],M2:=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,yiD(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1],M3:=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]. |
Note that
M1=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠in+1∑t=1,t≠j,k,i(−1)i⋅[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1]=n+1∑i,j,k,t=1Bijkt, |
where
Bijkt={0,if any two indices are equal or k<j;(−1)i[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1],otherwise. |
For any 1≤j,k≤n+1, without loss of generality, assume that t<i; then, we have
Bijkt+Btjki=(−1)i[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1]+(−1)t[y1,⋯,D(yj),⋯,D(yk),⋯,ˆyt,⋯,ytyi,⋯,yn+1]=(−1)i[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1]+(−1)t+i−t−1[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1]=0, |
which implies that M1=0.
Therefore, we only need to prove the following equation:
M2+M3=n+1∑i=1n+1∑j=1,j≠in+1∑k=1,k≠i,j(−1)i−1[y1,⋯,D(yj),⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]. |
First, we have
n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,yiD(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1]+n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑k=1,k≠ik−1∑j=1,j≠i(−1)i[y1,⋯,yiD(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1]+n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑j=1,j≠ij−1∑k=1,k≠i(−1)i[y1,⋯,yiD(yk),⋯,D(yj),⋯,ˆyi,⋯,yn+1]+n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑j=1,j≠in+1∑k=1,k≠i,j(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]. |
Thus,
M2+M3=n+1∑i=1n+1∑j=1,j≠in+1∑k=1,k≠i,j(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑j=1n+1∑i=1,i≠jn+1∑k=1,k≠i,j(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑j=1n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]+n+1∑j=1n+1∑i=1,i≠jn+1∑k=i+1,k≠j(−1)i[y1,⋯,D(yj),⋯,ˆyi,⋯,yiD(yk),⋯,yn+1]. |
Note that, for any 1≤j≤n+1, we have
n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)i[y1,⋯,D(yj),⋯,yk−1,yiD(yk),yk+1,⋯,ˆyi⋯,yn+1]=n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)k−1[y1,⋯,D(yj),⋯,ˆyk,⋯,yi−1,yiD(yk),yi+1,⋯,yn+1]=n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)k−1[y1,⋯,D(yj),⋯,ˆyk,⋯,yiD(yk),⋯,yn+1]. |
Similarly, we have
n+1∑i=1,i≠jn+1∑k=i+1,k≠j(−1)i[y1,⋯,D(yj),⋯,ˆyi,⋯,yiD(yk),⋯,yn+1]=n+1∑i=1,i≠jn+1∑k=i+1,k≠j(−1)k−1[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyk,⋯,yn+1]. |
Thus,
M2+M3=n+1∑j=1n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)k−1[y1,⋯,D(yj),⋯,ˆyk,⋯,yiD(yk),⋯,yn+1]+n+1∑j=1n+1∑i=1,i≠jn+1∑k=i+1,k≠j(−1)k−1[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyk,⋯,yn+1]=n+1∑j=1n+1∑i=1,i≠jn+1∑k=1,k≠i,j(−1)k−1[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyk,⋯,yn+1]=n+1∑k=1n+1∑j=1,j≠kn+1∑i=1,i≠j,k(−1)k−1[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyk,⋯,yn+1]=n+1∑i=1n+1∑j=1,j≠in+1∑k=1,k≠j,i(−1)i−1[y1,⋯,D(yj),⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]. |
The proof is completed.
Theorem 3.1. Let (L,⋅,[−,⋯,−]) be a strong transposed Poisson n-Lie algebra and D a derivation of (L,⋅,[−,⋯,−]). Define an (n+1)-ary operation:
μn+1(x1,⋯,xn+1):=n+1∑i=1(−1)i−1D(xi)[x1,⋯,ˆxi,⋯,xn+1] | (3.3) |
for any xi∈L,1≤i≤n+1. Then, (L,μn+1) is an (n+1)-Lie algebra.
Proof. For convenience, we denote
μn+1(x1,⋯,xn+1):=[x1,⋯,xn+1]. |
On one hand, we have
[[y1,⋯,yn+1],x1,⋯,xn](3.3)=n+1∑i=1(−1)i−1[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,xn](3.3)=n+1∑i=1(−1)i−1D(D(yi)[y1,⋯,ˆyi,⋯,yn+1])[x1,⋯,xn]+n+1∑i=1n∑j=1(−1)i+j−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]=n+1∑i=1(−1)i−1D2(yi)[y1,⋯,ˆyi,⋯,yn+1][x1,⋯,xn]+n+1∑i=1(−1)i−1D(yi)D([y1,⋯,ˆyi,⋯,yn+1])[x1,⋯,xn]+n+1∑i=1n∑j=1(−1)i+j−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn](3.1)=n+1∑i=1(−1)i−1D2(yi)[y1,⋯,ˆyi,⋯,yn+1][x1,⋯,xn]+n+1∑i=1n+1∑k=1,k≠i(−1)i−1D(yi)[y1,⋯,D(yk),⋯,ˆyi,⋯,yn+1][x1,⋯,xn]+n+1∑i=1n∑j=1(−1)i+j−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]=n+1∑i=1(−1)i−1D2(yi)[y1,⋯,ˆyi,⋯,yn+1][x1,⋯,xn]+n+1∑k=1k−1∑i=1(−1)k+i−1D(yi)[D(yk),y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1][x1,⋯,xn]+n+1∑k=1n+1∑i=k+1(−1)i+kD(yi)[D(yk),y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1][x1,⋯,xn]+n+1∑i=1n∑j=1(−1)i+j−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]. |
On the other hand, for any 1≤k≤n, we have
(−1)k−1[[yk,x1,⋯,xn],y1,⋯,ˆyk,⋯,yn+1](3.3)=(−1)k−1[D(yk)[x1,⋯,xn],y1,⋯,ˆyk,⋯,yn+1]+n∑j=1(−1)j+k−1[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,yn+1](3.3)=(−1)k−1D(D(yk)[x1,⋯,xn])[y1,⋯,ˆyk,⋯,yn+1]+k−1∑i=1(−1)i+k−1D(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+n+1∑i=k+1(−1)i+kD(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1]+n∑j=1(−1)j+k−1D(D(xj)[yk,x1,⋯,ˆxj,⋯,xn])[y1,⋯,ˆyk,⋯,yn+1]+n∑j=1n+1∑i=k+1((−1)i+jD(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1])+n∑j=1k−1∑i=1((−1)i+j−1D(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1])=(−1)k−1D2(yk)[x1,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+k−1∑i=1(−1)i+k−1D(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+n+1∑i=k+1(−1)i+kD(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1]+n∑j=1(−1)j+k−1D2(xj)[yk,x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+n∑j=1n+1∑i=k+1((−1)i+jD(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1])+n∑j=1k−1∑i=1((−1)i+j−1D(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1])+(−1)k−1D(yk)D([x1,⋯,xn])[y1,⋯,ˆyk,⋯,yn+1]+n∑j=1(−1)j+k−1D(xj)D([yk,x1,⋯,ˆxj,⋯,xn])[y1,⋯,ˆyk,⋯,yn+1](3.2)=(−1)k−1D2(yk)[x1,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+k−1∑i=1(−1)i+k−1D(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+n+1∑i=k+1(−1)i+kD(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1]+n∑j=1(−1)j+k−1D2(xj)[yk,x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+n∑j=1n+1∑i=k+1((−1)i+jD(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1])+n∑j=1k−1∑i=1((−1)i+j−1D(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1])+n∑j=1n∑t=j+1(−1)kyk[x1,⋯,D(xj),⋯,D(xt),⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+n∑i=1n∑j=1,j≠i(−1)k+ixi[D(yk),x1,⋯,D(xj),⋯,ˆxi,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+n∑i=1n∑j=1,j≠in∑t=j+1,t≠i(−1)k+ixi[yk,x1,⋯,D(xj),D(xt),⋯,ˆxi,⋯,xn]⋅[y1,⋯,ˆyk,⋯,yn+1]. |
We denote
n+1∑i=1(−1)i−1[[yi,x1,⋯,xn],y1,⋯,ˆyi,⋯,yn+1]=7∑i=1Ai, |
where
A1:=n+1∑i=1(−1)i−1D2(yi)[x1,⋯,xn][y1,⋯,ˆyi,⋯,yn+1],A2:=n+1∑k=1n∑j=1(−1)k+j−1D2(xj)[yk,x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyk,⋯,yn+1],A3:=n+1∑i=1n∑j=1n∑k=j+1(−1)iyi[x1,⋯,D(xj),⋯,D(xk),⋯,xn][y1,⋯,ˆyi,⋯,yn+1],A4:=n+1∑k=1n∑i=1n∑j=1,j≠in∑t=j+1,t≠i((−1)k+ixi[yk,x1,⋯,D(xj),D(xt),⋯,ˆxi,⋯,xn]⋅[y1,⋯,ˆyk,⋯,yn+1]),A5:=n+1∑k=1k−1∑i=1(−1)k+i−1D(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+n+1∑k=1n+1∑i=k+1(−1)i+kD(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1],A6:=n+1∑k=1n∑i=1n∑j=1,j≠i((−1)k+ixi[D(yk),x1,⋯,D(xj),⋯,ˆxi,⋯,xn]⋅[y1,⋯,ˆyk,⋯,yn+1]),A7:=n+1∑k=1n∑j=1n+1∑i=k+1((−1)k+i+jD(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1])+n+1∑k=1n∑j=1k−1∑i=1((−1)k+i+j−1D(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]). |
By Eq (2.5), for fixed j, we have
n+1∑k=1(−1)k+j−1D2(xj)[yk,x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]=0. |
So, we obtain that A2=0.
By Eq (2.3), for fixed j and k, we have
n+1∑i=1(−1)iyi[x1,⋯,D(xj),⋯,D(xk),⋯,xn][y1,⋯,ˆyi,⋯,yn+1]=0. |
So, we obtain that A3=0.
By Eq (2.5), for fixed j and t, we have
n+1∑k=1(−1)k+ixi[yk,x1,⋯,D(xj),D(xt),⋯,ˆxi,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]=0. |
So, we obtain that A4=0.
By Eq (2.9), for fixed i and k, we have
(−1)k+i−1D(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+(−1)i+kD(yk)[D(yi)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]=(−1)k+i−1D(yi)[D(yk),y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1][x1,⋯,xn]+(−1)i+kD(yk)[D(yi),y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1][x1,⋯,xn]. |
Thus, we obtain
A5=n+1∑k=1k−1∑i=1(−1)k+i−1D(yi)[D(yk),y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1][x1,⋯,xn]+n+1∑k=1n+1∑i=k+1(−1)i+kD(yi)[D(yk),y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1][x1,⋯,xn]. |
By Eq (2.3), for fixed j and k, we have
n∑i=1(−1)k+ixi[D(yk),x1,⋯,D(xj),⋯,ˆxi,⋯,xn]=(−1)k−1D(yk)[x1,⋯,D(xj),⋯,xn]+(−1)k+j−1D(xj)[D(yk),x1,⋯,xn]=(−1)k+jD(yk)[D(xj),x1,⋯,ˆxj,⋯,xn]+(−1)k+j−1D(xj)[D(yk),x1,⋯,xn]. |
Thus, we get
A6=n+1∑k=1n∑j=1(−1)k+jD(yk)[D(xj),x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+n+1∑k=1n∑j=1(−1)k+j−1D(xj)[D(yk),x1,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]. |
By Eq (2.4), for fixed j and i, we have
n+1∑k=i+1(−1)k+i+j−1D(yi)[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+i−1∑k=1(−1)k+i+jD(yi)[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1]=(−1)j+i−1D(yi)[D(xj)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]. |
So, we obtain
A7=n∑j=1n+1∑i=1(−1)j+i−1D(yi)[D(xj)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]. |
By Eq (2.9), we have
(−1)i+jD(yi)[D(xj),x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyi,⋯,yn+1]+(−1)i+j−1D(xj)[D(yi),x1,⋯,xn][y1,⋯,ˆyi,⋯,yn+1]+(−1)j+i−1D(yi)[D(xj)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]=(−1)j+i−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]. |
So, we get
A6+A7=n+1∑i=1n∑j=1(−1)j+i−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]. |
Thus, we have
7∑i=1Ai=A1+A5+A6+A7=[[y1,⋯,yn+1],x1,⋯,xn]. |
Therefore, (L,μn+1) is an (n+1)-Lie algebra.
Now, we can prove Conjecture 1.1 for strong transposed Poisson n-Lie algebras.
Theorem 3.2. With the notations in Theorem 3.1, (L,⋅,μn+1) is a strong transposed Poisson (n+1)-Lie algebra.
Proof. For convenience, we denote μn+1(x1,⋯,xn+1):=[x1,⋯,xn+1]. According to Theorem 3.1, we only need to prove Eqs (2.2) and (2.8).
Proof of Eq (2.2). By Eq (3.3), we have
n+1∑i=1[x1,⋯,hxi,⋯,xn+1]=D(hx1)[x2,⋯,xn+1]+n+1∑j=2(−1)j−1D(xj)[hx1,x2,⋯,ˆxj,⋯,xn+1]−D(hx2)[x1,x3,⋯,xn+1]+n+1∑j=1,j≠2(−1)j−1D(xj)[x1,hx2,x3,⋯,ˆxj,⋯,xn+1]+⋯+(−1)nD(hxn)[x1,⋯,xn]+n∑j=1(−1)j−1D(xj)[x1,⋯,ˆxj,⋯,xn,hxn+1]=n+1∑i=1(−1)i−1D(hxi)[x1,⋯,ˆxi,⋯,xn]+n+1∑i=1n+1∑j=1,j≠i(−1)j−1D(xj)[x1,,⋯,hxi,⋯,ˆxj,⋯,xn+1]=n+1∑i=1(−1)i−1D(hxi)[x1,⋯,ˆxi,⋯,xn+1]+n+1∑j=1n+1∑i=1,i≠j(−1)j−1D(xj)[x1,⋯,hxi,⋯,ˆxj,⋯,xn+1]=n+1∑i=1(−1)i−1hD(xi)[x1,⋯,ˆxi,⋯,xn+1]+n+1∑i=1(−1)i−1xiD(h)[x1,⋯,ˆxi,⋯,xn+1]+n+1∑j=1n+1∑i=1,i≠j(−1)j−1D(xj)[x1,⋯,hxi,⋯,ˆxj,⋯,xn+1](2.3)=n+1∑i=1(−1)i−1hD(xi)[x1,⋯,ˆxi,⋯,xn+1]+n+1∑j=1n+1∑i=1,i≠j(−1)j−1D(xj)[x1,⋯,hxi,⋯,ˆxj,⋯,xn+1](3.3)=h[x1,⋯,xn+1]+n+1∑j=1n+1∑i=1,i≠j(−1)j−1D(xj)[x1,⋯,hxi,⋯,ˆxj,⋯,xn+1](2.2)=h[x1,⋯,xn+1]+nhn+1∑j=1(−1)j−1D(xj)[x1,⋯,ˆxj,⋯,xn+1](3.3)=h[x1,⋯,xn+1]+nh[x1,⋯,xn+1]=(n+1)h[x1,⋯,xn+1]. |
Proof of Eq (2.8). By Eq (3.3), we have
y1[hy2,x1,⋯,xn]−y2[hy1,x1,⋯,xn]+n∑i=1(−1)i−1hxi[y1,y2,x1,⋯,ˆxi,⋯,xn]=y1y2D(h)[x1,⋯,xn]+y1hD(y2)[x1,⋯,xn]−y1D(x1)[hy2,x2,⋯,xn]+y1D(x2)[hy2,x1,x3,⋯,xn]+⋯+(−1)ny1D(xn)[hy2,x1,⋯,xn−1]−y2y1D(h)[x1,⋯,xn]−y2hD(y1)[x1,⋯,xn]+y2D(x1)[hy1,x2,⋯,xn]−y2D(x2)[hy1,x1,x3,⋯,xn]+⋯+(−1)n−1y2D(xn)[hy1,x1,⋯,xn−1]+hx1D(y1)[y2,x2,⋯,xn]−hx1D(y2)[y1,x2,⋯,xn]+hx1D(x2)[y1,y2,x3,⋯,xn]+⋯+(−1)n+1hx1D(xn)[y1,y2,x2,⋯,xn−1]−hx2D(y1)[y2,x1,x3,⋯,xn]+hx2D(y2)[y1,x1,x3,⋯,xn]−hx2D(x1)[y1,y2,x3,⋯,xn]+⋯+(−1)n+2hx2D(xn)[y1,y2,x1,x3,⋯,xn−1]+⋯+(−1)n−1hxnD(y1)[y2,x1,⋯,xn−1]+(−1)nhxnD(y2)[y1,x1,⋯,xn−1]+(−1)n+1hxnD(x1)[y1,y2,x2,⋯,xn−1]+⋯+(−1)2n−1hxnD(xn−1)[y1,y2,x1,⋯,xn−2]=−y2hD(y1)[x1,⋯,xn]+hx1D(y1)[y2,x2,⋯,xn]+n∑i=2(−1)i−1hxiD(y1)[y2,x1,⋯,ˆxi,⋯,xn]+y1hD(y2)[x1,⋯,xn]−hx1D(y2)[y1,x2,⋯,xn]+n∑i=2(−1)ihxiD(y2)[y1,x1,⋯,ˆxi,⋯,xn]−y1D(x1)[hy2,x2,⋯,xn]+y2D(x1)[hy1,x2,⋯,xn]+n∑i=2(−1)i−1hxiD(x1)[y1,y2,x2,⋯,ˆxi,⋯,xn]+y1D(x2)[hy2,x1,x3,⋯,xn]−y2D(x2)[hy1,x1,x3,⋯,xn]+hx1D(x2)[y1,y2,x3,⋯,xn]+n∑i=3(−1)ihxiD(x2)[y1,y2,x1,x3,⋯,ˆxi,⋯,xn]⋯+(−1)ny1D(xn)[hy2,x1,⋯,xn−1]+(−1)n−1y2D(xn)[hy1,x1,⋯,xn−1]+n−1∑j=1(−1)n+j−1hxjD(xn)[y1,y2,x1,⋯,ˆxj,⋯,xn−1]=A1+A2+n∑i=1Bi, |
where
A1:=−y2hD(y1)[x1,⋯,xn]+n∑i=1(−1)i−1hxiD(y1)[y2,x1,⋯,ˆxi,⋯,xn],A2:=y1hD(y2)[x1,⋯,xn]+n∑i=1(−1)ihxiD(y2)[y1,x1,⋯,ˆxi,⋯,xn], |
and, for any 1≤i≤n,
Bi:=(−1)iy1D(xi)[hy2,x1,⋯,ˆxi,⋯,xn]+(−1)i−1y2D(xi)[hy1,x1,⋯,ˆxi,⋯,xn]+i−1∑j=1(−1)i+j−1hxjD(xi)[y1,y2,x1,⋯,ˆxj,⋯,ˆxi,⋯,xn]+n∑j=i+1(−1)i+jhxjD(xi)[y1,y2,x1,⋯,ˆxi,⋯,ˆxj,⋯,xn]. |
By Eq (2.3), we have
A1=hD(y1)(−y2[x1,⋯,xn]+n∑i=1(−1)i−1xi[y2,x1,⋯,ˆxi,⋯,xn])=0. |
Similarly, we have that A2=0.
By Eq (2.8), for any 1≤i≤n, we have
Bi=(−1)iD(xi)(y1[hy2,x1,⋯,ˆxi,⋯,xn]−y2[hy1,x1,⋯,ˆxi,⋯,xn]+i−1∑j=1(−1)j−1hxj[y1,y2,x1,⋯,ˆxj,⋯,ˆxi,⋯,xn]+n∑j=i+1(−1)jhxj[y1,y2,x1,⋯,ˆxi,⋯,ˆxj,⋯,xn])=0. |
Thus, we get
y1[hy2,x1,⋯,xn]−y2[hy1,x1,⋯,xn]+n∑i=1(−1)i−1hxi[y1,y2,x1,⋯,ˆxi,⋯,xn]=0. |
The proof is completed.
Example 3.1. The commutative associative algebra L=k[x1,x2,x3], together with the bracket
[x,y]:=x⋅D1(y)−y⋅D1(x),∀x,y∈L. |
gives a transposed Poisson algebra (L,⋅,[−,−]), where D1=∂x1 ([2, Proposition 2.2]). Note that the transposed Poisson algebra (L,⋅,[−,−]) is strong according to Remark 2.5. Now, let D2=∂x2; one can check that D2 is a derivation of (L,⋅,[−,−]). Then, there exists a strong transposed Poisson 3-Lie algebra defined by
[x,y,z]:=D2(x)(yD1(z)−zD1(y))+D2(y)(zD1(x)−xD1(z))+D2(z)(xD1(y)−yD1(x)), ∀x,y,z∈L. |
We note that [x1,x2,x3]=x3, which is non-zero. The strong condition can be checked as follows:
For any h,y1,y2,z1,z2∈L, by a direct calculation, we have
y1[hy2,z1,z2]=y1z1hD1(z2)D2(y2)−y1z2hD1(z1)D2(y2)+y1y2z1D1(z2)D2(h)−y1y2z2D1(z1)D2(h)−y1y2hD1(z2)D2(z1)+y1z2hD1(y2)D2(z1)+y1y2z2D1(h)D2(z1)+y1y2hD1(z1)D2(z2)−y1z1hD1(y2)D2(z2)−y1y2z1D1(h)D2(z2), |
−y2[hy1,z1,z2]=−y2z1hD1(z2)D2(y1)+y2z2hD1(z1)D2(y1)−y1y2z1D1(z2)D2(h)+y1y2z2D1(z1)D2(h)+y1y2hD1(z2)D2(z1)−y2z2hD1(y1)D2(z1)−y1y2z2D1(h)D2(z1)−y1y2hD1(z1)D2(z2)+y2z1hD1(y1)D2(z2)+y1y2z1D1(h)D2(z2), |
hz1[y1,y2,z2]=hy2z1D1(z2)D2(y1)−hz1z2D1(y2)D2(y1)−hy1z1D1(z2)D2(y2)+hz1z2D1(y1)D2(y2)+hy1z1D1(y2)D2(z2)−hy2z1D1(y1)D2(z2), |
−hz2[y1,y2,z1]=−hy2z2D1(z1)D2(y1)+hz1z2D1(y2)D2(y1)+hy1z2D1(z1)D2(y2)−hz1z2D1(y1)D2(y2)−hy1z2D1(y2)D2(z1)+hy2z2D1(y1)D2(z1). |
Thus, we get
y1[hy2,z1,z2]−y2[hy1,z1,z2]+hz1[y1,y2,z2]−hz2[y1,y2,z1]=0. |
We have studied transposed Poisson n-Lie algebras. We first established an important class of identities for transposed Poisson n-Lie algebras, which were subsequently used throughout the paper. We believe that the identities developed here will be useful in investigations of the structure of transposed Poisson n-Lie algebras in the future. Then, we introduced the notion of a strong transposed Poisson n-Lie algebra and derived an (n+1)-Lie algebra from a strong transposed Poisson n-Lie algebra with a derivation. Finally, we proved the conjecture of Bai et al. [2] for strong transposed Poisson n-Lie algebras.
The authors declare that they have not used artificial intelligence tools in the creation of this article.
Ming Ding was supported by the Guangdong Basic and Applied Basic Research Foundation (2023A1515011739) and the Basic Research Joint Funding Project of University and Guangzhou City under grant number 202201020103.
The authors declare that there is no conflict of interest.
[1] |
E. W. Hook, C. M. Marra, Acquired syphilis in adults, N. Engl. J. Med., 326 (1992), 1060–1069. https://doi.org/10.1056/NEJM199204163261606 doi: 10.1056/NEJM199204163261606
![]() |
[2] | J. E. Bennett, G. L. Mandell, Mandell, douglas, and bennett's principles and practice of infectious diseases, Elsevier Churchill Livingstone, 2005. |
[3] | L. Goldsmith, S. Katz, B. A. Gilchrest, A. S. Paller, D. J. Leffell, K. Wolff, Fitzpatrick dermatology in general medicine, Ed, McGraw Hill Medical, 150 (2012), 22. |
[4] | J. D. Heffelfinger, E. B. Swint, S. M. Berman, H. S. Weinstock, Trends in primary and secondary syphilis among men who have sex with men in the United States, Am. J. Public Health, 97 (2007), 1076–1083. |
[5] | E. C. Tramont, Syphilis in adults: from Christopher Columbus to Sir Alexander Fleming to AIDS, Clin. Infect. Dis., 21 (1995), 1361–1369. |
[6] |
C. Zimmer, Isolated tribe gives clues to the origins of syphilis, Am. Assoc. Adv. Sci., 319 (2008), 272–272. https://doi.org/10.1126/science.319.5861.272 doi: 10.1126/science.319.5861.272
![]() |
[7] | G. Prabhakararao, Mathematical modelling of syphilis disease; a case study with reference to Anantapur district-Andhra Pradesh-India, Int. J. Eng. Res. Appl., 4 (2014), 29–39. |
[8] |
A. A. Momoh, Y. Bala, D. J. Washachi, D. Dethie, Mathematical analysis and optimal control interventions for sex structured syphilis model with three stages of infection and loss of immunity, Adv. Differ. Equ., 2021 (2021), 1–26. https://doi.org/10.1186/s13662-021-03432-7 doi: 10.1186/s13662-021-03432-7
![]() |
[9] |
M. E. Kent, F. Romanelli, Reexamining syphilis: an update on epidemiology, clinical manifestations, and management, Ann. Pharmacother., 42 (2008), 226–236. https://doi.org/10.1345/aph.1K086 doi: 10.1345/aph.1K086
![]() |
[10] |
K. Buchacz, A. Greenberg, I. Onorato, R. Janssen, Syphilis epidemics and human immunodeficiency virus (HIV) incidence among men who have sex with men in the United States: implications for HIV prevention, Sex. Transm. Dis., 32 (2005), S73–S79. https://doi.org/10.1097/01.olq.0000180466.62579.4b doi: 10.1097/01.olq.0000180466.62579.4b
![]() |
[11] |
S. Ruan, H. Yang, Y. Zhu, Y. Ma, J. Li, J. Zhao, et al., HIV prevalence and correlates of unprotected anal intercourse among men who have sex with men, Jinan, China, AIDS Behav., 12 (2008), 469–475. https://doi.org/10.1007/s10461-008-9361-9 doi: 10.1007/s10461-008-9361-9
![]() |
[12] |
N. Ahmed, A. Elsonbaty, W. Adel, D. Baleanu, M. Rafiq, Stability analysis and numerical simulations of spatiotemporal HIV CD4+ T cell model with drug therapy, Chaos: Interdisc. J. Nonlinear Sci., 30 (2020), 083122. https://doi.org/10.1063/5.0010541 doi: 10.1063/5.0010541
![]() |
[13] |
M. B. Ghori, P. A. Naik, J. Zu, Z. Eskandari, M. U. D. Naik, Global dynamics and bifurcation analysis of a fractional-order SEIR epidemic model with saturation incidence rate, Math. Methods Appl. Sci., 45 (2022), 3665–3688. https://doi.org/10.1002/mma.8010 doi: 10.1002/mma.8010
![]() |
[14] |
Y. Xiao, T. Zhao, S. Tang, Dynamics of an infectious diseases with media/psychology induced non-smooth incidence, Math. Biosci. Eng., 10 (2013), 445–461. https://doi.org/10.3934/mbe.2013.10.445 doi: 10.3934/mbe.2013.10.445
![]() |
[15] |
A. Wang, Y. Xiao, A Filippov system describing media effects on the spread of infectious diseases, Nonlinear Anal.: Hybrid Syst., 11 (2014), 84–97. https://doi.org/10.1016/j.nahs.2013.06.005 doi: 10.1016/j.nahs.2013.06.005
![]() |
[16] |
R. Jan, Y. Xiao, Effect of partial immunity on transmission dynamics of dengue disease with optimal control, Math. Methods Appl. Sci., 42 (2019), 1967–1983. https://doi.org/10.1002/mma.5491 doi: 10.1002/mma.5491
![]() |
[17] |
R. Jan, Y. Xiao, Effect of pulse vaccination on dynamics of dengue with periodic transmission functions, Adv. Differ. Equ., 2019 (2019), 1–17. https://doi.org/10.1186/s13662-019-2314-y doi: 10.1186/s13662-019-2314-y
![]() |
[18] |
R. Jan, M. A. Khan, G. F. Gomez-Aguilar, Asymptomatic carriers in transmission dynamics of dengue with control interventions, Optim. Control Appl. Methods, 41 (2020), 430–447. https://doi.org/10.1002/oca.2551 doi: 10.1002/oca.2551
![]() |
[19] | G. P. Garnett, S. O. Aral, D. V. Hoyle, W. Cates Jr., R. M. Anderson, The natural history of syphilis: implications for the transmission dynamics and control of infection, Sex. Transm. Dis., 24 (1997), 185–200. |
[20] | R. A. Kimbir, M. J. Udoo, T. Aboiyar, A mathematical model for the transmission dynamics of HIV/AIDS in a two-sex population Counseling and Antiretroviral Therapy (ART), J. Math. Comput. Sci., 2 (2012), 1671–1684. |
[21] | B. Pourbohloul, M. L. Rekart, R. C. Brunham, Impact of mass treatment on syphilis transmission: a mathematical modeling approach, Sex. Transm. Dis., 30 (2003), 297–305. |
[22] |
F. A. Milner, R. Zhao, A new mathematical model of syphilis, Math. Model. Nat. Phenom., 5 (2010), 96–108. https://doi.org/10.1051/mmnp/20105605 doi: 10.1051/mmnp/20105605
![]() |
[23] | P. Junswang, Z. Sabir, M. A. Z. Raja, W. Adel, T. Botmart, W. Weera, Intelligent networks for chaotic fractional-order nonlinear financial model, CMC-Comput. Mater. Con., 72 (2022), 5015–5030. |
[24] | P. A. Naik, J. Zu, M. U. D. Naik, Stability analysis of a fractional-order cancer model with chaotic dynamics Int. J. Biomath., 14 (2021), 2150046. https://doi.org/10.1142/S1793524521500467 |
[25] |
Z. Iqbal, N. Ahmed, D. Baleanu, W. Adel, M. Rafiq, M. A. U. Rehman, et al., Positivity and boundedness preserving numerical algorithm for the solution of fractional nonlinear epidemic model of HIV/AIDS transmission, Chaos, Solitons Fract., 134 (2020), 109706. https://doi.org/10.1016/j.chaos.2020.109706 doi: 10.1016/j.chaos.2020.109706
![]() |
[26] |
Y. Zhou, Y. Zhang, Noether symmetries for fractional generalized Birkhoffian systems in terms of classical and combined Caputo derivatives, Acta Mech., 231 (2020), 3017–3029. https://doi.org/10.1007/s00707-020-02690-y doi: 10.1007/s00707-020-02690-y
![]() |
[27] |
S. Victor, J. F. Duhe, P. Melchior, Y. Abdelmounen, F. Roubertie, Long-memory recursive prediction error method for identification of continuous-time fractional models, Nonlinear Dyn., 110 (2022), 635–648. https://doi.org/10.1007/s11071-022-07628-8 doi: 10.1007/s11071-022-07628-8
![]() |
[28] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. |
[29] |
D. Goufo, E. Franc, A biomathematical view on the fractional dynamics of cellulose degradation, Fract. Calc. Appl. Anal., 18 (2015), 554–564. https://doi.org/10.1515/fca-2015-0034 doi: 10.1515/fca-2015-0034
![]() |
[30] |
R. Jan, S. Boulaaras, S. A. A. Shah, Fractional-calculus analysis of human immunodeficiency virus and CD4+ T-cells with control interventions, Commun. Theor. Phys., 74 (2022), 105001. https://doi.org/10.1088/1572-9494/ac7e2b doi: 10.1088/1572-9494/ac7e2b
![]() |
[31] | T. Q. Tang, R. Jan, E. Bonyah, Z. Shah, E. Alzahrani, Qualitative analysis of the transmission dynamics of dengue with the effect of memory, reinfection, and vaccination, Comput. Math. Methods. Med., 2022 (2022), 1–20. https://doi.org/10.1155/2022/7893570 |
[32] |
W. Deebani, R. Jan, Z. Shah, N. Vrinceanu, M. Racheriu, Modeling the transmission phenomena of water-borne disease with non-singular and non-local kernel, Comput. Methods Biomech. Biomed. Eng., 2022 (2022), 1–14. https://doi.org/10.1080/10255842.2022.2114793 doi: 10.1080/10255842.2022.2114793
![]() |
[33] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. |
[34] | H. Gunerhan, H. Rezazadeh, W. Adel, M. Hatami, K. M. Sagayam, H. Emadifar, et al., Analytical approximate solution of fractional order smoking epidemic model, Adv. Mech. Eng., 14 (2022). https://doi.org/10.1177/16878132221123888 |
[35] |
A. Atangana, K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Phenom., 13 (2018), 1–21. https://doi.org/10.1051/mmnp/2018010 doi: 10.1051/mmnp/2018010
![]() |
[36] |
S. Boulaaras, R. Jan, A. Khan, M. Ahsan, Dynamical analysis of the transmission of dengue fever via Caputo-Fabrizio fractional derivative, Chaos, Solitons Fract.: X, 8 (2022), 100072. https://doi.org/10.1016/j.csfx.2022.100072 doi: 10.1016/j.csfx.2022.100072
![]() |
[37] |
H. Gunerhan, H. Dutta, M. A. Dokuyucu, W. Adel, Analysis of a fractional HIV model with Caputo and constant proportional Caputo operators, Chaos, Solitons Fract., 139 (2020), 110053. https://doi.org/10.1016/j.chaos.2020.110053 doi: 10.1016/j.chaos.2020.110053
![]() |
[38] | P. A. Naik, M. Ghoreishi, J. Zu, Approximate solution of a nonlinear fractional-order HIV model using homotopy analysis method, Int. J. Numer. Anal. Model., 19 (2022), 52–84. |
[39] |
A. Ahmad, M. Farman, P. A. Naik, N. Zafar, A. Akgul, M. U. Saleem, Modeling and numerical investigation of fractional-order bovine babesiosis disease, Numer. Methods Partial Differ. Equ., 37 (2021), 1946–1964. https://doi.org/10.1002/num.22632 doi: 10.1002/num.22632
![]() |
[40] | I. Podlubny, Fractional differential equations, Math. Sci. Eng., 198 (1999), 41–119. |
[41] |
P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
![]() |
[42] |
M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models, Eur. Phys. J. Plus., 132 (2017), 1–16. https://doi.org/10.1140/epjp/i2017-11717-0 doi: 10.1140/epjp/i2017-11717-0
![]() |
[43] | R. B. Oyeniyi, E. B. Are, M. O. Ibraheem, Mathematical modelling of syphilis in a heterogeneous setting with complications, J. Niger. Soc. Math., 36 (2017), 479–490. |
[44] |
D. Okuonghae, A. B. Gumel, B. O. Ikhimwin, E. Iboi, Mathematical assessment of the role of early latent infections and targeted control strategies on syphilis transmission dynamics, Acta Biotheor., 67 (2019), 47–84. https://doi.org/10.1007/s10441-018-9336-9 doi: 10.1007/s10441-018-9336-9
![]() |
[45] |
A. A. Khan, R. Amin, S. Ullah, W. Sumelka, M. Altanji, Numerical simulation of a Caputo fractional epidemic model for the novel coronavirus with the impact of environmental transmission, Alex. Eng. J., 61 (2022), 5083–5095. https://doi.org/10.1016/j.aej.2021.10.008 doi: 10.1016/j.aej.2021.10.008
![]() |
1. | K. Abdurasulov, F. Deraman, A. Saydaliyev, S. H. Sapar, Transposed Poisson Structures on Low Dimensional Quasi-Filiform Lie Algebras of Maximum Length, 2024, 45, 1995-0802, 5735, 10.1134/S1995080224606866 |