Research article Special Issues

Relaxed modified Newton-based iteration method for generalized absolute value equations

  • Many problems in different fields may lead to solutions of absolute value equations, such as linear programming problems, linear complementarity problems, quadratic programming, mixed integer programming, the bimatrix game and so on. In this paper, by introducing a nonnegative real parameter to the modified Newton-based iteration scheme, we present a new relaxed modified Newton-based (RMN) iteration method for solving generalized absolute value equations. The famous Picard iteration method and the modified Newton-type iteration method are the exceptional cases of the RMN iteration method. The convergence property of the new method is discussed. Finally, the validity and feasibility of the RMN iteration method are verified by experimental examples.

    Citation: Xin-Hui Shao, Wan-Chen Zhao. Relaxed modified Newton-based iteration method for generalized absolute value equations[J]. AIMS Mathematics, 2023, 8(2): 4714-4725. doi: 10.3934/math.2023233

    Related Papers:

    [1] Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386
    [2] Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially (α,hm)-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521
    [3] Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096
    [4] Lanxin Chen, Junxian Zhang, Muhammad Shoaib Saleem, Imran Ahmed, Shumaila Waheed, Lishuang Pan . Fractional integral inequalities for h-convex functions via Caputo-Fabrizio operator. AIMS Mathematics, 2021, 6(6): 6377-6389. doi: 10.3934/math.2021374
    [5] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [6] Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab . k-Fractional inequalities associated with a generalized convexity. AIMS Mathematics, 2023, 8(12): 28540-28557. doi: 10.3934/math.20231460
    [7] Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306
    [8] Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for m-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115
    [9] Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989
    [10] Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392
  • Many problems in different fields may lead to solutions of absolute value equations, such as linear programming problems, linear complementarity problems, quadratic programming, mixed integer programming, the bimatrix game and so on. In this paper, by introducing a nonnegative real parameter to the modified Newton-based iteration scheme, we present a new relaxed modified Newton-based (RMN) iteration method for solving generalized absolute value equations. The famous Picard iteration method and the modified Newton-type iteration method are the exceptional cases of the RMN iteration method. The convergence property of the new method is discussed. Finally, the validity and feasibility of the RMN iteration method are verified by experimental examples.



    Convex functions has applications in almost all branches of mathematics for example in mathematical analysis, optimization theory and mathematical statistics etc. A convex function can be expressed and visualized in many different ways which further provide the motivation and encouragement for defining new concepts. Let us recall its definition as follows:

    A function f:JRR is said to be convex, if

    f(tx+(1t)y)tf(x)+(1t)f(y), (1.1)

    holds for all x,yJ and t[0,1]. Likewise f is concave if (f) is convex.

    A convex function is generalized in different forms, one of the generalization is the exponentially (θ,hm)-convex function. Farid and Mahreen [11] introduced exponentially (θ,hm)-convex functions as follows:

    Definition 1.1. Let JR be an interval containing (0,1) and let h:JR be a non-negative function. For fix t(0,1), (θ,m)(0,1]2 and ηR. A function f:[0,b]R is called exponentially (θ,hm)-convex function, if f is non-negative and for all x,y[0,b] one has

    f(tx+m(1t)y)h(tθ)f(x)eηx+mh(1tθ)f(y)eηy. (1.2)

    Remark 1.2. By selecting suitable function h and particular values of parameter m and η, the above definition produces the functions comprise in the following remark:

    (i) By setting η=0, (θ,hm)-convex function [12] can be obtained.

    (ii) By taking η=0 and θ=1, (hm)-convex function can be captured.

    (iii) By choosing η=0 and h(tθ)=tθ, (θ,m)-convex function can be obtained.

    (iv) By setting η=0, θ=1 and m=1, h-convex function [32] can be captured.

    (v) By taking η=0, θ=1 and h(t)=t, m-convex function [31] can be obtained.

    (vi) By choosing η=0, θ=1, m=1 and h(t)=t, convex function can be captured.

    (vii) By setting η=0, m=1, θ=1 and h(t)=1, P-function [6] can be obtained.

    (viii) By taking θ=1 and h(t)=ts, exponentially (s,m)-convex function [28] can be captured.

    (ix) By choosing θ=1, m=1 and h(t)=ts, exponentially s-convex function [23] can be obtained.

    (x) By setting θ=1, and h(t)=t, exponentially m-convex function [29] can be captured.

    (xi) By taking θ=1, m=1 and h(t)=t, exponentially convex function [3] can be obtained.

    (xii) By choosing η=0, θ=1 and h(t)=ts, (s,m)-convex function [2] can be captured.

    (xiii) By setting θ=1, η=0, m=1 and h(t)=ts, s-convex function [23] can be obtained.

    (xiv) By taking θ=1, η=0, m=1 and h(t)=1t, Godunova-Levin function [14] can be captured.

    (xv) By choosing θ=1, η=0, m=1 and h(t)=1ts, s-Godunova-Levin function of second kind can be obtained.

    The following inequality, named Hermite–Hadamard inequality, is one of the most famous inequalities in the literature for convex functions.

    Theorem 1.3. Let f:JRR be a convex function on J and a,bJ with a<b. Then the following double inequality holds:

    f(a+b2)1babaf(x)dxf(a)+f(b)2. (1.3)

    Various extensions of this notion have been reported in the literature in recent years, see [1,4,7,16,17,18,21,22,26,30].

    The objective of this paper is to obtain inequalities of Hadamard type via Caputo k-fractional derivatives of exponentially (θ,hm)-convex functions. Study of integration or differentiation of fractional order is known as fractional calculus. Its history is as old as the history of calculus. A lot of work has been published since the day of Leibniz (1695) and since then has occupied great number of mathematicians of their time [15,20,25,27].

    Fractional integral inequalities are in the study of several researchers, see [5,9,13] and references therein. The classical Caputo fractional derivatives are defined as follows:

    Definition 1.4. [20] Let α>0 and α{1,2,3,}, n=[α]+1, fACn[a,b] (the set of all functions f such that f(n) are absolutely continuous on [a,b]). The Caputo fractional derivatives of order α are defined by

    CDαa+f(x)=1Γ(nα)xaf(n)(t)(xt)αn+1dt,x>a, (1.4)

    and

    CDαbf(x)=(1)nΓ(nα)bxf(n)(t)(tx)αn+1dt,x<b. (1.5)

    If α=n{1,2,3,} and usual derivative of order n exists, then Caputo fractional derivative (CDαa+f)(x) coincides with f(n)(x), whereas (CDαbf)(x) coincides with f(n)(x) with exactness to a constant multiplier (1)n. In particular, we have

    (CD0a+f)(x)=(CD0bf)(x)=f(x), (1.6)

    where n=1 and α=0.

    In [9], Farid et al. defined Caputo kfractional derivatives as follows:

    Definition 1.5. Let α>0,k1 and α{1,2,3,}, n=[α]+1, fACn[a,b]. The Caputo k-fractional derivatives of order α are given as

    CDα,ka+f(x)=1kΓk(nαk)xaf(n)(t)(xt)αkn+1dt,x>a, (1.7)

    and

    CDα,kbf(x)=(1)nkΓk(nαk)bxf(n)(t)(tx)αkn+1dt,x<b, (1.8)

    where Γk(α) is the k-gamma function defined as

    Γk(α)=0tα1etkkdt.

    Also

    Γk(α+k)=αΓk(α).

    Motivated by above results and literatures, the paper is organized in the following manner:

    In section 2, we present some inequalities of Hadamard type for exponentially (θ,hm)convex functions via Caputo kfractional derivatives. In section 3, we use the integral identity including the (n+1)-order derivative of f to establish interesting Hadamard type inequalities for exponentially (θ,hm)convexity via Caputo k-fractional derivatives. In section 4, a briefly conclusion will be provided as well.

    In this section, we give the Caputo k–fractional derivatives inequality of Hadamard type for a function whose n-th derivatives are exponentially (θ,hm)–convex.

    Theorem 2.1. Let α>0,k1 and α{1,2,3,}, n=[α]+1 and [a,b][0,+), f:[0,+)R be a function such that fACn[a,mb], where a<mb. Also, assume that f(n) be an exponentially (θ,hm)-convex function with (θ,m)(0,1]2 and ηR. Then the following inequalities for Caputo k-fractional derivatives hold:

    1g(η)f(n)(bm+a2)kΓk(nαk+k)(mba)nαk×(h(112θ)mnαk+1(1)n(CDα,kbf)(am)+h(12θ)(CDα,ka+f)(mb))knαk×{(h(112θ)m2f(n)(am2)eηam2+h(12θ)mf(n)(b)eηb)10tnαk1h(1tθ)dt+(h(112θ)mf(n)(b)eηb+h(12θ)f(n)(a)eηa)10tnαk1h(tθ)dt}, (2.1)

    where g(η)=1eηbforη<0 and g(η)=1eηamforη0.

    Proof. Since f(n) is an exponentially (θ,hm)-convex function on [a,b], then

    f(n)(um+v2)h(112θ)mf(n)(u)eηu+h(12θ)f(n)(v)eηv,u,v[a,b].

    By setting u=(1t)am+tbb and v=m(1t)b+taa in the above inequality for t[0,1], then by integrating with respect to t over [0,1] after multiplying with tnαk1, we have

    f(n)(bm+a2)10tnαk1dth(112θ)(10tnαk1mf(n)((1t)am+tb)eη((1t)am+tb)dt+h(12θ)10tnαk1f(n)(m(1t)b+ta)eη(m(1t)b+ta)dt).

    Now, if we let w=(1t)am+tb and z=m(1t)b+ta in right hand side of above inequality, we get

    f(n)(bm+a2)1nαkh(112θ)(bam(wambam)nαk1mf(n)(w)dweηw(bam)+h(12θ)mba(mbzmba)nαk1f(n)(z)dzeηz(mba)).

    Hence

    f(n)(bm+a2){g(η)kΓk(nαk+k)(mba)nαk(h(112θ)mnαk+1(1)n(CDα,kbf)(am)+h(12θ)(CDα,ka+f)(mb))}. (2.2)

    On the other hand by using exponentially (θ,hm)-convexity of f(n), we have

    mf(n)((1t)am+tb)m2h(1tθ)f(n)(am2)eηam2+mh(tθ)f(n)(b)eηb.

    By multiplying both sides of above inequality with (nαk)h(112θ)tnαk1 and integrating with respect to t over [0,1], after some calculations we get

    kΓk(nαk+k)(mba)nαk(h(112θ)mnαk+1(1)n(CDα,kbf)(am))h(112θ)(nαk){m2f(n)(am2)eηam210tnαk1h(1tθ)dt+mf(n)(b)eηb10tnαk1h(tθ)dt}. (2.3)

    Similarly,

    f(n)(m(1t)b+ta)mh(1tθ)f(n)(b)eηb+h(tθ)f(n)(a)eηa.

    By multiplying both sides of above inequality with (nαk)h(12θ)tnαk1 and integrating with respect to t over [0,1], after some calculations we get

    kΓk(nαk+k)(mba)nαk(h(12θ)(CDα,ka+f)(mb))h(12θ)(nαk){mf(n)(b)eηb10tnαk1h(1tθ)dt+f(n)(a)eηa10tnαk1h(tθ)dt}. (2.4)

    By adding (2.3) and (2.4), we obtain

    kΓk(nαk+k)(mba)nαk(h(112θ)mnαk+1(1)n(CDα,kbf)(am)+h(12θ)(CDα,ka+f)(mb))(nαk){(h(112θ)m2f(n)(am2)eηam2+h(12θ)mf(n)(b)eηb)10tnαk1h(1tθ)dt+(h(112θ)mf(n)(b)eηb+h(12θ)f(n)(a)eηa)10tnαk1h(tθ)dt}.

    Combining above with (2.2), we get required result.

    Corollary 2.2. By setting k=1 in inequality (2.1), the following inequalities hold for exponentially (θ,hm)-convex functions via Caputo fractional derivatives:

    1g(η)f(n)(bm+a2)Γ(nα+1)(mba)nα(h(112θ)mnα+1(1)n(CDαbf)(am)+h(12θ)(CDαa+f)(mb))(nα){(h(112θ)m2f(n)(am2)eηam2+h(12θ)mf(n)(b)eηb)10tnα1h(1tθ)dt+(h(112θ)mf(n)(b)eηb+h(12θ)f(n)(a)eηa)10tnα1h(tθ)dt}.

    Corollary 2.3. Taking η=0 in (2.1), the following inequalities hold for (θ,hm)-convex functions via Caputo k-fractional derivatives:

    f(n)(bm+a2)kΓk(nαk+k)(mba)nαk(h(112θ)mnαk+1(1)n(CDα,kbf)(am)+h(12θ)(CDα,ka+f)(mb))(knαk){(h(112θ)m2f(n)(am2)+h(12θ)mf(n)(b))10tnαk1h(1tθ)dt+(h(112θ)mf(n)(b)+h(12θ)f(n)(a))10tnαk1h(tθ)dt}.

    Corollary 2.4. Choosing η=0 and θ=1 in (2.1), the following inequalities hold for (hm)-convex functions via Caputo k-fractional derivatives defined in [[24], Theorem 2.1]:

    f(n)(bm+a2)kΓk(nαk+k)2(mba)nαk(mnαk+1(1)n(CDα,kbf)(am)+(CDα,ka+f)(mb))knα2k{(m2f(n)(am2)+mf(n)(b))10tnαk1h(1t)dt+(mf(n)(b)+f(n)(a))10tnαk1h(t)dt}.

    Corollary 2.5. By setting η=0, θ=1 and k=1 in (2.1), the following inequalities hold for (hm)-convex functions via Caputo fractional derivatives defined in [[24], Corollary 2.2]:

    f(n)(bm+a2)Γ(nα+1)2(mba)nα(mnα+1(1)n(CDαbf)(am)+(CDαa+f)(mb))nα2{(m2f(n)(am2)+mf(n)(b))10tnα1h(1t)dt+(mf(n)(b)+f(n)(a))10tnα1h(t)dt}.

    Corollary 2.6. Taking θ=1 and h(t)=ts in (2.1), the following inequalities hold for exponentially (s,m)-convex functions via Caputo k-fractional derivatives:

    1g(η)f(n)(bm+a2)kΓk(nαk+k)2s(mba)nαk(mnαk+1(1)n(CDα,kbf)(am)+(CDα,ka+f)(mb))knαk2s{(m2f(n)(am2)eηam2+mf(n)(b)eηb)β(knαk,s+1)+(mf(n)(b)eηb+f(n)(a)eηa)kknα+ks},

    where β(,) is well–known beta function.

    Corollary 2.7. Choosing η=0, θ=1, m=1 and h(t)=t in (2.1), the following inequalities hold for convex functions via Caputo k-fractional derivatives defined in [[8], Theorem 2.2]:

    f(n)(a+b2)kΓk(nαk+k)2(ba)nαk((1)n(CDα,kbf)(a)+(CDα,ka+f)(b))f(n)(a)+f(n)(b)2.

    Corollary 2.8. By setting η=0, θ=1, m=1, h(t)=t and k=1 in (2.1), the following inequalities hold for convex functions via Caputo fractional derivatives:

    f(n)(a+b2)Γ(nα+1)2(ba)nα((1)n(CDαbf)(a)+(CDαa+f)(b))f(n)(a)+f(n)(b)2.

    In the following we generalize the fractional Hadamard type inequalities for exponentially (θ,hm)convex function via Caputo k-fractional derivatives.

    Theorem 2.9. Let α>0,k1 and α{1,2,3,}, n=[α]+1 and [a,b][0,+), f:[0,+)R be a function such that fACn[a,mb], where a<mb. Also, assume that f(n) be an exponentially (θ,hm)-convex function with (θ,m)(0,1]2 and ηR. Then the following inequalities for Caputo k-fractional derivatives hold:

    1g(η)f(n)(a+bm2)2(nαk)kΓk(nαk+k)(bma)nαk(h(112θ)mnαk+1(1)(n)(CDα,k(a+bm2m)f)(am)+h(12θ)(CDα,k(a+bm2)+f)(mb))(knαk){(h(112θ)m2f(n)(am2)eηam2+h(12θ)mf(n)(b)eηb)10tnαk1h(1(t2)θ)dt+(h(112θ)mf(n)(b)eηb+h(12θ)f(n)(a)eηa)10tnαk1h((t2)θ)dt}, (2.5)

    where g(η)=1eηbforη<0 and g(η)=1eηamforη0.

    Proof. From exponentially (θ,hm)convexity of f(n) one can have

    f(n)(um+v2)h(112θ)mf(n)(u)eηu+h(12θ)f(n)(v)eηv.

    Putting u=t2b+(2t)2am and u=t2a+m(2t)2b in the above inequality where t[0,1], and multiplying with tnαk1, then integrating with respect to t over [0,1] one can have

    f(n)(a+bm2)10tnαk1dth(112θ)(10tnαk1mf(n)(t2b+(2t)2am)eη(t2b+(2t)2am)dt+h(12θ)10tnαk1f(n)(t2a+m(2t)2b)eη(t2a+m(2t)2b)dt).

    By change of variables, we get

    1g(η)f(n)(a+bm2)2(nαk)kΓk(nαk+k)(bma)nαk×(h(112θ)mnαk+1(1)(n)(CDα,k(a+bm2m)f)(am)+h(12θ)(CDα,k(a+bm2)+f)(mb)). (2.6)

    Now, using the exponentially (θ,hm)convexity of f(n), we can write

    f(n)(t2a+m(2t)2b)h((t2)θ)f(n)(a)eηa+mh(1(t2)θ)f(n)(b)eηb.

    Multiplying both sides of above inequality with (nαk)h(12θ)tnαk1 and integrating with respect to t over [0,1], then by change of variables, we have

    h(12θ)2(nαk)kΓk(nαk+k)(bma)nαk((CDα,k(a+bm2)+f)(mb))(nαk)h(12θ){mf(n)(b)eηb10tnαk1h(1(t2)θ)dt+f(n)(a)eηa10tnαk1h((t2)θ)dt}. (2.7)

    Again by using the exponentially (θ,hm)convexity of f(n), we can write

    mf(n)(t2b+(2t)2am)mh(t2)θf(n)(b)eηb+m2h(1(t2)θ)f(n)(am2)eηam2.

    Multiplying both sides of above inequality with (nαk)h(112θ)tnαk1 and integrating with respect to t over [0,1], then by change of variables, we have

    h(112θ)2(nαk)kΓk(nαk+k)(bma)nαk(mnαk+1(1)(n)(CDα,k(a+bm2m)f)(am))(nαk)h(112θ){m2f(n)(am2)eηam210tnαk1h(1(t2)θ)dt+mf(n)(b)eηb10tnαk1h((t2)θ)dt}. (2.8)

    Adding (2.7) and (2.8), we get

    2(nαk)kΓk(nαk+k)(bma)nαk(h(112θ)mnαk+1(1)(n)(CDα,k(a+bm2m)f)(am)+h(12θ)(CDα,k(a+bm2)+f)(mb))(nαk){(h(112θ)m2f(n)(am2)eηam2+h(12θ)mf(n)(b)eηb)10tnαk1h(1(t2)θ)dt+(h(112θ)mf(n)(b)eηb+h(12θ)f(n)(a)eηa)10tnαk1h((t2)θ)dt}.

    By combining above with (2.6), we get required result.

    Corollary 2.10. By setting k=1 in inequality (2.5), the following inequalities hold for exponentially (θ,hm)-convex functions via Caputo fractional derivatives:

    1g(η)f(n)(a+bm2)2(nα)Γ(nα+1)(bma)nαk(h(112θ)mnα+1(1)(n)(CDα(a+bm2m)f)(am)+h(12θ)(CDα(a+bm2)+f)(mb))(nα){(h(112θ)m2f(n)(am2)eηam2+h(12θ)mf(n)(b)eηb)10tnα1h(1(t2)θ)dt+(h(112θ)mf(n)(b)eηb+h(12θ)f(n)(a)eηa)10tnα1h((t2)θ)dt}.

    Corollary 2.11. Taking η=0 in (2.5), the following inequalities hold for (θ,hm)-convex functions via Caputo k-fractional derivatives:

    f(n)(a+bm2)2(nαk)kΓk(nαk+k)(bma)nαk(h(112θ)mnαk+1(1)(n)(CDα,k(a+bm2m)f)(am)+h(12θ)(CDα,k(a+bm2)+f)(mb))(knαk){(h(112θ)m2f(n)(am2)+h(12θ)mf(n)(b))10tnαk1h(1(t2)θ)dt+(h(112θ)mf(n)(b)+h(12θ)f(n)(a))10tnαk1h((t2)θ)dt}.

    Corollary 2.12. Choosing η=0 and θ=1 in (2.5), the following inequalities hold for (hm)-convex functions via Caputo k-fractional derivatives defined in [[24], Theorem 2.4]:

    f(n)(a+bm2)2(nαk)kΓk(nαk+k)(bma)nαkh(12)(mnαk+1(1)(n)(CDα,k(a+bm2m)f)(am)+(CDα,k(a+bm2)+f)(mb))knαkh(12)×{(m2f(n)(am2)+mf(n)(b))10tnαk1h(2t2)dt+(mf(n)(b)+f(n)(a))10tnαk1h(t2)dt}.

    Corollary 2.13. By setting η=0, θ=1 and k=1 in (2.5), the following inequalities hold for (hm)-convex functions via Caputo fractional derivatives defined in [[24], Corollary 2.5]:

    f(n)(a+bm2)2(nα)Γ(nα+1)(bma)nαkh(12)(mnα+1(1)(n)(CDα(a+bm2m)f)(am)+(CDα(a+bm2)+f)(mb))(nα)h(12)×{(m2f(n)(am2)+mf(n)(b))10tnα1h(2t2)dt+(mf(n)(b)+f(n)(a))10tnα1h(t2)dt}.

    Corollary 2.14. Taking θ=1 and h(t)=ts in (2.5), the following inequalities hold for exponentially (s,m)-convex functions via Caputo k-fractional derivatives:

    1g(η)f(n)(a+bm2)2(nαks)kΓk(nαk+k)(bma)nαk×(mnαk+1(1)(n)(CDα,k(a+bm2m)f)(am)+(CDα,k(a+bm2)+f)(mb)).122s{(m2f(n)(am2)eηam2+mf(n)(b)eηb)kΓk(nαk+k)+(mf(n)(b)eηb+f(n)(a)eηa)knαknα+ks}.

    Corollary 2.15. Choosing η=0, θ=1, m=1 and h(t)=t in (2.5), the following inequalities hold for convex functions via Caputo k-fractional derivatives defined in [[10], Theorem 6]:

    f(n)(a+b2)2(nαk)kΓk(nαk+k)2(ba)nαk×((1)(n)(CDα,k(a+b2)f)(a)+(CDα,k(a+b2)+f)(b))f(n)(a)+f(n)(b)2.

    Corollary 2.16. By setting η=0, θ=1, m=1, h(t)=t and k=1 in (2.5), the following inequalities hold for convex functions via Caputo fractional derivatives defined in [[19] Theorem 2.2]:

    f(n)(a+b2)2(nα)Γ(nα+1)2(ba)nαk×((1)(n)(CDα(a+b2)f)(a)+(CDα(a+b2)+f)(b))f(n)(a)+f(n)(b)2.

    In the next, some other inequalities of Hadamard type for exponentially (θ,hm)convex function via Caputo kfractional derivatives are given.

    Theorem 2.17. Let α>0,k1 and α{1,2,3,}, n=[α]+1 and f:[0,+)R be a function such that fACn[a,mb], where a<mb. Also, assume that f(n) be an exponentially (θ,hm)-convex function with (θ,m)(0,1]2 and ηR. Then the following inequalities for Caputo k-fractional derivatives hold:

    kΓk(nαk)(ba)nαk((CDα,ka+f)(b)+(1)n(CDα,kbf)(a))(f(n)(a)eηa+f(n)(b)eηb)×10tnαk1h(tθ)dt+m(f(n)(bm)eηbm+f(n)(am)eηam)10tnαk1h(1tθ)dt1(npαkpp+1)1p(10(h(tθ))qdt)1q×(f(n)(a)eηa+f(n)(b)eηb+m(f(n)(bm)eηbm+f(n)(am)eηam)), (2.9)

    where p1+q1=1 and p>1.

    Proof. Since f(n) is exponentially (θ,hm)convex on [a,b], then for (θ,m)(0,1]2 and t[0,1], we have

    f(n)(ta+(1t)b)+f(n)((1t)a+tb)h(tθ)(f(n)(a)eηa+f(n)(b)eηb)+mh(1tθ)(f(n)(bm)eηbm+f(n)(am)eηam).

    Multiplying both sides of above inequality with tnαk1 and integrating the above inequality with respect to t on [0,1], we have

    10tnαk1(f(n)(ta+(1t)b)+f(n)((1t)a+tb))dt(f(n)(a)eηa+f(n)(b)eηb)10tnαk1h(tθ)dt+m(f(n)(bm)eηbm+f(n)(am)eηam)10tnαk1h(1tθ)dt.

    If we set x=ta+(1t)b in the left side of above inequality, we get the following inequality

    kΓk(nαk)(ba)nαk((CDα,ka+f)(b)+(1)n(CDα,kbf)(a))(f(n)(a)eηa+f(n)(b)eηb)10tnαk1h(tθ)dt+m(f(n)(bm)eηbm+f(n)(am)eηam)10tnαk1h(1tθ)dt. (2.10)

    We get the first inequality of (2.9). The second inequality of (2.9) follows by using the Hölder's inequality

    10tnαk1h(tθ)dt1(npαkpp+1)1p(10(h(tθ))qdt)1q.

    Combining it with (2.10) we get (2.9).

    Corollary 2.18. By setting k=1 in (2.9), the following inequalities hold for exponentially (θ,hm)-convex functions via Caputo fractional derivatives:

    Γ(nα)(ba)nα((CDαa+f)(b)+(1)n(CDαbf)(a))(f(n)(a)eηa+f(n)(b)eηb)×10tnα1h(tθ)dt+m(f(n)(bm)eηbm+f(n)(am)eηam)10tnα1h(1tθ)dt1(npαpp+1)1p(10(h(tθ))qdt)1q×(f(n)(a)eηa+f(n)(b)eηb+m(f(n)(bm)eηbm+f(n)(am)eηam)).

    Corollary 2.19. Taking η=0 in (2.9), the following inequalities hold for (θ,hm)-convex functions via Caputo k-fractional derivatives:

    kΓk(nαk)(ba)nαk((CDα,ka+f)(b)+(1)n(CDα,kbf)(a))(f(n)(a)+f(n)(b))×10tnαk1h(tθ)dt+m(f(n)(bm)+f(n)(am))10tnαk1h(1tθ)dt1(npαkpp+1)1p(10(h(tθ))qdt)1q×(f(n)(a)+f(n)(b)+m(f(n)(bm)+f(n)(am))).

    Corollary 2.20. Choosing η=0 and θ=1 in (2.9), the following inequalities hold for (hm)-convex functions via Caputo k-fractional derivatives defined in [[24], Theorem 2.7]:

    kΓk(nαk)(ba)nαk((CDα,ka+f)(b)+(1)n(CDα,kbf)(a))(f(n)(a)+f(n)(b))×10tnαk1h(t)dt+m(f(n)(bm)+f(n)(am))10tnαk1h(1t)dt1(npαkpp+1)1p(10(h(t))qdt)1q×(f(n)(a)+f(n)(b)+m(f(n)(bm)+f(n)(am))).

    Corollary 2.21. By setting η=0, θ=1 and k=1 in (2.9), the following inequalities hold for (hm)-convex functions via Caputo fractional derivatives defined in [[24], Corollary 2.8]:

    Γ(nα)(ba)nα((CDαa+f)(b)+(1)n(CDαbf)(a))(f(n)(a)+f(n)(b))×10tnα1h(t)dt+m(f(n)(bm)+f(n)(am))10tnα1h(1t)dt1(npαpp+1)1p(10(h(t))qdt)1q×(f(n)(a)+f(n)(b)+m(f(n)(bm)+f(n)(am))).

    Corollary 2.22. Taking θ=1 and h(t)=ts in (2.9), the following inequalities hold for exponentially (s,m)-convex functions via Caputo k-fractional derivatives:

    kΓk(nαk)(ba)nαk((CDα,ka+f)(b)+(1)n(CDα,kbf)(a))k(f(n)(a)eηa+f(n)(b)eηb)knα+ks+m(f(n)(bm)eηbm+f(n)(am)eηam)β(nαk,s+1)k(f(n)(a)eηa+f(n)(b)eηb)knα+ks+m(f(n)(bm)eηbm+f(n)(am)eηam)(npαkpp+1)1p(qs+1)1q.

    Corollary 2.23. Choosing η=0, θ=1, m=1 and h(t)=t in (2.9), the following inequalities hold for convex functions via Caputo k-fractional derivatives:

    kΓk(nαk)(ba)nαk((CDα,ka+f)(b)+(1)n(CDα,kbf)(a))k(f(n)(a)+f(n)(b))knα2(f(n)(a)+f(n)(b))(npαkpp+1)1p(q+1)1q.

    Theorem 2.24. Let α>0,k1 and α{1,2,3,}, n=[α]+1 and [a,b][0,+), f:[0,+)R be a function such that fACn[a,mb], where a<mb and h be a superadditive function. Also, assume that f(n) be an exponentially (θ,hm)-convex function with (θ,m)(0,1]2 and ηR. Then the following inequality for Caputo kfractional derivatives holds:

    kΓk(nαk+k)(ba)nαk((CDα,ka+f)(b)+(1)n(CDα,kbf)(a))h(1)2((f(n)(a)eηa+f(n)(b)eηb)+m(f(n)(bm)eηbm+f(n)(am)eηam)). (2.11)

    Proof. Since f(n) is exponentially (θ,hm)convex on [a,b], then for t[0,1], we get

    f(n)(ta+(1t)b)+f(n)((1t)a+tb)(h(tθ)+h(1tθ))2((f(n)(a)eηa+f(n)(b)eηb)+m(f(n)(bm)eηbm+f(n)(am)eηam)).

    Since h is superadditive function, then

    h(tθ)+h(1tθ)h(1),for allθ(0,1]andt[0,1].

    Therefore

    f(n)(ta+(1t)b)+f(n)((1t)a+tb)h(1)2((f(n)(a)eηa+f(n)(b)eηb)+m(f(n)(bm)eηbm+f(n)(am)eηam)).

    Multiplying both sides of above inequality with tnαk1 and integrating with respect to t over [0,1], yield the following

    10tnαk1(f(n)(ta+(1t)b)+f(n)((1t)a+tb))dth(1)2((f(n)(a)eηa+f(n)(b)eηb)+m(f(n)(bm)eηbm+f(n)(am)eηam))10tnαk1dt.

    By change of variable, we get the required result.

    Corollary 2.25. By setting k=1 in (2.11), the following inequality holds for exponentially (θ,hm)-convex functions via Caputo fractional derivatives:

    Γ(nα+1)(ba)nα((CDαa+f)(b)+(1)n(CDαbf)(a))h(1)2((f(n)(a)eηa+f(n)(b)eηb)+m(f(n)(bm)eηbm+f(n)(am)eηam)).

    Corollary 2.26. Taking η=0 and θ=1 in (2.11), the following inequality holds for (hm)-convex functions via Caputo k-fractional derivatives defined in [[24], Theorem 2.9]:

    kΓk(nαk+k)(ba)nαk((CDα,ka+f)(b)+(1)n(CDα,kbf)(a))h(1)2((f(n)(a)+f(n)(b))+m(f(n)(bm)+f(n)(am))).

    Corollary 2.27. Choosing η=0, θ=1 and k=1 in (2.11), the following inequality holds for (hm)-convex functions via Caputo k-fractional derivatives defined in [[24], Corollary 2.10]:

    Γ(nα+1)(ba)nα((CDαa+f)(b)+(1)n(CDαbf)(a))h(1)2((f(n)(a)+f(n)(b))+m(f(n)(bm)+f(n)(am))).

    Corollary 2.28. By setting η=0, θ=1, m=1, h(t)=t and k=1 in (2.11), the following inequality holds for convex functions via Caputo fractional derivatives:

    Γ(nα+1)(ba)nα((CDαa+f)(b)+(1)n(CDαbf)(a))f(n)(a)+f(n)(b).

    We need the following known lemma to prove our next results.

    Lemma 3.1. [24] Let α>0,k1 and α{1,2,3,}, n=[α]+1 and f:[a,mb]R, where a,b[0,+) be a differentiable mapping on interval (a,mb), with a<mb and m(0,1]. If fACn+1[a,mb], then the following equality for Caputo kfractional derivatives holds:

    f(n)(mb)+f(n)(b)2kΓk(nαk+k)2(mba)nαk((CDα,ka+f)(mb)+(CDα,kmbf)(a))=mba210((1t)nαktnαk)f(n+1)(m(1t)b+ta)dt.

    Caputo kfractional derivative inequalities of Hadamard type for exponentially (θ,hm)convex function in terms of the (n+1)-th derivatives in absolute, is obtained in the following theorem by using above lemma.

    Theorem 3.2. Let α>0,k1 and α{1,2,3,}, n=[α]+1 and [a,b][0,+), f:[0,+)R be a function such that fACn+1[a,mb], where a<mb. If |f(n+1)| is an exponentially (θ,hm)convex with (θ,m)(0,1]2 and ηR, then the following inequality for Caputo kfractional derivatives holds:

    |f(n)(mb)+f(n)(a)2kΓk(nαk+k)2(mba)nαk(CDα,kb+f)(mb)+(CDα,kmbf)(a)|mba2((2npαkp+11)1p(2npαkp+1(npαkp+1))1p1)×(|f(n+1)(a)|eηa((120(h(tθ))qdt)1q+(112(h(tθ))qdt)1q)+m|f(n+1)(b)|eηb((120(h(1tθ))qdt)1q+(112(h(1tθ))qdt)1q)), (3.1)

    where 1p+1q=1 and p>1.

    Proof. From Lemma 3.1 and by using the properties of modulus, we get

    |f(n)(mb)+f(n)(b)2kΓk(nαk+k)2(mba)nαk((CDα,ka+f)(mb)+(CDα,kmbf)(a))|mba210|(1t)nαktnαk||f(n+1)(m(1t)b+ta)|dt.

    By exponentially (θ,hm)convexity of |f(n+1)|, we have

    |f(n)(mb)+f(n)(a)2kΓk(nαk+k)2(mba)nαk(CDα,ka+f)(mb)+(CDα,kmbf)(a)|mba2120((1t)nαktnαk)(mh(1tθ)|f(n+1)(b)eηb|+h(tθ)|f(n+1)(a)eηa|)dt+112(tnαk(1t)nαk)(mh(1tθ)|f(n+1)(b)eηb|+h(tθ)|f(n+1)(a)eηa|)dt=mba2{|f(n+1)(a)eηa|(120(1t)nαkh(tθ)dt120tnαkh(tθ)dt)+m|f(n+1)(b)eηb|(120(1t)nαkh(1tθ)dt120tnαkh(1tθ)dt)+|f(n+1)(a)eηa|(112tnαkh(tθ)dt112(1t)nαkh(tθ)dt)+m|f(n+1)(b)eηb|(112tnαkh(1tθ)dt112(1t)nαkh(1tθ)dt)}. (3.2)

    Now, using the Hölder's inequality in the right hand side of (3.2), we obtain

    |f(n)(mb)+f(n)(a)2kΓk(nαk+k)2(mba)nαk(CDα,kb+f)(mb)+(CDα,kmbf)(a)|mba2{|f(n+1)(a)eηa|((2npαkp+11)1p1(2npαkp+1(npαkp+1))1p(120(h(tθ))qdt)1q+(2npαkp+11)1p1(2npαkp+1(npαkp+1))1p(112(h(tθ))qdt)1q)+m|f(n+1)(b)eηb|((2npαkp+11)1p1(2npαkp+1(npαkp+1))1p(120(h(1tθ))qdt)1q+(2npαkp+11)1p1(2npαkp+1(npαkp+1))1p(112(h(1tθ))qdt)1q)}.

    After a little computation one can get inequality (3.1).

    Corollary 3.3. By setting k=1 in (3.1), the following inequality holds for exponentially (θ,hm)-convex functions via Caputo fractional derivatives:

    |f(n)(mb)+f(n)(a)2Γ(nα+1)2(mba)nα(CDαb+f)(mb)+(CDαmbf)(a)|mba2((2npαp+11)1p(2npαp+1(npαp+1))1p1)×(|f(n+1)(a)|eηa((120(h(tθ))qdt)1q+(112(h(tθ))qdt)1q)+m|f(n+1)(b)|eηb((120(h(1tθ))qdt)1q+(112(h(1tθ))qdt)1q)).

    Corollary 3.4. Taking η=0 in (3.1), the following inequality holds for (θ,hm)-convex functions via Caputo k-fractional derivatives:

    |f(n)(mb)+f(n)(a)2kΓk(nαk+k)2(mba)nαk(CDα,kb+f)(mb)+(CDα,kmbf)(a)|mba2((2npαkp+11)1p(2npαkp+1(npαkp+1))1p1)×(|f(n+1)(a)|((120(h(tθ))qdt)1q+(112(h(tθ))qdt)1q)+m|f(n+1)(b)|((120(h(1tθ))qdt)1q+(112(h(1tθ))qdt)1q)).

    Corollary 3.5. Choosing η=0 and θ=1 in (3.1), the following inequality holds for (hm)-convex functions via Caputo k-fractional derivatives defined in [[24], Theorem 3.1]:

    |f(n)(mb)+f(n)(a)2kΓk(nαk+k)2(mba)nαk(CDα,kb+f)(mb)+(CDα,kmbf)(a)|(mba)(|f(n+1)(a)|+m|f(n+1)(b)|)[(2npαkp+11)1p]2[(2npαkp+1(npαkp+1))1p1]×((120(h(t))qdt)1q+(112(h(t))qdt)1q).

    Corollary 3.6. By setting η=0, θ=1 and k=1 in (3.1), the following inequality holds for (hm)-convex functions via Caputo fractional derivatives defined in [[24], Corollary 3.2]:

    |f(n)(mb)+f(n)(a)2Γ(nα+1)2(mba)nα(CDαb+f)(mb)+(CDαmbf)(a)|(mba)(|f(n+1)(a)|+m|f(n+1)(b)|)[(2npαp+11)1p]2[(2npαp+1(npαp+1))1p1]×((120(h(t))qdt)1q+(112(h(t))qdt)1q).

    Corollary 3.7. Taking θ=1 and h(t)=ts in (3.1), the following inequality holds for exponentially (s,m)-convex functions:

    |f(n)(mb)+f(n)(a)2kΓk(nαk+k)2(mba)nαk(CDα,kb+f)(mb)+(1)n(CDα,kmbf)(a)|(mba)(|f(n+1)(a)eηa|+m|f(n+1)(b)eηb|)2×{(2nαk+s12nαk+s(nαk+s+1)+(2npαkp+11)1p(2qs+11)1q(2npαkp+1(npαkp+1))1p(2qs+1(qs+1))1q)}.

    Corollary 3.8. Choosing η=0, θ=1, m=1, h(t)=t and k=1 in (3.1), the following inequality holds for convex functions via Caputo fractional derivatives:

    |f(n)(b)+f(n)(a)2Γ(nα+1)2(ba)nα(CDαb+f)(b)+(CDαbf)(a)|(ba)(|f(n+1)(a)|+|f(n+1)(b)|)[(2npαp+11)1p((2q+11)1q+1)]2[((2npαp+1(npαp+1))1p1)(2q+1(q+1))1q].

    In this paper, some inequalities of Hadamard type for exponentially (α,hm)–convex functions via Caputo k–fractional derivatives are obtained. By applied integral identity including the (n+1)–order derivative of a given function via Caputo k–fractional derivatives, we given some new of its related integral inequalities results. Some new results are given and know results are recaptured as special cases from our results. Since convexity and (exponentially (α,hm)–convexity) have large applications in many mathematical areas, they can be applied to obtain several results in convex analysis, special functions, quantum mechanics, related optimization theory, mathematical inequalities and may stimulate further research in different areas of pure and applied sciences.

    The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.

    The authors A. Mukheimer and T. Abdeljawad would like to thank Prince Sultan University for paying APC and for the support through the TAS research lab. The work was also supported by the Higher Education Commission of Pakistan.

    The authors declare no conflict of interest.



    [1] J. Rohn, A theorem of the alternatives for the equation Ax+B|x| = b, Linear Multilinear A., 52 (2004), 421–426. https://doi.org/10.1080/0308108042000220686 doi: 10.1080/0308108042000220686
    [2] O. L. Mangasarian, Absolute value programming, Comput. Optim. Appl., 36 (2007), 43–53. https://doi.org/10.1007/s10589-006-0395-5 doi: 10.1007/s10589-006-0395-5
    [3] J. L. Dong, M. Q. Jiang, A modified modulus method for symmetric positive‐definite linear complementarity problems, Numer. Linear Algebra Appl., 16 (2009), 129–143. https://doi.org/10.1002/nla.609 doi: 10.1002/nla.609
    [4] O. L. Mangasarian, R. R. Meyer, Absolute value equations, Linear Algebra Appl., 419 (2006), 359–367. https://doi.org/10.1016/j.laa.2006.05.004 doi: 10.1016/j.laa.2006.05.004
    [5] L. Abdallah, M. Haddou, T. Migot, Solving absolute value equation using complementarity and smoothing functions, J. Comput. Appl. Math., 327 (2018), 196–207. https://doi.org/10.1016/j.cam.2017.06.019 doi: 10.1016/j.cam.2017.06.019
    [6] Z. Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems, Numer. Linear Algebra Appl., 17 (2010), 917–933. https://doi.org/10.1002/nla.680 doi: 10.1002/nla.680
    [7] J. Rohn, Systems of linear interval equations, Linear Algebra Appl., 126 (1989), 39–78. https://doi.org/10.1016/0024-3795(89)90004-9 doi: 10.1016/0024-3795(89)90004-9
    [8] L. Caccetta, B. Qu, G. L. Zhou, A globally and quadratically convergent method for absolute value equations, Comput. Optim. Appl., 48 (2011), 45–58. https://doi.org/10.1007/s10589-009-9242-9 doi: 10.1007/s10589-009-9242-9
    [9] O. L. Mangasarian, A generalized Newton method for absolute value equations, Optim. Lett., 3 (2009), 101–108. https://doi.org/10.1007/s11590-008-0094-5 doi: 10.1007/s11590-008-0094-5
    [10] A. Wang, Y. Cao, J. X. Chen, Modified Newton-type iteration methods for generalized absolute value equations, J. Optim. Theory. Appl., 181 (2019), 216–230. https://doi.org/10.1007/s10957-018-1439-6 doi: 10.1007/s10957-018-1439-6
    [11] N. Zainali, T. Lotfifi, On developing a stable and quadratic convergent method for solving absolute value equation, J. Comput. Appl. Math., 330 (2018), 742–747. https://doi.org/10.1016/j.cam.2017.07.009 doi: 10.1016/j.cam.2017.07.009
    [12] H. Y. Zhou, S. L. Wu, C. X. Li, Newton-based matrix splitting method for generalized absolute value equation, J. Comput. Appl. Math., 394 (2021), 113578. https://doi.org/10.1016/j.cam.2021.113578 doi: 10.1016/j.cam.2021.113578
    [13] Y. Cao, Q. Shi, S. L. Zhu, A relaxed generalized Newton iteration method for generalized absolute value equations, AIMS Math., 6 (2021), 1258–1275. https://doi.org/10.3934/math.2021078 doi: 10.3934/math.2021078
    [14] R. Ali, I. Khan, A. Ali, Two new generalized iteration methods for solving absolute value equations using M-matrix, AIMS Math., 7 (2022), 8176–8187. https://doi.org/10.3934/math.2022455 doi: 10.3934/math.2022455
    [15] A. Khan, J. Iqbal, A. Akgül, R. Alia, Y. Du, A. Hussain, et al., A Newton-type technique for solving absolute value equations, Alexandria Eng. J., 2022. https://doi.org/10.1016/j.aej.2022.08.052 doi: 10.1016/j.aej.2022.08.052
    [16] R. Ali, K. Pan, The solution of the absolute value equations using two generalized accelerated overrelaxation methods, Asian-Eur. J. Math., 15 (2022), 2250154. https://doi.org/10.1142/S1793557122501546 doi: 10.1142/S1793557122501546
    [17] R. Ali, K. Pan, The new iteration methods for solving absolute value equations, Appl. Math., 2021, 1–14. https://doi.org/10.21136/AM.2021.0055-21 doi: 10.21136/AM.2021.0055-21
    [18] R. Ali, K. Pan, Two new fixed point iterative schemes for absolute value equations, Japan J. Indust. Appl. Math., 2022, 1–12. https://doi.org/10.1007/s13160-022-00526-x doi: 10.1007/s13160-022-00526-x
    [19] P. Guo, S. L Wu, C. X Li, On the SOR-like iteration method for solving absolute value equations, Appl. Math. Lett., 97 (2019), 107–113. https://doi.org/10.1016/j.aml.2019.03.033 doi: 10.1016/j.aml.2019.03.033
    [20] X. Dong, X. H. Shao, H. L. Shen, A new SOR-like method for solving absolute value equations, Appl. Numer. Math., 156 (2020), 410–421. https://doi.org/10.1016/j.apnum.2020.05.013 doi: 10.1016/j.apnum.2020.05.013
    [21] Y. F. Ke, C. F. Ma, SOR-like iteration method for solving absolute value equations, Appl. Math. Comput., 311 (2017), 195–202. https://doi.org/10.1016/j.amc.2017.05.035 doi: 10.1016/j.amc.2017.05.035
    [22] C. R. Chen, Y. N. Yang, D. M. Yu, D. R. Han, An inverse-free dynamical system for solving the absolute value equations, Appl. Numer. Math., 168 (2021), 170–181. https://doi.org/10.1016/j.apnum.2021.06.002 doi: 10.1016/j.apnum.2021.06.002
    [23] A. Mansoori, M. Erfanian, A dynamic model to solve the absolute value equations, J. Comput. Appl. Math., 333 (2018), 28–35. https://doi.org/10.1016/j.cam.2017.09.032 doi: 10.1016/j.cam.2017.09.032
    [24] A. Mansoori, M. Eshaghnezhad, S. Effati, An efficient neural network model for solving the absolute value equations, IEEE T. Circuits-Ⅱ, 65 (2017), 391–395. https://doi.org/10.1109/TCSII.2017.2750065 doi: 10.1109/TCSII.2017.2750065
    [25] M. Dehghan, A. Shirilord, Matrix multisplitting Picard-iterative method for solving generalized absolute value matrix equation, Appl. Numer. Math., 158 (2020), 425–438. https://doi.org/10.1016/j.apnum.2020.08.001 doi: 10.1016/j.apnum.2020.08.001
    [26] D. K. Salkuyeh, The Picard–HSS iteration method for absolute value equations, Optim. Lett., 8 (2014), 2191–2202. https://doi.org/10.1007/s11590-014-0727-9 doi: 10.1007/s11590-014-0727-9
    [27] J. Rohn, V. Hooshyarbakhsh, R. Farhadsefat, An iterative method for solving absolute value equations and sufficient conditions for unique solvability, Optim. Lett., 8 (2014), 35–44. https://doi.org/10.1007/s11590-012-0560-y doi: 10.1007/s11590-012-0560-y
    [28] D. F. Han, The majorant method and convergence for solving nondifferentiable equations in Banach space, Appl. Math. Comput., 118 (2001), 73–82. https://doi.org/10.1016/S0096-3003(99)00183-6 doi: 10.1016/S0096-3003(99)00183-6
    [29] G. H. Golub, C. F. Van Loan, Matrix computations, 3 Eds., Johns Hopkins University Press, 2013.
    [30] A. Frommer, G. Mayer, Convergence of relaxed parallel multisplitting methods, Linear Algebra Appl., 119 (1989), 141–152. https://doi.org/10.1016/0024-3795(89)90074-8 doi: 10.1016/0024-3795(89)90074-8
    [31] S. L. Wu, C. X. Li, Two-sweep modulus-based matrix splitting iteration methods for linear complementarity problems, J. Comput. Appl. Math., 302 (2016), 327–339. https://doi.org/10.1016/j.cam.2016.02.011 doi: 10.1016/j.cam.2016.02.011
  • This article has been cited by:

    1. Shuhua Wang, Convergence of online learning algorithm with a parameterized loss, 2022, 7, 2473-6988, 20066, 10.3934/math.20221098
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1973) PDF downloads(102) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog