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Abstract: One of the most harmful and widespread sexually transmitted diseases is syphilis. This
infection is caused by the Treponema Palladum bacterium that spreads through sexual intercourse
and is projected to affect 12 million people annually worldwide. In order to thoroughly examine
the complex and all-encompassing dynamics of syphilis infection. In this article, we constructed
the dynamics of syphilis using the fractional derivative of the Atangana-Baleanu for more accurate
outcomes. The basic theory of non-integer derivative is illustrated for the examination of the
recommended model. We determined the steady-states of the system and calculated the R0 for the
intended fractional model with the help of the next-generation method. The infection-free steady-
state of the system is locally stable if R0 < 1 through jacobian matrix method. The existence and
uniqueness of the fractional order system are investigate by applying the fixed-point theory. The
iterative solution of our model with fractional order was then carried out by utilising a newly generated
numerical approach. Finally, numerical results are computed for various values of the factor Φ and
other parameters of the system. The solution pathways and chaotic phenomena of the system are
highlighted. Our findings show that fractional order derivatives provide more precise and realistic
information regarding the dynamics of syphilis infection.
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1. Introduction

Treponema pallidum is a spirochete that has a morphology for different body organs and tissues,
causes the infectious illness named as syphilis infection, which has complicated clinical
symptoms [1–3]. Syphilis is one of the most contagious illnesses that is frequently spread through
sexual contact [4]. There are two basic ideas that are most popular, however the exact cause of
syphilis is uncertain. One hypothesis argues that the illness originated in America and was brought to
Europe after Columbus exploration in 1492. One more contends that syphilis was widespread in
central Africa before Columbus expedition and spread to Europe [5]. In a secluded Guyanan
community, researchers have uncovered a DNA-related strain of T. pallidum, that causes an illness
that resembles both syphilis and yaws. This creature may have served as the ancestor from whom T.
pallidum originated many millions of years ago, according to certain theories [6]. Extragenital
inoculations are conceivable but are less prevalent because most syphilis transmission occurs when
infected individuals share sex toys or engage in sexual activity without using condoms [7]. The
Syphilis illness has three major stages: the primary, secondary, and latent. The primary stage
symptom may manifest as a singular, painless chancre at the infection area. Without treatment, this
illness advances to the secondary stage with indications resembling lymphnodes, skin rashes, and
muscous membrane lesions [8]. The signs of the infection are more visible at this stage. The disease
progresses to a latent phase if untreated along with secondary stage symptoms and has the potential to
be fatal or harmful to internal organs [8]. It has been challenging to eradicate this disease entirely
regardless the discovery of penicillin in the middle of the 20th century. It continues to be a significant
concern among human illnesses, and its frequency is rising quickly in many regions of the
globe [9–11].

In order to fully comprehend the dynamics of infectious diseases, epidemiological models are
crucial to create efficient control measures [12, 13]. To be more precise, study of these models
forecasts important variables that are crucial to the transmission and treatment of the
infection [14, 15]. An equation to forecast a disease was one of the early successes of mathematical
epidemiology. In order to determine variables for diverse contagious illnesses and utilise those
variables to examine the impacts of potential therapies, mathematical models make use of several
fundamental mathematical assumptions and principles [16–18]. These models have been constructed
in large numbers to analyze the mechanics of the propagation of syphilis infection. In [19, 20], the
authors structured the propagation of the infection with the effect of treatment. Various categories
were created throughout the population based on factors including age, sexual intercourse, and
gender [21], but the latter stages of syphilis were integrated. Milner and Zhao [22], offered an ODE
model based on partial immunization and vaccination (presuming a 30 effective vaccine is made) in
more recent study, and they demonstrated that there exists backward bifurcation for specific input
variables. Mostly of the researchers illustrated the dynamics of this infection through integer
derivative, therefore non-integer framework is a best option to demonstrate the dynamics of syphilis
infection.

Fractional-calculus has been quite popular in recent years due to its wide range of applications in
different research areas [23–25]. It has the capability to consider the memory impact [26, 27], which
occurs frequently in biological models. In recent years, a novel FO derivative has been developed
in [28, 29]. These novel concepts have been successfully applied to simulating real-world issues in
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several disciplines, such as physics, engineering, biology and several other areas [30–32]. A single
kernel fractional derivative was initially proposed by Riemann and Louiville. In [28], Caputo and
Fabrizio offered a fresh definition of fractional derivative without single kernel that many scholars
found to be accurate and useful. A Few years ago, Atangana and Baleanu developed a fractional
operator in the Caputo sense based on the generalised Mittag-Leffler function with non-singular and
non-local kernel named as ABC derivative [33]. In the sense of CF and ABC, numerous non-integer
order models have been constructed [34–37]. To be more specific, the dynamics of biological
processes are more accurately explored through non-integer derivative . The authors in [37, 38],
numerically illustrated the fractional dynamics of HIV infection while the numerical examination of
bovine babesiosis infection has been presented in [39]. These findings made fractional-calculus more
attractive for the researchers and scientists. Therefore, the dynamics of syphilis infection is structured
in fractional framework for more precise findings. The main objective of this work is to formulate the
intricate transmission of syphilis infection between men and women with primary and secondary
infections to obtain more realistic results. The effect of the antibiotic on the transmission route of
syphilis infection will also be a part of this study.

A brief introduction to the infectious syphilis model is described in Section 1, along with basic
definitions and terminologies related to the FO derivative are involved. The formation of syphilis
model is presented in Section 2. In Section 3, we examine the model of infectious syphilis while
also looking at equilibrium points and the basic reproduction number R0. In Section 4, the fixed-
point theorem is utilized to demonstrate the existence and uniqueness of the solution to the specified
FO derivative model of Syphilis. In Section 5, we presented a numerical scheme for the solution of
our model while the model syphilis infection is illustrated numerically in Section 6. We finish up by
presenting the results and conclusions of our study analysis in Section 7.

Preliminaries

Here, we present a couple of mathematical theorems and definition of Caputo [40] and Atangana-
Baleanu fractional derivatives [33], which will be utilized in the upcoming sections.

Definition 1.1. Let g : [p, q] → R be a given function, then the derivative of Caputo for g stated
in [40] is given by

C
p Dϕ

a(g(a)) =
1

Γ(m − ϕ)

∫ a

p
gm(ε)(a − ε)m−ϕ−1dε,

for ϕ ∈ (m − 1,m), where m ∈ Z.

Definition 1.2. Let g be a given function such that g ∈ H1(p, q), q > p, and Φ ∈ [0, 1], the ABC is then
described as follows

ABC
p DΦa g(a) =

B(Φ)
1 − Φ

∫ a

p
g′(ε)EΦ

[
− Φ

(a − ε)Φ

1 − Φ

]
dε.

Definition 1.3. The ABC
p IΦa g(a) denotes the FO integral associated with the AB derivative and is defined

as
ABC
p IΦa g(a) =

1 − Φ
B(Φ)

g(a) +
Φ

B(Φ)Γ(Φ)

∫ a

p
g(ε)(a − ε)Φ−1dε.

It is clear that the original function can be achieved when Φ approaches zero.
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Theorem 1.1. If g is a function such that g ∈ C[p, q], then the following conclusion is acceptable [33]:

∥ABC
p DΦa (g(a))∥ <

B(Φ)
1 − Φ

∥g(a)∥, where ∥g(a)∥ = maxp≤a≤q|g(a)|.

Moreover, the Lipschitz condition fulfilled by ABC derivative [33] is as

∥ABC
p DΦa g1(a) − ABC

p DΦa g2(a)∥ < Ω1∥g1(a) − g2(a)∥.

Theorem 1.2. [33]. The FO differential equation of the following form has one and only one solution

ABC
p DΦa g(a) = X(a),

given by

g(a) =
1 − Φ
B(Φ)

X(a) +
Φ

B(Φ)Γ(Φ)

∫ a

p
X(ε)(a − ε)Φ−1dε.

2. Evaluation of fractional dynamics

In formulation of the model, the humans strength N(t) is categorized into the following inclusive
compartments: susceptible men S m(t), susceptible women S w(t), men with primary infection Imp(t),
women with primary infection Iwp(t), men with secondary infection Ims(t), women with secondary
infection Iws(t), men with latent infection Lm(t), women with latent infection Lw(t), recovered men
Rm(t), and recovered women Rw(t). Then, we have

N(t) = S m(t) + S w(t) + Imp(t) + Iwp(t) + Ims(t) + Iws(t) + Lm(t) + Lw(t) + Rm(t) + Rw(t).

The recruitment rate to S m is indicated by πm at time t. The population has grown due to the rate φm of
males who survived syphilis illness after losing their natural resistance. The number of vulnerable men
decreases due to the growth of newly infected men with syphilis who proceed to the men with primary
stage by αwψ

Iwp+Iws+Lw

N S m, where ψ denote the average number of sexual partners per hour and αw stands
for the possibility that syphilis illness will be transmitted by a woman. The number of vulnerable males
decreases at a proportion of µ due to the natural causes of mortality. Thus the equation seems to be

dS m

dt
= πm + φmRm − αwψ

(
Iwp + Iws + Lw

N

)
S m − µS m.

The recruitment rate to S w is indicated by πw at time t. Syphilis illness recovery and subsequent immune
system degradation also lead to an increase in vulnerable women at rate φw. The population will be
diminished by becoming affected with syphilis illness at the amount αmψ

( Imp+Ims+Lm

N

)
S w and migrating

to women who are already afflicted with the disease, where αm is the likelihood that these males will
transmit the disease to women. Deaths brought on by natural causes lower the population at a rate of
µ. Therefore

dS w

dt
= πw + φwRw − αmψ

(
Imp + Ims + Lm

N

)
S w − µS w.

Because of the spread of newly infectious syphilis people from the susceptible man at the amount
αwψ

( Iwp+Iws+Lw

N

)
S m, the number of men with primary stage Imp(t) grows and is lowered as a result of a
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rate γm migration of males with later stage syphilis Ims. Natural mortality is indicated by µ and the use
of antibiotics in therapy at rate ξm1 substantially reduces this population, resulting in

dImp

dt
= αwψ

(
Iwp + Iws + Lw

N

)
S m − γmImp − µImp − ξm1 Imp.

The incidence rate from susceptible class of women is αmψ
( Imp+Ims+Lm

N

)
S w which moves to Iwp(t) and

is decreased when syphilis progresses to the secondary stage in infected women (Iws) at rate γw. The
population is declining because of natural mortality at rate µ and the use of antibiotic at the rate ρw1 .
Thus

dIwp

dt
= αmψ

(
Imp + Ims + Lm

N

)
S w − γwIwp − µIwp − ρw1 Iwp.

The transition of men from the class (Imp) to the class (Ims) occurs at rate γm causes a rise in the amount
of infected men Ims(t). Males with secondary stage of the infection (Ims) proceed at a rate βm to men
with latent stage syphilis (Lm), which results in a reduction in the population. Natural death rate is
indicated by µ and ξm2 is the rate of antibiotics which move from the current class to the next class.
The equation is given by

dIms

dt
= γmImp − βmIms − ξm2 Ims − µIms.

The transition of women from the class Iwp to the class (Iws) occurs at the rate γw causes a rise in the
amount of infected women Iws(t). Women with secondary stage syphilis (Iws) proceed at a rate βw to
women with latent stage syphilis (Lw), which results in a reduction in the population. By dying from
a natural cause at the rate µ and through the use of antibiotics at rate ρw2 , the population is further
diminished and the equation becomes

dIws

dt
= γwIwp − βwIws − ρw2 Iws − µIws.

The population of men transfer from Ims at rate βm to the class (Lm) while the reduction of natural death
at rate µ decreases them. The addition of therapy (antibiotics) at the rate ξm3 progressively reduces this
population, resulting in the equation being as follows

dLm

dt
= βmIms − µLm − ξm3 Lm.

The population women moves from the class (Iws) at rate βw to the class (Lw) while the reduction of
natural death at rate µ decreases them. The addition of therapy (antibiotics) at the rate ρw3 progressively
reduces this population, resulting in the equation being as follows

dLw

dt
= βwIws − µLw − ρw3 Lw.

The advancement of cured men from primary, secondary, and latent phases of syphilis (Imp, Ims, Lm)
respectively, at rates ξm1 , ξm2 , and ξm3 , which are the recovery rates of syphilis illness in the men
community, results in an increase in Rm(t). This population is diminished by natural mortality at a rate
of µ and by loss of immunity brought on by medication and migration of such persons to the vulnerable
man population at a rate of φm, resulting in

dRm

dt
= ξm1 Imp + ξm2 Ims + ξm3 Lm − µRm − φmRm.
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The advancement of cured women from primary, secondary, and latent phases of syphilis (Iwp, Iws, Lw)
respectively, at rates ρw1 , ρw2 , and ρw3 , which are the recovery rates of syphilis illness in the women
community, results in an increase in Rw(t). This population is diminished by natural mortality at a rate
of µ and by loss of immunity brought on by medication and migration of such people to the vulnerable
women population at a rate of φw, resulting in

dRw

dt
= ρw1 Iwp + ρw2 Iws + ρw3 Lw − µRw − φwRw.

Since there are three stages of infection, so the syphilis model it described in detail as follows:

dS m
dt = πm + φmRm − αwψ( Iwp+Iws+Lw

N )S m − µS m,
dImp

dt = αwψ( Iwp+Iws+Lw

N )S m − γmImp − µImp − ξm1 Imp,
dIms
dt = γmImp − βmIms − ξm2 Ims − µIms,

dLm
dt = βmIms − µLm − ξm3 Lm,

dRm
dt = ξm1 Imp + ξm2 Ims + ξm3 Lm − µRm − φmRm,

dS w
dt = πw + φwRw − αmψ( Imp+Ims+Lm

N )S w − µS w,
dIwp

dt = αmψ( Imp+Ims+Lm

N )S f − γwIwp − µIwp − ρw1 Iwp,
dIws
dt = γwIwp − βwIws − ρw2 Iws − µIws,

dLw
dt = βwIws − µLw − ρw3 Lw,

dRw
dt = ρw1 Iwp + ρw2 Iws + ρw3 Lw − µRw − φwRw,

(2.1)

subject to the initial conditions:
S m(0) = S m0(0) ≥ 0, Imp(0) = Imp0 ≥ 0,
Ims(0) = Ims0(0) ≥ 0, Lm(0) = Lm0(0) ≥ 0,
S w(0) = S w0(0) ≥ 0, Iwp(0) = Iwp0 ≥ 0,
Iws(0) = Iws0(0) ≥ 0, Lw(0) = Lw0(0) ≥ 0.

(2.2)

To obtain the dynamical behaviors of the overall population of system (2.1), the related subcategories
are combined, which results in

dN
dt
= πm + πw − µN.

It is well-known that the results of fractional-calculus are more precise and accurate. Fractional systems
possess hereditary property and can capture the nonlocal behavior of biological systems. Therefore,
we represent our system through ABC derivative as

ABC
0 DΦt S m = πm + φmRm − αwψ( Iwp+Iws+Lw

N )S m − µS m,
ABC
0 DΦt Imp = αwψ( Iwp+Iws+Lw

N )S m − γmImp − µImp − ξm1 Imp,
ABC
0 DΦt Ims = γmImp − βmIms − ξm2 Ims − µIms,
ABC
0 DΦt Lm = βmIms − µLm − ξm3 Lm,
ABC
0 DΦt Rm = ξm1 Imp + ξm2 Ims + ξm3 Lm − µRm − φmRm,
ABC
0 DΦt S w = πw + φwRw − αmψ( Imp+Ims+Lm

N )S w − µS w,
ABC
0 DΦt Iwp = αmψ( Imp+Ims+Lm

N )S w − γwIwp − µIwp − ρw1 Iwp,
ABC
0 DΦt Iws = γwIwp − βwIws − ρw2 Iws − µIws,
ABC
0 DΦt Lw = βwIws − µLw − ρw3 Lw,
ABC
0 DΦt Rw = ρw1 Iwp + ρw2 Iws + ρw3 Lw − µRw − φwRw.

(2.3)
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The fractional derivative ABC
0 DΦt utilised in the recommended system (2.3) has often been referred to as

Atangana-Baleanu derivative in the Caputo interpretation.

3. Investigation of the dynamics

In this section of the paper, we will analyze the recommended fractional model of the infection.
The stead-states, basic reproduction number, stability of steady-states will be investigated.

3.1. Steady-states

To determine the steady-states of (2.3), we set all the fractional derivatives to zero as

0 = πm + φmRm − αwψ( Iwp+Iws+Lw

N )S m − µS m,

0 = αwψ( Iwp+Iws+Lw

N )S m − γmImp − µImp − ξm1 Imp,

0 = γmImp − βmIms − ξm2 Ims − µIms,

0 = βmIms − µLm − ξm3 Lm,

0 = ξm1 Imp + ξm2 Ims + ξm3 Lm − µRm − φmRm,

0 = πw + φwRw − αmψ( Imp+Ims+Lm

N )S w − µS w,

0 = αmψ( Imp+Ims+Lm

N )S w − γwIwp − µIwp − ρw1 Iwp,

0 = γwIwp − βwIws − ρw2 Iws − µIws,

0 = βwIws − µLw − ρw3 Lw,

0 = ρw1 Iwp + ρw2 Iws + ρw3 Lw − µRw − φwRw.

(3.1)

The meaningful steady-states of the system (2.3) are infection-free and endemic steady-state. We
calculated and assessed the Jacobian of system (2.3) at infection-free steady-state for the stability
analysis of the system. The indicators of the Jacobian’s eigenvalues are used to evaluate the local
stability of E0. For infection-free steady-state, we take the first equation of system (3.1) without
infection as

0 = πm + φm0 − αwψ(0)S m − µS m,

which implies that S 0
m =

πm
µ

. Similarly, from the sixth equation of (3.1), we have

0 = πw + φw0 − αmψ(0)S w − µS w,

which implies that S 0
w =

πw
µ
. Thus, the infection-free steady-state is

(
S 0

m, I
0
mp, I

0
ms, L

0
m,R

0
m, S

0
w, I

0
wp, I

0
ws, L

0
w,R

0
w

)
=

(
πm

µ
, 0, 0, 0, 0,

πw

µ
, 0, 0, 0, 0

)
. (3.2)

Let us assume that endemic steady-state is indicated by

E∗∗ =
(
S ∗∗m , I

∗∗
mp, I

∗∗
ms, L

∗∗
m ,R

∗∗
m , S

∗∗
w , I

∗∗
wp, I

∗∗
ws, L

∗∗
w ,R

∗∗
w

)
,

of the recommended fractional system of the infection. Let

λ∗∗m =
αmψ(I∗∗mp + I∗∗ms + L∗∗m )

N∗∗
, λ∗∗w =

αwψ(I∗∗wp + I∗∗ws + L∗∗w )

N∗∗
,
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indicate the force of infection, and let

N∗∗ = S ∗∗m + I∗∗mp + I∗∗ms + L∗∗m + R∗∗m + S ∗∗w + I∗∗wp + I∗∗ws + L∗∗w + R∗∗w .

Then the above system (3.1) become as

0 = πm + φmR∗∗m − αwψλ
∗∗
m S ∗∗m − µS ∗∗m ,

0 = αwψλ
∗∗
m S ∗∗m − γmI∗∗mp − µI∗∗mp − ξm1 I∗∗mp,

0 = γmI∗∗mp − βmI∗∗ms − ξm2 I∗∗ms − µI∗∗ms,

0 = βmI∗∗ms − µL∗∗m − ξm3 L∗∗m ,
0 = ξm1 I∗∗mp + ξm2 I∗∗ms + ξm3 L∗∗m − µR∗∗m − φmR∗∗m ,
0 = πw + φwR∗∗w − αmψλ

∗∗
w S ∗∗w − µS ∗∗w ,

0 = αmψλ
∗∗
w S w − γwI∗∗wp − µI∗∗wp − ρw1 I∗∗wp,

0 = γwI∗∗wp − βwI∗∗ws − ρw2 I∗∗ws − µI∗∗ws,

0 = βwI∗∗ws − µL∗∗w − ρw3 L∗∗w ,
0 = ρw1 I∗∗wp + ρw2 I∗∗ws + ρw3 L∗∗w − µR∗∗w − φwR∗∗w .

(3.3)

Solving the above system (3.3) through mathematical skills, we have

S ∗∗m =
b1b2I∗ms

γm(λ∗∗w +µ) ,

I∗∗mp =
b2I∗ms
γm
,

I∗∗ms =
πmγmb3b4

b1b2b3b4−(ξm3βmγmφm+k3ξm2γmψm+φmξm1 b2b3) ,

L∗∗m =
βmI∗ms

b3
,

R∗∗m =
b1b2I∗∗ms−γmπm

γmφm
,

S ∗∗w =
h1h2I∗∗ws
γw(λ∗m+µ) ,

I∗∗wp =
h2I∗ws
γw
,

I∗∗ws =
πwγwh3h4

h1h2h3h4−(ρw3βwγwφw+h3ρw2γwψw+φwρw1 h2h3) ,

L∗∗w =
βwI∗∗ws

h3
,

R∗∗w =
(γw+µ+ρw1)(βw+ρw2+µ)I∗∗ws−γwπw

γwφ2
,

(3.4)

where b1 = γm + µ + ξm1 , b2 = βm + µ + ξm2 , b3 = µ + ξm3 , b4 = µ + φm, and h1 = γw + µ + ρw1 , h2 =

βw + ρw2 + µ, h3 = µ + ρw3 , h4 = µ + φw.

3.2. Reproduction parameter

The basic reproduction number R0 is the average number of secondary illnesses brought on by one
infected individual when the entire community is vulnerable. R0 = ρ(FV−1) is used to represent the
epidemiological threshold for syphilis illness, where ρ is the predominate eigenvalue. We also utilised
the methods in [41] to obtain the basic reproduction number for system (2.3), we have

F =



αwψ
( Iwp+Iws+Lw

N

)
S m

0
0

αmψ
( Imp+Ims+Lm

N

)
S w

0
0


and V =



(
γm + µ + ξm1

)
Imp

−γmImp +
(
βm + µ + ξm2

)
Ims

−βmIms +
(
µ + ξm3

)
Lm(

γw + µ + ρw1

)
Iwp

−γwIwp +
(
βw + µ + ρw2

)
Iws

−βwIws +
(
µ + ρw3

)
Lw


.
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Here, the transition terms are present in the matrices F and V of the recommended model (2.3). At
syphilis-free equilibrium, the jacobian matrices of F and V are evaluated, we obtain the following

F =



0 0 0 αwψπm
πm+πw

αwψπm
πm+πw

αwψπm
πm+πw

0 0 0 0 0 0
0 0 0 0 0 0

αmψπw
πm+πw

αmψπw
πm+πw

αmψπw
πm+πw

0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

and

V =



γm + µ + ξm1 0 0 0 0 0
−γm βm + µ + ξm2 0 0 0 0

0 −βm µ + ξm3 0 0 0
0 0 0 γw + µ + ρw1 0 0
0 0 0 −γw βw + µ + ρw2 0
0 0 0 0 −βw µ + ρw3


.

Therefore, model (2.3) has the basic reproduction number R0, given by

R0 =

√
ψ2αwαmπmπw (βmγm + γmq2 + q2q3) (βwγw + γwq6 + q5q6)

(πm + πw)2 q1q2q3q4q5q6
, (3.5)

where q1 = (γm+µ+ ξm1), q2 = (βm+µ+ ξm2), q3 = (µ+ ξm3), q4 = (γw+µ+ρw1), q5 = (βw+µ+ρw2),
and q6 = (µ + ρw3). The reproduction parameter of a system is a significant value which predict about
the status of the infection.

3.3. Stability analysis

Theorem 3.1. If R0 < 1, the syphilis-free equilibrium of system (2.3) is locally asymptotically stable
otherwise it is unstable.

Proof. At syphilis-free equilibrium, the Jacobian matrix of system (2.3) is as follows

J
(
E0

)
=



−g1 0 0 0 φ1 0 −
αwψπm
πm+πw

−
αwψπm
πm+πw

−
αwψπm
πm+πw

0
0 −g2 0 0 0 0 αwψπm

πm+πw

αwψπm
πm+πw

αwψπm
πm+πw

0
0 γm −g3 0 0 0 0 0 0 0
0 0 βm −g4 0 0 0 0 0 0
0 ξm1 ξm2 ξm3 −g5 0 0 0 0 0
0 −

αwψπw
πm+πw

−
αwψπw
πm+πw

−
αwψπw
πm+πw

0 −g6 0 0 0 φw

0 αmψπw
πm+πw

αmψπw
πm+πw

αmψπw
πm+πw

0 0 −g7 0 0 0
0 0 0 0 0 0 γw −g8 0 0
0 0 0 0 0 0 0 βw −g9 0
0 0 0 0 0 0 ρw1 ρw2 ρw3 −g10



,

where
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g1 = µ, g2 = (γm + µ + ξm1), g3 = (βm + µ + ξm2), g4 = (µ + ξm3), g5 = (µ + φm),
g6 = µ, g7 = (γw + µ + ρw1), g8 = (γw + µ + ρw2), g9 = (µ + ρw3), and g10 = (µ + φw).

Here, J(E0) implies that λ1 = −µ < 0, λ2 = −(µ + φm) < 0, λ3 = −µ < 0, and λ4 = −(µ + φw) < 0,
and also give the following

−g2 0 0 αwψπm
πm+πw

αwψπm
πm+πw

αwψπm
πm+πw

γm −g3 0 0 0 0
0 βm −g4 0 0 0

αmψπw
πm+πw

αmψπw
πm+πw

αmψπw
πm+πw

−g7 0 0
0 0 0 γw −g8 0
0 0 0 0 βw −g9


. (3.6)

The following is a definition of the characteristic equation for (3.6) is given by

λ6 + B1λ
5 + B2λ

4 + B3λ
3 + B4λ

2 + B5λ + B6 = 0, (3.7)

where the coefficients of (3.7) are given as

B1 = (g2 + g3 + g4 + g7 + g8 + g9) ,
B2 = g9 (g2 + g3 + g4+ g7 + g8) + g3 (g2 + g3) + g2g3+g7 (g2 + g3 + g4)+g8 (g2 + g3 + g4 + g7)−b1c1,

B3 = (g9 (g4 (g2 + g3) + g2g3 + g7 (g2 + g3 + g4) + g8 (g2 + g3 + g4 + g7)) + g7 (g4 (g2 + g3) + g2g3)

+ g8 (g4 (g2 + g3) + g2g3 + g7 (g2+g3+g4))+ b1c1g2 + g2g3g4 − b1c1 (2 + γw + γm) + (g2+g3+g4)) ,
B4 = (c1 (γmb1g2+γmb1g3)+g8 (g7 (g4 (g2+ g3) + g2g3)−γmb1c1 + b1c1g2 + g2g3g4−b1c1 (g2 + g3 + g4))

− (γmb1c1 − b1c1g − 2) (g2 + g3 + g4) γw (b1c1g2 − γmb1c1 + b1c1g7)

+ g9 (g7 (g4 (g2 + g3) + g2g3) + g8 (g4 (g2 + g3) − b1c1 + g2g3 + g7 (g2 + g3

+g4))−γwb1c1 − γmb1c1 + b1c1g2 + g2g3g4−b1c1 (g2+g3+g4))−b1c1g2
2−b1c1 (g4 (g2 + g3) + g2g3)

+ g2g3g4g7 − γwb1c1 (g2 + g3 + g4 + g7) − βwγwb1c1 − βmγmb1c1) ,
B5 = (βw (γw (b1c1g2 − γmb1c1+ b1c1g7) + γwb1c1g8)

− γw

(
g7 (b1c1g2 − γmb1c1 + b1c1g7) − c1 (γmb1g2 + γmb1g3) + c1

(
c1b2

1 + b1g2
2

)
+ βmγmb1c−1)−g9 ((γmb1c1−b1c1g2) (g2 + g3 + g4)−g8 (g7 (g4 (g2 + g3) + g2g3) − γmb1c1 + b1c1g2

+ g2g3g4 − b1c1 (g2 + g3 + g4)) − c1 (γmb1g2 + γmb1g3) − γw (b1c1g2 − γmb1c1 + b1c1g7) + b1c1g2
2

+ b1c1 (g4 (g2 + g3) + g2g−3)−g2g3g4g7 + γwb1c−1 (g2 + g3 + g4 + g7) + βmγmb1c−1)−g8 ((γmb1c1

− b1c1g2) (g2 + g3 + g4) − c1 (γmb1g2 + γmb1g3) + b1c1g2
2 + b1c1 (g4 (g2 + g3) + g2g3)−g2g−3g−4g7

+ b1c1g2) (g2 + g3 + g4) − c1 (γmb1g2 + γmb1g3) + b1c1g2
2 + b1c1 (g4 (g2 + g3) + g2g3)−g2g−3g−4g7

+ βmγmb1c1) + γw (b1c1g2 − γmb1c1 + b1c1g7) (g2 + g3 + g4 + g7) − γwb1c1 (g4 (g2 + g3)−b1c1 + g2g3

+ g7 (g2 + g3 + g4)) − βwγwb1c1 (g2 + g3 + g4 + g7 + g8)) ,
B6 = (βw (γw (b1c1g2 − γmb1c1 + b1c1g7)+ γwb1c1g8) (g2 + g3 + g4 + g7 + g8)

− g9 (γw (g7 (b1c1g2 − γmb1c1 + b1c1g7) − c1 (γmb1g2 + γmb1g3)+ c1

(
c1b2

1 + b1g2
2

)
+ βmγmb1c1

)
+ g8

(
(γmb1c1 − b1c1g2) (g2 + g3 + g4) − c1 (γmb1g2 + γmb1g3) + b1c1g2

2
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+ b1c1 (g4 (g2 + g3) + g2g3) − g2g3g4g7 + βmγmb1c1) − γw (b1c1g2 − γmb1c1 + b1c1g7) (g2 + g3 + g4

+ g7) + γwb1c1 (g4 (g2 + g3) − b1c1 + g2g3 + g4 (g2 + g3 + g4)))

− βw (γw (g7 (b1c1g2 − γmb1c1 + b1c1g7)

− g7) + γwb1c1 (g4 (g2 + g3)−b1c1 + g2g3 + g4 (g2 + g3 + g4)))−βw (γw (g7 (b1c1g2−γmb1c1 + b1c1g7)

− c1 (γmb1g2 + γmb1g1) + c1

(
c1b2

1 + b1g2
2

)
+ βmγmb1c − 1

)
+ g8 (γw (b1c1g2 − γmb1c1 + b1c1g7)

+ γwb1c1g8)) − βwγwb1c1 (g4 (g2 + g3) − b1c1 + g2g3 + g7 (g2 + g3 + g4) + g8 (g2 + g3 + g4 + g7))) .

By utilizing the Routh-Hurwitz argument, one can determine that the above Eq (3.7) fulfills all the
conditions of Routh-Hurwitz. Hence, the infection-free steady-state of the proposed model is locally
asymptotically stable. □

4. Fractional order model solution

In this section, the solution of the recommended system (2.3) will be investigated with the help of
fixed-point theory. Through the use of fixed-point theory we had also demonstrated the existence and
uniqueness of the FO model (2.3) solution. The following form can be used to quickly describe the
system of Eq (2.3) as {

ABC
0 DΦt y(t) = X(a, y(a)),
y(0) = y0, 0 < a < A < ∞.

(4.1)

In system (4.1), the vector functionX is continuous and y(a) =
(
S m, Imp, Ims, Lm,Rm, S w, Iwp, Iws, Lw,Rw

)
represents the state variables as vectors, while X is defined as

X =



X1

X2

X3

X4

X5

X6

X7

X8

X9

X10



=



πm + φmRm − αwψ( Iwp+Iws+Lw

N )S m − µS m

αwψ( Iwp+Iws+Lw

N )S m − γmImp − µImp − ξm1 Imp

γmImp − βmIms − ξm2 Ims − µIms

βmIms − µLm − ξm3 Lm

ξm1 Imp + ξm2 Ims + ξm3 Lm − µRm − φmRm

πw + φwRw − αmψ( Imp+Ims+Lm

N )S w − µS w

αmψ( Imp+Ims+Lm

N )S w − γwIw p − µIwp − ρw1 Iwp

γwIwp − βwIws − ρw2 Iws − µIws

βwIws − µLw − ρw3 Lw

ρw1 Iwp + ρw2 Iws + ρw3 Lw − µRw − φwRw



,

and y0(a) =
(
S m(0), Imp(0), Ims(0), Lm(0),Rm(0), S w(0), Iwp(0), Iws(0), Lw(0),Rw(0)

)
, is a suitable starting

condition vector for state variables. Additionally, the Lipschitz function satisfies the criterion. Also,X
is declared as

∥X(a, y1(a)) − X(a, y2(a))∥ ≤ N∥y1(a) − y2(a)∥. (4.2)

Next, we assert and demonstrate the subsequent theorem regarding the existence and originality of the
solution of FO dynamical model (2.3).
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Theorem 4.1. If the following condition is met, then the given system of Eq (2.3), will have a unique
solution

(1 − Φ)
ABC(Φ)

N +
Φ

ABC(Φ)Γ(Φ)
AΦmaxN < 1. (4.3)

Proof. The non-linear Volterra integral equation shown below is obtained by applying the Atangana-
Beleanu (AB) fractional integral shown in Definition 1.3 to system (4.1), in order to obtain the desired
result

y(a) = y0 +
1 − Φ

ABC(Φ)
X(a, y(a)) +

Φ

ABC(Φ)Γ(Φ)

∫ a

0
(a − ε)Φ−1X(ε, y(ε))dε. (4.4)

Assume that I = (0,A), and the operator Ω : C(I,R10)→ C(I,R10) defined by

Ω
[
y(a)

]
= y0 +

1 − Φ
ABC(Φ)

X(a, y(a)) +
Φ

ABC(Φ)Γ(Φ)

∫ a

0
(a − ε)Φ−1X(ε, y(ε))dε. (4.5)

Equation (4.4) can be expressed as the following

y(a) = Ω
[
y(a)

]
, (4.6)

∥.∥I , is used to indicate the supremum norm on I, which is described by

∥y(a)∥I = sup
a∈I
∥y(a)∥, y(a) ∈ C. (4.7)

Obviously, C(I,R10) with norm ∥.∥I create a Banach space, in addition to which it is readily apparent
that ∥∥∥∥∥ ∫ a

0
L(a, ε)y(ε)dε

∥∥∥∥∥ ≤ A∥L(a, ε)∥I∥y(a)∥I , (4.8)

with y(a) ∈ C(I,R10), L(a, ε) ∈ C(I,R) such that

∥L(a, ε)∥I = sup
a,ε∈I
|L(a, ε)|. (4.9)

We get the following by utilising the definition of Ω provided in (4.6) as

∥Ω[y1(a)] −Ω[y2(a)]∥I ≤
∥∥∥∥∥ (1 − Φ)

ABC(Φ)
(X(a, y1(a)) − X(a, y2(a)) +

Φ

ABC(Φ)Γ(Φ)

×

∫ a

0
(a − ε)Φ−1(X(ε, y1(ε)) − X(ε, y2(ε)))dε

∥∥∥∥∥
I
. (4.10)

Additionally, after simplification, we obtain the following by implementing the Lipschitz
condition (4.2) and the triangle inequality to the solution in (4.8)

∥Ω[y1(a)] −Ω[y1(a)]∥I ≤
( (1 − Φ)N

ABC(Φ)
+

Φ

ABC(Φ)Γ(Φ)
NAΦmax

)
∥y1(a) − y2(a)∥I . (4.11)

As a consequence, we obtain

∥Ω[y1(a)] −Ω[y1(a)]∥I ≤ B∥y1(a) − y2(a)∥I , (4.12)

where
B =

(1 − Φ)N
ABC(Φ)

+
Φ

ABC(Φ)Γ(Φ)
NAΦmax.

It is obvious that Ω will be a contraction if condition (4.3) is met. This demonstrates that the fractional
order dynamical system (4.1) has a singular solution. □
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5. Numerical scheme

In this section, we emphasise the suggested model’s numerical solution (2.3). In order to
numerically solve our system with the non-singular and non-local kernel, we first design an iterative
approach. Then, simulations are run to show the suggested FO dynamical system. We use the newly
created numerical technique described in [42] to approximate the AB integral operator. We briefly
examine the aforementioned approach and apply it to our dynamical system in order to get an iterative
scheme using the newly established numerical techniques followed in [42] for the system (2.3).
System (4.1) is rewritten into the fractional integral equation form shown below using the
fundamental theorem of fractional calculus

y(a) − y(0) =
(1 − Φ)
ABC(Φ)

X(a, y(a)) +
Φ

ABC(Φ) × Γ(Φ)

∫ a

0
X(ε, x(ε))(a − ε)Φ−1dε. (5.1)

At a = a j+1, j = 0, 1, 2, ..., we have

y(a j+1) − y(0) =
1 − Φ

ABC(Φ)
X(a j, y(a j))+

Φ

ABC(Φ) × Γ(Φ)

∫ a j+1

0
X(ε, y(ε))(a j+1 − ε)Φ−1dΦ,

=
1 − Φ

ABC(Φ)
X(a j, y(a j))+

Φ

ABC(Φ) × Γ(Φ)

j∑
κ=0

∫ aκ+1

aκ
X(ε, y(ε))(a j+1 − ε)Φ−1dΦ. (5.2)

The function X(ε, y(ε)) can be estimated over the interval [aκ, aκ+1], we apply the interpolation
polynomial

X(ε, y(ε)) �
X(aκ, y(aκ))

h
(a − aκ−1) −

Xaκ−1, y(aκ−1))
h

(a − aκ), (5.3)

substituting in (5.2) we get

y(a j+1) = y(0) +
1 − Φ

ABC(Φ)
X(a j, y(a j)) +

Φ

ABC(Φ) × Γ(Φ)
j∑

κ=0

(X(aκ, y(aκ))
h

∫ aκ+1

aκ
(a − aκ−1)(a j+1 − a)Φ−1dt

−
X(aκ−1, y(aκ−1))

h

∫ aκ+1

aκ
(a − aκ)(a j+1 − a)Φ−1dt

)
, (5.4)

the approximate solution after the computation of these integrals are obtained as:

AIMS Mathematics Volume 8, Issue 3, 6206–6232.



6219

y(a j+1) = y(a0) +
1 − Φ

ABC(Φ)
X(a j, y(a j)) +

Φ

ABC(Φ)

j∑
κ=0(hΦX(aκ, y(aκ))

Γ(Φ + 2)
(( j + 1 − κ)Φ( j − κ + 2 + Φ) − ( j − κ)Φ( j − κ + 2 + 2Φ))

−
hΦX(aκ−1, y(aκ−1))
Γ(Φ + 2)

(( j + 1 − κ)Φ+1 − ( j − κ)Φ( j − κ + 1 + Φ))
)
. (5.5)

Finally, we obtained the recurrent formulas shown below for the proposed model:

S m(a j+1) = S m(a0) +
1 − Φ

ABC(Φ)
X1(a j, y(a j)) +

Φ

ABC(Φ)

j∑
κ=0(hΦX1(aκ, y(aκ))

Γ(Φ + 2)
(( j + 1 − κ)Φ( j − κ + 2 + Φ) − ( j − κ)Φ( j − κ + 2 + 2Φ))

−
hΦX1(aκ−1, y(aκ−1))
Γ(Φ + 2)

(( j + 1 − κ)Φ+1 − ( j − κ)Φ( j − κ + 1 + Φ))
)
,

Imp(a j+1) = Imp(a0) +
1 − Φ

ABC(Φ)
X2(a j, y(a j)) +

Φ

ABC(Φ)

j∑
κ=0(gΦX2(aκ, y(aκ))

Γ(Φ + 2)
(( j + 1 − κ)Φ( j − κ + 2 + Φ) − ( j − κ)Φ( j − κ + 2 + 2Φ))

−
gΦX2(aκ−1, y(aκ−1))
Γ(Φ + 2)

(( j + 1 − κ)Φ+1 − ( j − κ)Φ( j − κ + 1 + Φ))
)
,

Ims(a j+1) = Ims(a0) +
1 − Φ

ABC(Φ)
X3(a j, y(a j)) +

Φ

ABC(Φ)

j∑
κ=0(hΦX3(aκ, y(aκ))

Γ(Φ + 2)
(( j + 1 − κ)Φ( j − κ + 2 + Φ) − ( j − κ)Φ( j − κ + 2 + 2Φ))

−
hΦX3(aκ−1, y(aκ−1))
Γ(Φ + 2)

(( j + 1 − κ)Φ+1 − ( j − κ)Φ( j − κ + 1 + Φ))
)
,

Lm(a j+1) = Lm(a0) +
1 − Φ

ABC(Φ)
X4(a j, y(a j)) +

Φ

ABC(Φ)

j∑
κ=0(gΦX4(aκ, y(aκ))

Γ(Φ + 2)
(( j + 1 − κ)Φ( j − κ + 2 + Φ) − ( j − κ)Φ( j − κ + 2 + 2Φ))

−
gΦX4(aκ−1, y(aκ−1))
Γ(Φ + 2)

(( j + 1 − κ)Φ+1 − ( j − κ)Φ( j − κ + 1 + Φ))
)
,

Rm(a j+1) = Rm(a0) +
1 − Φ

ABC(Φ)
X5(a j, y(a j)) +

Φ

ABC(Φ)

j∑
κ=0(hΦX5(aκ, y(aκ))

Γ(Φ + 2)
(( j + 1 − κ)Φ( j − κ + 2 + Φ) − ( j − κ)Φ( j − κ + 2 + 2Φ))
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−
hΦX5(aκ−1, y(aκ−1))
Γ(Φ + 2)

(( j + 1 − κ)Φ+1 − ( j − κ)Φ( j − κ + 1 + Φ))
)
,

S w(a j+1) = S w(a0) +
1 − Φ

ABC(Φ)
X6(a j, y(a j)) +

Φ

ABC(Φ)

j∑
κ=0(gΦX6(aκ, y(aκ))

Γ(Φ + 2)
(( j + 1 − κ)Φ( j − κ + 2 + Φ) − ( j − κ)Φ( j − κ + 2 + 2Φ))

−
gΦX6(aκ−1, y(aκ−1))
Γ(Φ + 2)

(( j + 1 − κ)Φ+1 − ( j − κ)Φ( j − κ + 1 + Φ))
)
,

Iwp(a j+1) = Iwp(a0) +
1 − Φ

ABC(Φ)
X7(a j, y(a j)) +

Φ

ABC(Φ)

j∑
κ=0(hΦX7(aκ, y(aκ))

Γ(Φ + 2)
(( j + 1 − κ)Φ( j − κ + 2 + Φ) − ( j − κ)Φ( j − κ + 2 + 2Φ))

−
hΦX7(aκ−1, y(aκ−1))
Γ(Φ + 2)

(( j + 1 − κ)Φ+1 − ( j − κ)Φ( j − κ + 1 + Φ))
)
,

Iws(a j+1) = Iws(a0) +
1 − Φ

ABC(Φ)
X8(a j, y(a j)) +

Φ

ABC(Φ)

j∑
κ=0(gΦX8(aκ, y(aκ))

Γ(Φ + 2)
(( j + 1 − κ)Φ( j − κ + 2 + Φ) − ( j − κ)Φ( j − κ + 2 + 2Φ))

−
gΦX8(aκ−1, y(aκ−1))
Γ(Φ + 2)

(( j + 1 − κ)Φ+1 − ( j − κ)Φ( j − κ + 1 + Φ))
)
,

Lw(a j+1) = Lw(a0) +
1 − Φ

ABC(Φ)
X9(a j, y(a j)) +

Φ

ABC(Φ)

j∑
κ=0(hΦX9(aκ, y(aκ))

Γ(Φ + 2)
(( j + 1 − κ)Φ( j − κ + 2 + Φ) − ( j − κ)Φ( j − κ + 2 + 2Φ))

−
hΦX9(aκ−1, y(aκ−1))
Γ(Φ + 2)

(( j + 1 − κ)Φ+1 − ( j − κ)Φ( j − κ + 1 + Φ))
)
,

Rw(a j+1) = Rw(a0) +
1 − Φ

ABC(Φ)
X10(a j, y(a j)) +

Φ

ABC(Φ)

j∑
κ=0(gΦX10(aκ, y(aκ))

Γ(Φ + 2)
(( j + 1 − κ)Φ( j − κ + 2 + Φ) − ( j − κ)Φ( j − κ + 2 + 2Φ))

−
gΦX10(aκ−1, y(aκ−1))

Γ(Φ + 2)
(( j + 1 − κ)Φ+1 − ( j − κ)Φ( j − κ + 1 + Φ))

)
. (5.6)

This scheme will be utilized to illustrate the solution pathways of the recommended system. There
are numerous numerical schemes in the literature for fractional system. Here, we mainly focussed
to show the chaotic and dynamical behaviour of the system through the above technique. However,
accuracy, stability and other properties of the numerical scheme will be investigated in the future work.
In [43–45], the authors considered an epidemic model of covid-19 infection through Caputo derivative
and we considered the dynamics of syphilis infection through ABC derivative. These models are
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different, the analysis is different and the results of these models are different from each other.

6. Results and discussion

In this section, we demonstrated numerical findings obtained during different scenarios. Applying
the above recently proposed iterative approach (5.6), we will graphical represent the outcomes of the
fractional order model (2.3) of syphilis infection. The dynamical behavior and chaotic behavior will
be demonstrated numerically with the help of different input values. The parameter values are taken
from Table 1 for simulations and the state-variables are taken to be S m(0) = 1200, Imp(0) = 80, Ims(0) =
130, Lm(0) = 100,Rm(0) = 80, S w(0) = 1000, Iwp(0) = 100, Iws(0) = 300, Lw(0) = 200 and Rw(0) =
130.

Here, we perform different simulations to understand the dynamics of the recommended model of
syphilis infection. We visualized the solution pathways and chaotic behavior of the system. In the first
simulation presented in Figures 1 and 2, we assumed different values of fractional order and illustrate
the solution pathways of the proposed system. In Figure 1, we have shown the time series of infected
individuals of men and women with Φ = 0.4, 0.5, 0.6, 0.7 while the value of fractional order Φ are
assumed to be 0.7, 0.8, 0.9, 1.0 in Figure 2. It can be seen that smaller value of Φ reduce the infection
level in primary and secondary individuals of both the classes. Figure 2 also represents comparison of
integer and non-integer cases which shows that fractional framework is more flexible and suitable for
data fitting. We noticed that the order of the fractional operator has a positive impact on the infected
individuals of both the class and the control of fractional order can control the infection level.

In the second simulation illustrated in Figure 3, we variate the input parameter ψ and assume it to
be 0.40, 0.43, 0.46 and 0.49. The rise of this parameter increase the infection level of primary infection
of men and women and is recommended to be a critical factor. This parameter is predicted to be
critical which increase the risk of syphilis in the community We noticed the effect of ψ on the infected
individuals of men and women in this simulation. In the third simulation presented in Figures 4–6,
we have shown the chaotic phenomena of the system with different input parameters. In Figure 4, the
chaotic phenomena is demonstrated with γm = 0.435, γw = 0.23 and Ψ = 0.8 while in Figure 5, we
represent the chaotic plots with γm = 0.0435, γw = 0.023 and Ψ = 1.0. In Figure 6, we demonstrated
the chaos of the system with the input parameter ψm = 0.35, ψw = 0.16 andΨ = 1.0. It has been noticed
that the chaos of the system is closely related to the initial values of state variables and input parameters.
The chaotic phenomena bring the system to the unstable situation, therefore, further investigation is
needed to find out the most flexible values of the parameters to control the chaos of the system.
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Figure 1. Plotting the solution pathways of the recommended model (2.3) of syphilis
infection with variation of fractional order Φ, i.e., Φ = 0.4, 0.5, 0.6, 0.7.
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Figure 2. Illustration of the solution pathways of the recommended model (2.3) of syphilis
infection with variation of fractional order Φ, i.e., Φ = 0.7, 0.8, 0.9, 1.0.
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Figure 3. Graphical view analysis the solution pathways of the suggested model (2.3) of
syphilis infection with variation of the parameter ψ.
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Figure 4. Illustration of the chaotic phenomena of the fractional system (2.3) of syphilis
infection with γm = 0.435, γw = 0.23 and Φ = 0.8.
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Figure 5. Illustration of the chaotic phenomena of the fractional system (2.3) of syphilis
infection with γm = 0.0435, γw = 0.023 and Φ = 1.0.
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Figure 6. Graphical view analysis of the chaotic phenomena of the fractional system (2.3)
of syphilis infection with φm = 0.35, φw = 0.16 and Φ = 1.0.
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Table 1. Parameter values and description for the recommended fractional syphilis model.

Parameters Description Values Source

βm Men to men transmission with secondary to latent class Various Assumed
πm Recruitment rate for men population by susceptible individuals 0.3 [43]
πw Recruitment rate for women population by susceptible individuals 0.45 [43]
αw Probability of women syphilis spreading infection 0.2 [19]
βw Woman to woman transmission with secondary to latent class Various Assumed
αm Probability of men syphilis spreading infection 0.5 [19]
γm Rate at which a primary infected man develops secondary syphilis 0.01 [19, 44]
γw Movement rate from women with essential syphilis 0.627 [19, 44]
ψ Average number of partners for a woman with Various Assumed

secondary syphilis per unit of time
φm Syphilis recovery rate in infectious men 0.1 [43]
φw Syphilis recovery rate in infectious women 0.1 [43]
ξm1 Men with primary stage syphilis-treated rate Various Assumed
ξm2 Men with secondary stage syphilis-treated rate 0.1 [43]
ξm3 Men with latent stage syphilis-treated rate 0.2 [43]
ρw1 Women with primary stage syphilis-treated rate Various Assumed
ρw2 Women with secondary stage syphilis-treated rate 0.1 [43]
ρw3 Women with latent stage syphilis-treated rate 0.2 [43]
µ Rate of natural death 5.48 ×10−5 [8]

7. Conclusions

In this research paper, a new approach in syphilis modeling via Atangana-Baleanu fractional
derivative is suggested to deeply explore the intricate dynamics of syphilis infection. Instead of using
the traditional order derivative, we had used fractional derivative to offer findings that were more
realistic and trustworthy. We used the next-generation method in order to obtain R0 for the suggested
fractional model. We have shown that the infection-free steady-state is locally asymptotically stable if
R0 < 1 otherwise unstable. Existence and uniqueness of the fractional order system are investigated
through fixed-point theory. A novel numerical method is being employed to iteratively solve the
fractional order model. Eventually, the dynamical behaviour of the system is highlighted through the
proposed numerical method. Moreover, the contribution of input parameters in the solution pathways
of the system has been conceptualized through different scenarios. With particular input factor values,
the system’s chaotic behaviour is also demonstrated. We have shown the most significant factor of the
system and illustrated that fractional derivatives provide more precise and realistic information
regarding the dynamics of syphilis infection. In the future work, the recommended model of syphilis
infection will be validated through real data and different control measure will be introduced in the
system for the prevention of the infection.
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