For some class of 2-step Carnot groups Dn with 1-dimensional centre we find the exact values of the constants in (1,q2)-generalized triangle inequality for their Box-quasimetrics ρBoxDn. Using this result we get the best version of the Coincidence Points Theorem of α-covering and β-Lipschitz mappings defined on (Dn,ρBoxDn).
Citation: Alexander Greshnov, Vladimir Potapov. About coincidence points theorems on 2-step Carnot groups with 1-dimensional centre equipped with Box-quasimetrics[J]. AIMS Mathematics, 2023, 8(3): 6191-6205. doi: 10.3934/math.2023313
[1] | Ling Zhu, Zhengjie Sun . Refinements of Huygens- and Wilker- type inequalities. AIMS Mathematics, 2020, 5(4): 2967-2978. doi: 10.3934/math.2020191 |
[2] | Ling Zhu . New inequalities of Wilker’s type for circular functions. AIMS Mathematics, 2020, 5(5): 4874-4888. doi: 10.3934/math.2020311 |
[3] | Dojin Kim, Patcharee Wongsason, Jongkyum Kwon . Type 2 degenerate modified poly-Bernoulli polynomials arising from the degenerate poly-exponential functions. AIMS Mathematics, 2022, 7(6): 9716-9730. doi: 10.3934/math.2022541 |
[4] | Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217 |
[5] | Ling Zhu . New inequalities of Wilker's type for hyperbolic functions. AIMS Mathematics, 2020, 5(1): 376-384. doi: 10.3934/math.2020025 |
[6] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[7] | Chanon Promsakon, Muhammad Aamir Ali, Hüseyin Budak, Mujahid Abbas, Faheem Muhammad, Thanin Sitthiwirattham . On generalizations of quantum Simpson's and quantum Newton's inequalities with some parameters. AIMS Mathematics, 2021, 6(12): 13954-13975. doi: 10.3934/math.2021807 |
[8] | Sarah Elahi, Muhammad Aslam Noor . Integral inequalities for hyperbolic type preinvex functions. AIMS Mathematics, 2021, 6(9): 10313-10326. doi: 10.3934/math.2021597 |
[9] | Artion Kashuri, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Eman Al-Sarairah, Nejmeddine Chorfi . Novel inequalities for subadditive functions via tempered fractional integrals and their numerical investigations. AIMS Mathematics, 2024, 9(5): 13195-13210. doi: 10.3934/math.2024643 |
[10] | Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Hassen Aydi, Manuel De la Sen . Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications. AIMS Mathematics, 2022, 7(3): 3418-3439. doi: 10.3934/math.2022190 |
For some class of 2-step Carnot groups Dn with 1-dimensional centre we find the exact values of the constants in (1,q2)-generalized triangle inequality for their Box-quasimetrics ρBoxDn. Using this result we get the best version of the Coincidence Points Theorem of α-covering and β-Lipschitz mappings defined on (Dn,ρBoxDn).
The idea of statistical convergence was given by Zygmund [1] in the first edition of his monograph published in Warsaw in 1935. The concept of statistical convergence was introduced by Steinhaus [2] and Fast [3] and then reintroduced independently by Schoenberg [4]. Over the years and under different names, statistical convergence has been discussed in the Theory of Fourier Analysis, Ergodic Theory, Number Theory, Measure Theory, Trigonometric Series, Turnpike Theory and Banach Spaces. Later on it was further investigated from the sequence spaces point of view and linked with summability theory by Bilalov and Nazarova [5], Braha et al. [6], Cinar et al. [7], Colak [8], Connor [9], Et et al. ([10,11,12,13,14]), Fridy [15], Isik et al. ([16,17,18]), Kayan et al. [19], Kucukaslan et al. ([20,21]), Mohiuddine et al. [22], Nuray [23], Nuray and Aydın [24], Salat [25], Sengul et al. ([26,27,28,29]), Srivastava et al. ([30,31]) and many others.
The idea of statistical convergence depends upon the density of subsets of the set N of natural numbers. The density of a subset E of N is defined by
δ(E)=limn→∞1nn∑k=1χE(k), |
provided that the limit exists, where χE is the characteristic function of the set E. It is clear that any finite subset of N has zero natural density and that
δ(Ec)=1−δ(E). |
A sequence x=(xk)k∈N is said to be statistically convergent to L if, for every ε>0, we have
δ({k∈N:|xk−L|≥ε})=0. |
In this case, we write \newline
xkstat⟶Lask→∞orS−limk→∞xk=L. |
In 1932, Agnew [32] introduced the concept of deferred Cesaro mean of real (or complex) valued sequences x=(xk) defined by
(Dp,qx)n=1qn−pnqn∑k=pn+1xk,n=1,2,3,… |
where p=(pn) and q=(qn) are the sequences of non-negative integers satisfying
pn<qnandlimn→∞qn=∞. | (1) |
Let K be a subset of N and denote the set {k:k∈(pn,qn],k∈K} by Kp,q(n).
Deferred density of K is defined by
δp,q(K)=limn→∞1(qn−pn)|Kp,q(n)|, provided the limit exists |
where, vertical bars indicate the cardinality of the enclosed set Kp,q(n). If qn=n, pn=0, then the deferred density coincides with natural density of K.
A real valued sequence x=(xk) is said to be deferred statistically convergent to L, if for each ε>0
limn→∞1(qn−pn)|{k∈(pn,qn]:|xk−L|≥ε}|=0. |
In this case we write Sp,q-limxk=L. If qn=n, pn=0, for all n∈N, then deferred statistical convergence coincides with usual statistical convergence [20].
In this section, we give some inclusion relations between statistical convergence of order α, deferred strong Cesàro summability of order α and deferred statistical convergence of order α in general metric spaces.
Definition 1. Let (X,d) be a metric space, (pn) and (qn) be two sequences as above and 0<α≤1. A metric valued sequence x=(xk) is said to be Sd,αp,q-convergent (or deferred d-statistically convergent of order α) to x0 if there is x0∈X such that
limn→∞1(qn−pn)α|{k∈(pn,qn]:xk∉Bε(x0)}|=0, |
where Bε(x0)={x∈X:d(x,x0)<ε} is the open ball of radius ε and center x0. In this case we write Sd,αp,q-limxk=x0 or xk→x0(Sd,αp,q). The set of all Sd,αp,q-statistically convergent sequences will be denoted by Sd,αp,q. If qn=n and pn=0, then deferred d-statistical convergence of order α coincides d -statistical convergence of order α denoted by Sd,α. In the special cases qn=n,pn=0 and α=1 then deferred d -statistical convergence of order α coincides d-statistical convergence denoted by Sd.
Definition 2. Let (X,d) be a metric space, (pn) and (qn) be two sequences as above and 0<α≤1. A metric valued sequence x=(xk) is said to be strongly wd,αp,q-summable (or deferred strongly d-Ces àro summable of order α) to x0 if there is x0∈X such that
limn→∞1(qn−pn)αqn∑k=pn+1d(xk,x0)=0. |
In this case we write wd,αp,q-limxk=x0 or xk→x0(wd,αp,q). The set of all strongly wd,αp,q-summable sequences will be denoted by wd,αp,q. If qn=n and pn=0, for all n∈N, then deferred strong d-Cesàro summability of order α coincides strong d-Cesàro summability of order α denoted by wd,α. In the special cases qn=n,pn=0 and α=1 then deferred strong d-Cesàro summability of order α coincides strong d-Ces àro summability denoted by wd.
Theorem 1. Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1), (X,d) be a linear metric space and x=(xk),y=(yk) be metric valued sequences, then
(i) If Sd,αp,q-limxk=x0 and Sd,αp,q-limyk=y0, then Sd,αp,q-lim(xk+yk)=x0+y0,
(ii)If Sd,αp,q-limxk=x0 and c∈C, then Sd,αp,q-lim(cxk)=cx0,
(iii) If Sd,αp,q-limxk=x0,Sd,αp,q-limyk=y0 and x,y∈ℓ∞(X), then Sd,αp,q-lim(xkyk)=x0y0.
Proof. Omitted.
Theorem 2. Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and α and β be two real numbers such that 0<α≤β≤1. If a sequence x=(xk) is deferred strongly d-Cesàro summable of order α to x0, then it is deferred d-statistically convergent of order β to x0, but the converse is not true.
Proof. First part of the proof is easy, so omitted. For the converse, take X=R and choose qn=n,pn=0 (for all n∈N),d(x,y)=|x−y| and define a sequence x=(xk) by
xk={3√n,k=n20,k≠n2. |
Then for every ε>0, we have
1(qn−pn)α|{k∈(pn,qn]:xk∉Bε(0)}|≤[√n]nα→0, as n→∞, |
where 12<α≤1, that is xk→0(Sd,αp,q). At the same time, we get
1(qn−pn)αqn∑k=pn+1d(xk,0)≤[√n][3√n]nα→1 |
for α=16 and
1(qn−pn)αqn∑k=pn+1d(xk,0)≤[√n][3√n]nα→∞ |
for 0<α<16, i.e., xk↛0(wd,αp,q) for 0<α≤16.
From Theorem 2 we have the following results.
Corollary 1. ⅰ) Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and α be a real number such that 0<α≤1. If a sequence x=(xk) is deferred strongly d-Cesàro summable of order α to x0, then it is deferred d-statistically convergent of order α to x0, but the converse is not true.
ⅱ) Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and α be a real number such that 0<α≤1. If a sequence x=(xk) is deferred strongly d-Cesàro summable of order α to x0, then it is deferred d-statistically convergent to x0, but the converse is not true.
ⅲ) Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1). If a sequence x=(xk) is deferred strongly d-Cesàro summable to x0, then it is deferred d-statistically convergent to x0, but the converse is not true.
Remark Even if x=(xk) is a bounded sequence in a metric space, the converse of Theorem 2 (So Corollary 1 i) and ii)) does not hold, in general. To show this we give the following example.
Example 1. Take X=R and choose qn=n,pn=0 (for all n∈N),d(x,y)=|x−y| and define a sequence x=(xk) by
xk={1√k,k≠n30,k=n3n=1,2,.... |
It is clear that x∈ℓ∞ and it can be shown that x∈Sd,α−wd,α for 13<α<12.
In the special case α=1, we can give the followig result.
Theorem 3. Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and x=(xk) is a bounded sequence in a metric space. If a sequence x=(xk) is deferred d-statistically convergent to x0, then it is deferred strongly d-Cesàro summable to x0.
Proof. Let x=(xk) be deferred d-statistically convergent to x0 and ε>0 be given. Then there exists x0∈X such that
limn→∞1(qn−pn)|{k∈(pn,qn]:xk∉Bε(x0)}|=0, |
Since x=(xk) is a bounded sequence in a metric space X, there exists x0∈X and a positive real number M such that d(xk,x0)<M for all k∈N. So we have
1(qn−pn)qn∑k=pn+1d(xk,x0)=1(qn−pn)qn∑k=pn+1d(xk,x0)≥εd(xk,x0)+1(qn−pn)qn∑k=pn+1d(xk,x0)<εd(xk,x0)≤M(qn−pn)|{k∈(pn,qn]:xk∉Bε(x0)}|+ε |
Takin limit n→∞, we get wdp,q-limxk=x0.
Theorem 4. Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and α be a real number such that 0<α≤1. If liminfnqnpn>1, then Sd,α⊆Sd,αp,q.
Proof. Suppose that liminfnqnpn>1; then there exists a ν>0 such that qnpn≥1+ν for sufficiently large n, which implies that
(qn−pnqn)α≥(ν1+ν)α⟹1qαn≥να(1+ν)α1(qn−pn)α. |
If xk→x0(Sd,α), then for every ε>0 and for sufficiently large n, we have
1qαn|{k≤qn:xk∉Bε(x0)}|≥1qαn|{k∈(pn,qn]:xk∉Bε(x0)}|≥να(1+ν)α1(qn−pn)α|{k∈(pn,qn]:xk∉Bε(x0)}|. |
This proves the proof.
Theorem 5. Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and α and β be two real numbers such that 0<α≤β≤1. If limn→∞(qn−pn)αqβn=s>0, then Sd,α⊆Sd,βp,q.
Proof. Let limn→∞(qn−pn)αqβn=s>0. Notice that for each ε>0 the inclusion
{k≤qn:xk∉Bε(x0)}⊃{k∈(pn,qn]:xk∉Bε(x0)} |
is satisfied and so we have the following inequality
1qαn|{k≤qn:xk∉Bε(x0)}|≥1qαn|{k∈(pn,qn]:xk∉Bε(x0)}|≥1qβn|{k∈(pn,qn]:xk∉Bε(x0)}|=(qn−pn)αqβn1(qn−pn)α|{k∈(pn,qn]:xk∉Bε(x0)}|≥(qn−pn)αqβn1(qn−pn)β|{k∈(pn,qn]:xk∉Bε(x0)}|. |
Therefore Sd,α⊆Sd,βp,q.
Theorem 6. Let (pn),(qn),(p′n) and (q′n) be four sequences of non-negative real numbers such that
p′n<pn<qn<q′n for all n∈N, | (2) |
and α,β be fixed real numbers such that 0<α≤β≤1, then
(i) If
limn→∞(qn−pn)α(q′n−p′n)β=a>0 | (3) |
then Sd,βp′,q′⊆Sd,αp,q,
(ii) If
limn→∞q′n−p′n(qn−pn)β=1 | (4) |
then Sd,αp,q⊆Sd,βp′,q′.
Proof. (i) Let (3) be satisfied. For given ε>0 we have
{k∈(p′n,q′n]:xk∉Bε(x0)}⊇{k∈(pn,qn]:xk∉Bε(x0)}, |
and so
1(q′n−p′n)β|{k∈(p′n,q′n]:xk∉Bε(x0)}|≥(qn−pn)α(q′n−p′n)β1(qn−pn)α|{k∈(pn,qn]:xk∉Bε(x0)}|. |
Therefore Sd,βp′,q′⊆Sd,αp,q.
(ii) Let (4) be satisfied and x=(xk) be a deferred d-statistically convergent sequence of order α to x0. Then for given ε>0, we have
1(q′n−p′n)β|{k∈(p′n,q′n]:xk∉Bε(x0)}|≤1(q′n−p′n)β|{k∈(p′n,pn]:xk∉Bε(x0)}|+1(q′n−p′n)β|{k∈(qn,q′n]:xk∉Bε(x0)}|+1(q′n−p′n)β|{k∈(pn,qn]:xk∉Bε(x0)}|≤pn−p′n+q′n−qn(q′n−p′n)β+1(q′n−p′n)β|{k∈(pn,qn]:xk∉Bε(x0)}|=(q′n−p′n)−(qn−pn)(q′n−p′n)β+1(q′n−p′n)β|{k∈(pn,qn]:xk∉Bε(x0)}|≤(q′n−p′n)−(qn−pn)β(qn−pn)β+1(qn−pn)β|{k∈(pn,qn]:xk∉Bε(x0)}|≤(q′n−p′n(qn−pn)β−1)+1(qn−pn)α|{k∈(pn,qn]:xk∉Bε(x0)}| |
Therefore Sd,αp,q⊆Sd,βp′,q′.
Theorem 7. Let (pn),(qn),(p′n) and (q′n) be four sequences of non-negative integers defined as in (2) and α,β be fixed real numbers such that 0<α≤β≤1.
(i) If (3) holds then wd,βp′,q′⊂wd,αp,q,
(ii) If (4) holds and x=(xk) be a bounded sequence, then wd,αp,q⊂wd,βp′,q′.
Proof.
i) Omitted.
ii) Suppose that wd,αp,q-limxk=x0 and (xk)∈ℓ∞(X). Then there exists some M>0 such that d(xk,x0)<M for all k, then
1(q′n−p′n)βq′n∑k=p′n+1d(xk,x0)=1(q′n−p′n)β[pn∑k=p′n+1+qn∑k=pn+1+q′n∑k=qn+1]d(xk,x0)≤pn−p′n+q′n−qn(q′n−p′n)βM+1(q′n−p′n)βqn∑k=pn+1d(xk,x0)≤(q′n−p′n)−(qn−pn)β(qn−pn)βM+1(qn−pn)αqn∑k=pn+1d(xk,x0)=(q′n−p′n(qn−pn)β−1)M+1(qn−pn)αqn∑k=pn+1d(xk,x0) |
Theorem 8. Let (pn),(qn),(p′n) and (q′n) be four sequences of non-negative integers defined as in (2) and α,β be fixed real numbers such that 0<α≤β≤1. Then
(i) Let (3) holds, if a sequence is strongly wd,βp′,q′-summable to x0, then it is Sd,αp,q-convergent to x0,
(ii) Let (4) holds and x=(xk) be a bounded sequence in (X,d), if a sequence is Sd,αp,q-convergent to x0 then it is strongly wd,βp′,q′-summable to x0.
Proof. (i) Omitted.
(ii) Suppose that Sd,αp,q-limxk=x0 and (xk)∈ℓ∞. Then there exists some M>0 such that d(xk,x0)<M for all k, then for every ε>0 we may write
1(q′n−p′n)βq′n∑k=p′n+1d(xk,x0)=1(q′n−p′n)βq′n−p′n∑k=qn−pn+1d(xk,x0)+1(q′n−p′n)βqn∑k=pn+1d(xk,x0)≤(q′n−p′n)−(qn−pn)(q′n−p′n)βM+1(q′n−p′n)βqn∑k=pn+1d(xk,x0)≤(q′n−p′n)−(qn−pn)β(q′n−p′n)βM+1(q′n−p′n)βqn∑k=pn+1d(xk,x0)≤(q′n−p′n(qn−pn)β−1)M+1(qn−pn)βqn∑k=pn+1d(xk,x0)≥εd(xk,x0)+1(qn−pn)βqn∑k=pn+1d(xk,x0)<εd(xk,x0)≤(q′n−p′n(qn−pn)β−1)M+M(qn−pn)α|{k∈(pn,qn]:d(xk,x0)≥ε}|+q′n−p′n(qn−pn)βε. |
This completes the proof.
The authors declare that they have no conflict of interests.
[1] |
A. V. Arutyunov, A. V. Greshnov, (q1,q2)-quasimetric spaces. Covering mappings and coincidence points, Izvestiya: Math., 82 (2018), 245–272. https://doi.org/10.4213/im8546 https://doi.org/10.4213/im8546 doi: 10.4213/im8546
![]() |
[2] |
A. V. Arutyunov, A. V. Greshnov, Theory of (q1,q2)-quasimetric spaces and coincidence points, Dokl. Math., 94 (2016), 434–437. https://doi.org/10.1134/S1064562416040232 doi: 10.1134/S1064562416040232
![]() |
[3] |
A. V. Arutyunov, A. V. Greshnov, Coincidence points of multi-valued mappings in (q1,q2)-quasimetric spaces, Dokl. Math., 96 (2017), 438–441. https://doi.org/10.1134/S1064562417050064 doi: 10.1134/S1064562417050064
![]() |
[4] |
A. V. Arutyunov, A. V. Greshnov, L. V. Lokoutsievskii, K. V. Storozhuk, Topological and geometrical properties of spaces with symmetric and nonsymmetric f-quasimetrics, Topol. Appl., 221 (2017), 178–194. https://doi.org/10.1016/j.topol.2017.02.035 doi: 10.1016/j.topol.2017.02.035
![]() |
[5] | R. Sengupta, About fixed points of contraction mappings acting in (q1,q2)-quasi-metric spaces, Eurasian Math. J., 8 (2017), 70–76. |
[6] |
A. V. Greshnov, (q1,q2)-quasimetrics bi-Lipschitz equivalent to 1-quasimetrics, Sib. Adv. Math., 27 (2017), 253–262. https://doi.org/10.3103/S1055134417040034 doi: 10.3103/S1055134417040034
![]() |
[7] |
A. V. Greshnov, Regularization of distance functions and separation axioms on (q1,q2)-quasimetric spaces, Sib. Electron. Math. Re., 14 (2017), 765–773. https://doi.org/10.17377/semi.2017.14.065 doi: 10.17377/semi.2017.14.065
![]() |
[8] |
A. V. Greshnov, Some problems of regularity of f-quasimetrics, Sib. Electron. Math. Re., 15 (2018), 355–361. https://doi.org/10.17377/semi.2018.15.032 doi: 10.17377/semi.2018.15.032
![]() |
[9] |
A. V. Greshnov, R. I. Zhukov, Completeness theorem in (q1,q2)-quasimetric spaces, Sib. Electron. Math. Re., 16 (2018), 2090–2097. https://doi.org/10.33048/semi.2019.16.148 doi: 10.33048/semi.2019.16.148
![]() |
[10] | A. V. Arutyunov, A. V. Greshnov, (q1,q2)-quasimetric spaces. Covering mappings and coincidence points. A review of the results, Fixed Point Theory, 23 (2022), 473–486. |
[11] | W. A. Wilson, On quasi-metric spaces, Amer. J. Math., 53 (1931), 675–684. https://doi.org/10.2307/2371174 |
[12] | S. K. Vodopyanov, Geometry of Carnot-Carathéodory spaces and differentiability of mappings, Contemp. Math., 424 (2007), 247–301. |
[13] | S. G. Basalaev, S. K.Vodopyanov, Approximate differentiability of mappings of Carnot-Carathéodory spaces, Eurasian Math. J., 4 (2013), 10–48. |
[14] |
A. V. Greshnov, On the generalized triangle inequality for quasimetrics induced by noncommuting vector fields, Sib. Adv. Math., 22 (2012), 95–114. https://doi.org/10.3103/S1055134412020034 doi: 10.3103/S1055134412020034
![]() |
[15] |
A. V. Greshnov, Proof of Gromov's theorem on homogeneous nilpotent approximation for vector fields of class C1, Sib. Adv. Math., 23 (2013), 180–191. https://doi.org/10.3103/S1055134413030036 doi: 10.3103/S1055134413030036
![]() |
[16] |
A. V. Greshnov, M. V. Tryamkin, Exact values of constants in the generalized triangle inequality for some (1,q2)-quasimetrics on canonical Carnot groups, Math. Notes, 98 (2015), 694–698. https://doi.org/10.1134/S0001434615090369 doi: 10.1134/S0001434615090369
![]() |
[17] |
A. Nagel, E. M. Stein, S. Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math., 155 (1985), 103–147. https://doi.org/10.1007/BF02392539 doi: 10.1007/BF02392539
![]() |
[18] |
A. V. Greshnov, Local approximation of uniformly regular Carnot-Carathéodory quasispaces by their tangent cones, Sib. Math. J., 48 (2007), 229–248. https://doi.org/10.1007/s11202-007-0024-2 doi: 10.1007/s11202-007-0024-2
![]() |
[19] |
A. V. Greshnov, Metrics and tangent cones of uniformly regular Carnot-Carathéodory spaces, Sib. Math. J., 47 (2006), 209–238. https://doi.org/10.1007/s11202-006-0036-3 doi: 10.1007/s11202-006-0036-3
![]() |
[20] | L. M. Graves, Some mapping theorems, Duke Math. J., 17 (1950), 111–114. https://doi.org/10.1215/S0012-7094-50-01713-3 |
[21] |
A. V. Dmitruk, A. A. Milyutin, N. P. Osmolovskii, Lyusternik's theorem and the theory of extrema, Russ. Math. Surv., 35 (1980), 11–51. https://doi.org/10.1070/RM1980v035n06ABEH001973 doi: 10.1070/RM1980v035n06ABEH001973
![]() |
[22] | A. L. Dontchev, R. T. Rockafellar, Implicit functions and solution mappings, Berlin: Springer, 2009. https://doi.org/10.1007/978-0-387-87821-8 |
[23] |
B. S. Mordukhovich, Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions, Trans. Amer. Math. Soc., 340 (1993), 1–35. https://doi.org/10.2307/2154544 doi: 10.2307/2154544
![]() |
[24] | B. S. Mordukhovich, Variational analysis and generalized differentiation I, Basic Theory, Berlin: Springer, 2006. https: //doi.org/10.1007/3-540-31247-1 |
[25] |
A. Uderzo, A metric version of Milyutin theorem, Set-Valued Var. Anal., 20 (2012), 279–306. https://doi.org/10.1007/s11228-011-0193-9 doi: 10.1007/s11228-011-0193-9
![]() |
[26] |
A. V. Arutyunov, Covering mappings in metric spaces and fixed points, Dokl. Math., 76 (2007), 665–668. https://doi.org/10.1134/S1064562407050079 doi: 10.1134/S1064562407050079
![]() |
[27] |
A. V. Arutyunov, Stability of coincidence points and properties of covering mappings, Math. Notes, 86 (2009), 153–158. https://doi.org/10.1134/S0001434609070177 doi: 10.1134/S0001434609070177
![]() |
[28] |
A. V. Arutyunov, The coincidence point problem for set-valued mappings and Ulam–Hyers stability, Dokl. Math., 89 (2014), 188–191. https://doi.org/10.1134/S1064562414020197 doi: 10.1134/S1064562414020197
![]() |
[29] |
A. V. Arutyunov, S. E. Zhukovskiy, Local solvability of control systems with mixed constraints, Differ. Equ., 46 (2010), 1561–1570. https://doi.org/10.1134/S0012266110110042 doi: 10.1134/S0012266110110042
![]() |
[30] |
A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskiy, On the well-posedness of differential equations unsolved for the derivative, Differ. Equ., 47 (2011), 1541–1555. https://doi.org/10.1134/S0012266111110012 doi: 10.1134/S0012266111110012
![]() |
[31] |
E. R. Avakov, A. V. Arutyunov, E. S. Zhukovskii, Covering mappings and their applications to differential equations unsolved for the derivative, Differ. Equ., 45 (2009), 627–649. https://doi.org/10.1134/S0012266109050024 doi: 10.1134/S0012266109050024
![]() |
[32] |
A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, Covering mappings and well-posedness of nonlinear Volterra equations, Nonlinear Anal., 75 (2012), 1026–1044. https://doi.org/10.1016/j.na.2011.03.038 doi: 10.1016/j.na.2011.03.038
![]() |
[33] |
B. S. Mordukhovich, B. Wang, Restrictive metric regularity and generalized differential calculus in Banach spaces, Int. J. Math. Math. Sci., 2004 (2004), 683907. https://doi.org/10.1155/S0161171204405183 doi: 10.1155/S0161171204405183
![]() |
[34] |
A. Arutyunov, V. A. de Oliveira, F. L. Pereira, E. Zhukovskiy, S. Zhukovskiy, On the solvability of implicit differential inclusions, Appl. Anal., 94 (2015), 129–143. https://doi.org/10.1080/00036811.2014.891732 doi: 10.1080/00036811.2014.891732
![]() |
[35] |
F. Sk, A. Hossain, Q. H. Khan, Relation-theoretic metrical coincidence theorems under weak C-contractions and K-contractions, AIMS Math., 6 (2021), 13072–13091. https://doi.org/10.3934/math.2021756 doi: 10.3934/math.2021756
![]() |
[36] |
F. A. Khan, F. Sk, M. G. Alshehri, Q. H. Khan, Aftab Alam, Relational Meir-Keeler cntractions and common fixed point theorems, J. Funct. Spaces, 2022 (2022), 3550923. https://doi.org/10.1155/2022/3550923 doi: 10.1155/2022/3550923
![]() |
[37] |
F. Sk, M. A. O. Tom, Q. H. Khan, F. A. Khan, On Preˇsicˊ-\acute{\text{C}}iri\acute{\text{c}}-type \alpha-\psi contractions with an application, Symmetry, 14 (2022), 1166. https://doi.org/10.3390/sym14061166 doi: 10.3390/sym14061166
![]() |
[38] |
E. S. Zhukovskiy, The fixed points of contractions of f-quasimetric spaces, Sib. Math. J., 59 (2018), 1063–1072. https://doi.org/10.1134/S0037446618060095 doi: 10.1134/S0037446618060095
![]() |
[39] |
A. V. Greshnov, On finding the exact values of the constant in a (1, q_2)-generalized triangle inequality for Box-quasimetrics on 2-step Carnot groups with 1-dimensional center, Sib. Electron. Math. Re., 18 (2021), 1251–1260. https://doi.org/10.33048/semi.2021.18.095 doi: 10.33048/semi.2021.18.095
![]() |
[40] | L. V. Ovsyannikov, Group analysis of differential equations, New York: Academic Press, 1982. https://doi.org/10.1016/C2013-0-07470-1 |
[41] |
S. Chubanov, A scaling algorith optimizing arbitrary functions over vertices of polytopes, Math. Program., 190 (2021), 89–102. https://doi.org/10.1007/s10107-020-01522-0 doi: 10.1007/s10107-020-01522-0
![]() |
[42] |
L. P. Rothchild, E. S. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247–320. https://doi.org/10.1007/BF02392419 doi: 10.1007/BF02392419
![]() |
[43] | A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacian, Springer Berlin, Heidelberg, 2007. http://doi.org/10.1007/978-3-540-71897-0 |
[44] | M. M. Postnikov, Lie groups and Lie algebras, Lectures in Geometry, Moscow: Mir, 1986. |
1. | Yiting Wu, Gabriel Bercu, New refinements of Becker-Stark and Cusa-Huygens inequalities via trigonometric polynomials method, 2021, 115, 1578-7303, 10.1007/s13398-021-01030-6 | |
2. | Ling Zhu, Wilker inequalities of exponential type for circular functions, 2021, 115, 1578-7303, 10.1007/s13398-020-00973-6 | |
3. | Yogesh J. Bagul, Christophe Chesneau, Marko Kostić, On the Cusa–Huygens inequality, 2021, 115, 1578-7303, 10.1007/s13398-020-00978-1 | |
4. | Lina Zhang, Xuesi Ma, Dimitri Mugnai, Some New Results of Mitrinović–Cusa’s and Related Inequalities Based on the Interpolation and Approximation Method, 2021, 2021, 2314-4785, 1, 10.1155/2021/5595650 | |
5. | Yogesh J. Bagul, Bojan Banjac, Christophe Chesneau, Marko Kostić, Branko Malešević, New Refinements of Cusa-Huygens Inequality, 2021, 76, 1422-6383, 10.1007/s00025-021-01392-8 | |
6. | Ling Zhu, High Precision Wilker-Type Inequality of Fractional Powers, 2021, 9, 2227-7390, 1476, 10.3390/math9131476 | |
7. | Wei-Dong Jiang, New sharp inequalities of Mitrinovic-Adamovic type, 2023, 17, 1452-8630, 76, 10.2298/AADM210507010J | |
8. | Yogesh J. Bagul, Christophe Chesneau, Sharp Extensions of a Cusa-Huygens Type Inequality, 2024, 1829-1163, 1, 10.52737/18291163-2024.16.14-1-12 |