Processing math: 86%
Research article

Study of nonlinear thermal convection of ternary nanofluid within Darcy-Brinkman porous structure with time dependent heat source/sink

  • These authors contributed equally to this work and are co-first authors
  • The dynamical behaviour and thermal transportation feature of mixed convective Casson bi-phasic flows of water-based ternary Hybrid nanofluids with different shapes are examined numerically in a Darcy- Brinkman medium bounded by a vertical elongating slender concave-shaped surface. The mathematical framework of the present flow model is developed properly by adopting the single-phase approach, whose solid phase is selected to be metallic or metallic oxide nanoparticles. Besides, the influence of thermal radiation is taken into consideration in the presence of an internal variable heat generation. A set of feasible similarity transformations are applied for the conversion of the governing PDEs into a nonlinear differential structure of coupled ODEs. An advanced differential quadrature algorithm is employed herein to acquire accurate numerical solutions for momentum and energy equations. Results of the conducted parametric study are explained and revealed in graphs using bvp5c in MATLAB to solve the governing system. The solution with three mixture compositions is provided (Type-I and Type-II). Al2O3 (Platelet), GNT (Cylindrical), and CNTs (Spherical), Type-II mixture of copper (Cylindrical), silver (Platelet), and copper oxide (Spherical). In comparison to Type-I ternary combination Type-II ternary mixtures is lesser in terms of the temperature distribution. The skin friction coefficient is more in Type-1 compared to Type-2.

    Citation: Kiran Sajjan, N. Ameer Ahammad, C. S. K. Raju, M. Karuna Prasad, Nehad Ali Shah, Thongchai Botmart. Study of nonlinear thermal convection of ternary nanofluid within Darcy-Brinkman porous structure with time dependent heat source/sink[J]. AIMS Mathematics, 2023, 8(2): 4237-4260. doi: 10.3934/math.2023211

    Related Papers:

    [1] Muhammad Riaz, Umar Ishtiaq, Choonkil Park, Khaleel Ahmad, Fahim Uddin . Some fixed point results for ξ-chainable neutrosophic and generalized neutrosophic cone metric spaces with application. AIMS Mathematics, 2022, 7(8): 14756-14784. doi: 10.3934/math.2022811
    [2] Fahim Uddin, Umar Ishtiaq, Naeem Saleem, Khaleel Ahmad, Fahd Jarad . Fixed point theorems for controlled neutrosophic metric-like spaces. AIMS Mathematics, 2022, 7(12): 20711-20739. doi: 10.3934/math.20221135
    [3] Naeem Saleem, Salman Furqan, Mujahid Abbas, Fahd Jarad . Extended rectangular fuzzy b-metric space with application. AIMS Mathematics, 2022, 7(9): 16208-16230. doi: 10.3934/math.2022885
    [4] Fahim Ud Din, Khalil Javed, Umar Ishtiaq, Khalil Ahmed, Muhammad Arshad, Choonkil Park . Existence of fixed point results in neutrosophic metric-like spaces. AIMS Mathematics, 2022, 7(9): 17105-17122. doi: 10.3934/math.2022941
    [5] Tayebe Lal Shateri, Ozgur Ege, Manuel de la Sen . Common fixed point on the bv(s)-metric space of function-valued mappings. AIMS Mathematics, 2021, 6(2): 1065-1074. doi: 10.3934/math.2021063
    [6] Umar Ishtiaq, Khaleel Ahmad, Muhammad Imran Asjad, Farhan Ali, Fahd Jarad . Common fixed point, Baire's and Cantor's theorems in neutrosophic 2-metric spaces. AIMS Mathematics, 2023, 8(2): 2532-2555. doi: 10.3934/math.2023131
    [7] Sumaiya Tasneem Zubair, Kalpana Gopalan, Thabet Abdeljawad, Nabil Mlaiki . Novel fixed point technique to coupled system of nonlinear implicit fractional differential equations in complex valued fuzzy rectangular b-metric spaces. AIMS Mathematics, 2022, 7(6): 10867-10891. doi: 10.3934/math.2022608
    [8] Abdullah Shoaib, Tahair Rasham, Giuseppe Marino, Jung Rye Lee, Choonkil Park . Fixed point results for dominated mappings in rectangular b-metric spaces with applications. AIMS Mathematics, 2020, 5(5): 5221-5229. doi: 10.3934/math.2020335
    [9] Umar Ishtiaq, Aftab Hussain, Hamed Al Sulami . Certain new aspects in fuzzy fixed point theory. AIMS Mathematics, 2022, 7(5): 8558-8573. doi: 10.3934/math.2022477
    [10] Nurcan Bilgili Gungor . Some fixed point results via auxiliary functions on orthogonal metric spaces and application to homotopy. AIMS Mathematics, 2022, 7(8): 14861-14874. doi: 10.3934/math.2022815
  • The dynamical behaviour and thermal transportation feature of mixed convective Casson bi-phasic flows of water-based ternary Hybrid nanofluids with different shapes are examined numerically in a Darcy- Brinkman medium bounded by a vertical elongating slender concave-shaped surface. The mathematical framework of the present flow model is developed properly by adopting the single-phase approach, whose solid phase is selected to be metallic or metallic oxide nanoparticles. Besides, the influence of thermal radiation is taken into consideration in the presence of an internal variable heat generation. A set of feasible similarity transformations are applied for the conversion of the governing PDEs into a nonlinear differential structure of coupled ODEs. An advanced differential quadrature algorithm is employed herein to acquire accurate numerical solutions for momentum and energy equations. Results of the conducted parametric study are explained and revealed in graphs using bvp5c in MATLAB to solve the governing system. The solution with three mixture compositions is provided (Type-I and Type-II). Al2O3 (Platelet), GNT (Cylindrical), and CNTs (Spherical), Type-II mixture of copper (Cylindrical), silver (Platelet), and copper oxide (Spherical). In comparison to Type-I ternary combination Type-II ternary mixtures is lesser in terms of the temperature distribution. The skin friction coefficient is more in Type-1 compared to Type-2.



    The idea of metric spaces, as well as the Banach contraction principle, provide the foundation of fixed point theory. Thousands of academics are drawn to spaciousness by axiomatic interpretation of metric space. There have been several generalizations on metric spaces thus far. This demonstrates the beauty, allure, and growth of the notion of metric spaces.

    Zadeh [1] developed the concept of fuzzy sets. The adjective "fuzzy" appears to be a popular and common one in recent investigations of the logical and set theoretical underpinnings of mathematics. The key explanation for this rapid rise, in our opinion, is simple. The world around us is full of uncertainty for the following reasons: the information we gather from our surroundings, the concepts we employ, and the data arising from our observations or measurements are, in general, hazy and erroneous. As a result, every formal representation of the real world, or some of its properties, is always an approximation and idealization of the actual reality. Fuzzy sets, fuzzy orderings, fuzzy languages, and other concepts enable us to handle and investigate the degree of uncertainty indicated above in a strictly mathematical and formal manner. The fuzzy set notion has succeeded in moving many mathematical structures within its concept. The concept of continuous norms was established by Schweizer and Sklar [2] The concept of fuzzy metric spaces was developed by Kramosil and Michalek [3]. They extended the concept of fuzziness to traditional conceptions of metric and metric spaces via continuous norms and contrasted the results to those derived from other, particularly probabilistic, statistical extensions of metric spaces. The fuzzy version of the Banach contraction principle in fuzzy metric spaces was introduced by Garbiec [4]. UrReham et al. [5] demonstrated several αϕ fuzzy cone contraction findings using an integral type.

    Only membership functions are dealt with in fuzzy metric spaces. Park [6] constructed an intuitionistic fuzzy metric space that is utilized to deal with both membership and non-membership functions. Konwar [7] introduced the idea of an intuitionistic fuzzy b-metric space and demonstrated various fixed point theorems. In [8], Kiricsci and Simsek established the concept of neutrosophic metric spaces, which are utilized to deal with membership, non-membership, and naturalness. Simsek and Kiricsci [9] demonstrated some incredible fixed-point solutions in the framework of neutrosophic metric spaces. In the setting of neutrosophic metric spaces, Sowndrarajan et al. [10] demonstrated certain fixed point findings. Hussain, Al Sulami, and Ishtiaq [11] developed the concept of neutrosophic rectangular metric space and established fixed point theorems on it.

    The idea of an orthogonal set, as well as many various types of orthogonality, has several applications in mathematics. In 2017, Eshaghi Gordji, Ramezani, De la Sen, and Cho [12] proposed a new notion of orthogonality in metric spaces and offered a framework to expand the findings in the setting of metric space with new orthogonality and also proved several fixed point theorems. Eshaghi Gordji and Habibi [13] modified the concept in 2017 to establish the fixed point theorem in generalized orthogonal metric space. Many writers [14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] have explored orthogonal contractive type mappings and gotten significant results.

    In this paper, we present the concept of an orthogonal neutrosophic rectangular metric space and prove fixed-point theorems.

    In this section, the authors provide some definitions to understand the main section.

    Definition 2.1. (See[6,Definition 2.1]) A binary operation :[0,1]×[0,1][0,1] is called a continuous triangle norm if:

    (1) ιν=νι, for all ι,ν[0,1];

    (2) is continuous;

    (3) ι1=ι, for all ι[0,1];

    (4) (ιν)η=ι(νη), for all ι,ν,η[0,1];

    (5) If ιη and νd, with ι,ν,η,d[0,1], then ινηd.

    Definition 2.2. (See[6,Definition 2.2]) A binary operation :[0,1]×[0,1][0,1] is called a continuous triangle co-norm if:

    (1) ιν=νι, for all ι,ν[0,1];

    (2) is continuous;

    (3) ι0=0, for all ι[0,1];

    (4) (ιν)η=ι(νη), for all ι,ν,η[0,1];

    (5) If ιη and ηd, with ι,ν,η,d[0,1], then ινηd.

    Definition 2.3. (See[7,Definition 2.1]) Take Γ. Let be a continuous t-norm, be a continuous t-co-norm, b1 and Ψ,Φ be fuzzy sets on Γ×Γ×(0,+). If (Γ,Ψ,Φ,,) fullfils all ϱ,MΓ and υ,ζ>0:

    (I) Ψ(ϱ,M,ζ)+Φ(ϱ,M,ζ)1;

    (II) Ψ(ϱ,M,ζ)>0;

    (III) Ψ(ϱ,M,ζ)=1 if and only if ϱ=M;

    (IV) Ψ(ϱ,M,ζ)=Ψ(M,ϱ,ζ);

    (V) Ψ(ϱ,μ,b(ζ+υ))Ψ(ϱ,M,ζ)Ψ(M,μ,υ);

    (VI) Ψ(ϱ,M,) is a non-decreasing function of R+ and limζ+Ψ(ϱ,M,ζ)=1;

    (VII) Φ(ϱ,M,ζ)>0;

    (VIII) Φ(ϱ,M,ζ)=0 if and only if ϱ=M;

    (IX) Φ(ϱ,M,ζ)=Φ(M,ϱ,ζ);

    (X) Φ(ϱ,μ,b(ζ+υ))Φ(ϱ,M,ζ)Φ(M,μ,υ);

    (XI) Φ(ϱ,M,) is a non-increasing function of R+ and limζ+Φ(ϱ,M,ζ)=0.

    Then, (Γ,Ψ,Φ,,) is an intuitionistic fuzzy b-metric space.

    Definition 2.4. (See[8,Definition 3.1]) Let Γ, is a continuous t-norm, be a continuous t-co-norm, and Ψ,Φ,χ are neutrosophic sets on Γ×Γ×(0,+) is said to be a neutosophic metric on Γ, if for all ϱ,M,μΓ, the following conditions are satisfied:

    (1) Ψ(ϱ,M,ζ)+Φ(ϱ,M,ζ)+χ(ϱ,M,ζ)3;

    (2) Ψ(ϱ,M,ζ)>0;

    (3) Ψ(ϱ,M,ζ)=1 for all ζ>0, if and only if ϱ=M;

    (4) Ψ(ϱ,M,ζ)=Ψ(M,ϱ,ζ);

    (5) Ψ(ϱ,μ,ζ+υ)Ψ(ϱ,M,ζ)Ψ(M,μ,υ);

    (6) Ψ(ϱ,M,):(0,+)[0,1] is continuous and limζ+Ψ(ϱ,M,ζ)=1;

    (7) Φ(ϱ,M,ζ)<1;

    (8) Φ(ϱ,M,ζ)=0 for all ζ>0, if and only if ϱ=M;

    (9) Φ(ϱ,M,ζ)=Φ(M,ϱ,ζ);

    (10) Φ(ϱ,μ,ζ+υ)Φ(ϱ,M,ζ)Φ(M,μ,υ);

    (11) Φ(ϱ,M,):(0,+)[0,1] is continuous and limζ+Φ(ϱ,M,ζ)=0;

    (12) χ(ϱ,M,ζ)<1;

    (13) χ(ϱ,M,ζ)=0 for all ζ>0, if and only if ϱ=M;

    (14) χ(ϱ,M,ζ)=χ(M,ϱ,ζ);

    (15) χ(ϱ,μ,ζ+υ)χ(ϱ,M,ζ)χ(M,μ,υ);

    (16) χ(ϱ,M,):(0,+)[0,1] is continuous and limζ+χ(ϱ,M,ζ)=0;

    (17) If ζ0, then Ψ(ϱ,M,ζ)=0,Φ(ϱ,M,ζ)=1 and χ(ϱ,M,ζ)=1.

    Then, (Γ,Ψ,Φ,χ,,) is called a neutrosophic metric space.

    Definition 2.5. (See[11,Definition 12]) Let Γ and be a continuous t-norm, be a continuous t-co-norm and (Ψ,Φ,D) be neutrosophic sets on Γ×Γ×(0,+) is said to be a neutrosophic rectangular metric on Γ, if for any ϱ,μΓ and all distinct x,MΓ{ϱ,μ}, then the following conditions are satisfied:

    (i) Ψ(ϱ,M,ζ)+Φ(ϱ,M,ζ)+D(ϱ,M,ζ)3;

    (ii) Ψ(ϱ,M,ζ)>0;

    (iii) Ψ(ϱ,M,ζ)=1 for all ζ>0, if and only if ϱ=M;

    (iv) Ψ(ϱ,M,ζ)=Ψ(M,ϱ,ζ);

    (v) Ψ(ϱ,μ,ζ+υ+ϖ)Ψ(ϱ,M,ζ)Ψ(M,x,υ)Ψ(x,μ,ϖ);

    (vi) Ψ(ϱ,M,):(0,+)[0,1] is continuous and limζ+Ψ(ϱ,M,ζ)=1;

    (vii) Φ(ϱ,M,ζ)<1;

    (viii) Φ(ϱ,M,ζ)=0 for all ζ>0, if and only if ϱ=M;

    (ix) Φ(ϱ,M,ζ)=Φ(M,ϱ,ζ);

    (x) Φ(ϱ,μ,ζ+υ+ϖ)Φ(ϱ,M,ζ)Φ(M,x,υ)Φ(x,μ,ϖ);

    (xi) Φ(ϱ,M,):(0,+)[0,1] is continuous and limζ+Φ(ϱ,M,ζ)=0;

    (xii) D(ϱ,M,ζ)<1;

    (xiii) D(ϱ,M,ζ)=0 for all ζ>0, if and only if ϱ=M;

    (xiv) D(ϱ,M,ζ)=D(M,ϱ,ζ);

    (xv) D(ϱ,μ,ζ+υ+ϖ)D(ϱ,M,ζ)D(M,x,υ)D(x,μ,ϖ);

    (xvi) D(ϱ,M,):(0,+)[0,1] is continuous and limζ+D(ϱ,M,ζ)=0;

    (xvii) If ζ0, then Ψ(ϱ,M,ζ)=0,Φ(ϱ,M,ζ)=1 and χ(ϱ,M,ζ)=1.

    Then, (Γ,Ψ,Φ,D,,) is called a neutrosophic rectangular metric space.

    Example 2.1. Let Γ=DΥ, where D={0,12,13,14}, Υ=[1,2] and d:Γ×Γ[0,+) as follows:

    {d(ϱ,M)=d(M,ϱ) for allϱ,MΓ,d(ϱ,M)=0 if and only ifϱ=M,

    and

    {d(0,12)=d(12,13)=0.2,d(0,13)=d(13,14)=0.02,d(0,14)=d(12,14)=0.5,d(ϱ,M)=|ϱM|, otherwise.

    Define Ψ,Φ,D:Γ×Γ×(0,+)[0,1] as

    Ψ(ϱ,M,ζ)=ζζ+d(ϱ,M),Φ(ϱ,M,ζ)=d(ϱ,M)ζ+d(ϱ,M),D(ϱ,M,ζ)=d(ϱ,M)ζ.

    Then, we have

    Ψ(ϱ,μ,ζ+υ+ϖ)Ψ(ϱ,M,ζ)Ψ(M,x,υ)Ψ(x,μ,ϖ).
    Φ(ϱ,μ,ζ+υ+ϖ)Φ(ϱ,M,ζ)Φ(x,μ,υ)Φ(x,μ,ϖ).
    D(ϱ,μ,ζ+υ+ϖ)D(ϱ,M,ζ)D(M,x,υ)D(x,μ,ϖ).

    Then (Γ,Ψ,Φ,D,,) is a neutrosophic rectangular metric space with continuous t-norm ιΛ=ιΛ and continuous t-co-norm ιΛ=max{ι,Λ}.

    On the other hand, Eshaghi Gordji et al. [12] introduced the basic concept as follows:

    Definition 2.6. (See[12,Definition 2.1]) Let Γ be a non-empty set and binary relation as Γ×Γ. If satisfies condition

    thereexistsϱ0Γ:(ϱΓ,ϱϱ0) or(ϱΓ,ϱ0ϱ),

    then, (Γ,) is said to be an orthogonal set(O-set).

    Example 2.2. (See[12,Example 2.4]) Let Γ=Z. Define the binary relation on Γ by mn if there exists kZ such that m=kn. It is easy to see that 0n for all nZ. Hence, (Γ,) is an O-set.

    Definition 2.7. (See[12,Definition 3.1]) Let (Γ,) be an O-set. A sequence {ϱβ}βN is called an orthogonal sequence (O-sequence) if

    (β,ϱβϱβ+1)or(β,ϱβ+1ϱβ).

    Definition 2.8. (See[12,Definition 3.2]) A mapping ω:ΓΓ is orthogonal continuous (O-continuous) in ϱΓ if for each O-sequence {ϱβ}βNΓ such that ϱβϱ, ωϱβωϱ. Also ω is said to be -continuous on Γ if ω is -continuous at each ϱΓ.

    Definition 2.9. (See[12,Definition 3.10]) Let (Γ,) be an O-set. A mapping ω:ΓΓ is said to be -preserving if ωϱωM, then ϱM.

    Ishtiaq, Javed, Uddin, De la Sen, Ahmed, and Ali [30] introduced the notion of an orthogonal neutrosophic metric spaces and proved fixed point results on orthogonal neutrosophic metric spaces as follows

    Theorem 2.1. (See[30,Theorem 3]) Let (Γ,Ψ,Φ,D,,,) be an O-complete neutrosophic metric space such that

    limζ+Ψ(ϱ,M,ζ)=1,limζ+Φ(ϱ,M,ζ)=0,limζ+D(ϱ,M,ζ)=0,

    for all ϱ,MΓ and ζ>0. Let ω:ΓΓ be an -continuous, -contraction and -preserving mapping. Then ω has a unique fixed point say ϱΓ. Furthermore

    limζ+Ψ(ωβϱ,ϱ,ζ)=1,limζ+Φ(ωβϱ,ϱ,ζ)=0,limζ+D(ωβϱ,ϱ,ζ)=0,

    for all ϱ,MΓ and ζ>0.

    Motivated by the above work, we introduce the notion of an orthogonal neutrosophic rectangular metric space and prove fixed-point theorems.

    In this part, we present orthogonal neutrosophic rectangular metric space and demonstrate some fixed-point results.

    Definition 3.1. Let Γ and be a continuous t-norm, be a continuous t-co-norm and Ψ,Φ, and D be neutrosophic sets on Γ×Γ×(0,+) is said to be a orthogonal neutrosophic rectangular metric on Γ, if for any ϱ,μΓ and all distinct x,MΓ{ϱ,μ}, the following conditions are satisfied:

    (i) Ψ(ϱ,M,ζ)+Φ(ϱ,M,ζ)+D(ϱ,M,ζ)3 such that ϱM and Mϱ;

    (ii) Ψ(ϱ,M,ζ)>0 such that ϱM and Mϱ;

    (iii) Ψ(ϱ,M,ζ)=1 for all ζ>0, if and only if ϱ=M such that ϱM and Mϱ;

    (iv) Ψ(ϱ,M,ζ)=Ψ(M,ϱ,ζ) such that ϱM and Mϱ;

    (v) Ψ(ϱ,μ,ζ+υ+ϖ)Ψ(ϱ,M,ζ)Ψ(M,x,υ)Ψ(x,μ,ϖ) such that ϱμ, ϱM, Mx and xμ;

    (vi) Ψ(ϱ,M,):(0,+)[0,1] is continuous and limζ+Ψ(ϱ,M,ζ)=1 such that ϱM and Mϱ;

    (vii) Φ(ϱ,M,ζ)<1 such that ϱM and Mϱ;

    (viii) Φ(ϱ,M,ζ)=0 for all ζ>0, if and only if ϱ=M such that ϱM and Mϱ;

    (ix) Φ(ϱ,M,ζ)=Φ(M,ϱ,ζ) such that ϱM and Mϱ;

    (x) Φ(ϱ,μ,ζ+υ+ϖ)Φ(ϱ,M,ζ)Φ(M,x,υ)Φ(x,μ,ϖ) such that ϱμ, ϱM, Mx and xμ;

    (xi) Φ(ϱ,M,):(0,+)[0,1] is continuous and limζ+Φ(ϱ,M,ζ)=0 such that ϱM and Mϱ;

    (xii) D(ϱ,M,ζ)<1 such that ϱM and Mϱ;

    (xiii) D(ϱ,M,ζ)=0 for all ζ>0, if and only if ϱ=M such that ϱM and Mϱ;

    (xiv) D(ϱ,M,ζ)=D(M,ϱ,ζ) such that ϱM and Mϱ;

    (xv) D(ϱ,μ,ζ+υ+ϖ)D(ϱ,M,ζ)D(M,x,υ)D(x,μ,ϖ) such that ϱμ, ϱM, Mx and xμ;

    (xvi) D(ϱ,M,):(0,+)[0,1] is continuous and limζ+D(ϱ,M,ζ)=0 such that ϱM and Mϱ;

    (xvii) If ζ0, then Ψ(ϱ,M,ζ)=0,Φ(ϱ,M,ζ)=1 and χ(ϱ,M,ζ)=1 such that ϱM and Mϱ.

    Then, (Γ,Ψ,Φ,D,,,) is called an orthogonal neutrosophic rectangular metric space(O-neutrosophic rectangular metric space).

    Example 3.1. Let Γ={1,2,3,4} and a binary relation by ϱM iff ϱ+M0. Define Ψ,Φ,D:Γ×Γ×(0,+)[0,1] as

    Ψ(ϱ,M,ζ)={1, if ϱ=M,ζζ+max{ϱ,M}, if  otherwise,Φ(ϱ,M,ζ)={0, if ϱ=M,max{ϱ,M}ζ+max{ϱ,M}, if  otherwise,

    and

    D(ϱ,M,ζ)={0, if ϱ=M,max{ϱ,M}ζ, if  otherwise,

    Then, (Γ,Ψ,Φ,D,,,) is an orthogonal neutrosophic rectangular metric space with continuous t-norm ιν=ιν and continuous t-co-norm, ιΛ=max{ι,Λ}.

    Proof. Here, we prove (v), (x) and (xv) others are obvious.

    Let ϱ=1,M=2, x=3 and μ=4. Then

    Ψ(1,4,ζ+υ+ϖ)=ζ+υ+ϖζ+υ+ϖ+max{1,4}=ζ+υ+ϖζ+υ+ϖ+4.

    On the other hand,

    Ψ(1,2,ζ)=ζζ+max{1,2}=ζζ+2=ζζ+2,
    Ψ(2,3,υ)=υυ+max{2,3}=υυ+3=υυ+3

    and

    Ψ(3,4,ϖ)=ϖϖ+max{3,4}=ϖϖ+4=ϖϖ+4.

    That is,

    ζ+υ+ϖζ+υ+ϖ+3ζζ+2υυ+3.ϖϖ+4.

    Then, the above is satisfies for all ζ,υ,ϖ>0. Hence,

    Ψ(ϱ,μ,ζ+υ+ϖ)Ψ(ϱ,M,ζ)Ψ(M,x,υ)Ψ(x,μ,ϖ).

    Now,

    Φ(1,4,ζ+υ+ϖ)=max{1,4}ζ+υ+ϖ+max{1,4}=4ζ+υ+ϖ+4.

    On the other hand,

    Φ(1,2,ζ)=max{1,2}ζ+max{1,2}=2ζ+2=2ζ+2,
    Φ(2,3,υ)=max{2,3}υ+max{2,3}=3υ+3=3υ+3

    and

    Φ(3,4,ϖ)=max{3,4}ϖ+max{3,4}=4ϖ+4=4ϖ+4.

    That is,

    4ζ+υ+ϖ+4max{2ζ+2,3υ+3,4ϖ+4}.

    Hence,

    Φ(ϱ,μ,ζ+υ+ϖ)Φ(ϱ,M,ζ)Φ(x,μ,υ)Φ(x,μ,ϖ),

    for all ζ,υ,ϖ>0. Now,

    D(1,3,ζ+υ+ϖ)=max{1,3}ζ+υ+ϖ=3ζ+υ+ϖ.

    On the other hand,

    D(1,2,ζ)=max{1,2}ζ=2ζ=2ζ,
    D(2,3,υ)=max{2,3}υ=3υ=3υ

    and

    D(3,4,ϖ)=max{3,4}ϖ=4ϖ=4ϖ.

    That is,

    3ζ+υ+ϖmax{2ζ,3υ,4ϖ}.

    Hence,

    D(ϱ,μ,ζ+υ+ϖ)D(ϱ,M,ζ)D(M,x,υ)D(x,μ,ϖ),

    for all ζ,υ>0. Hence, (Γ,Ψ,Φ,D,,,) is an orthogonal neutrosophic rectangular metric space.

    Remark 3.1. The preceding example also satisfies for continuous t-norm ιΛ=min{ι,Λ} and continuous t-co-norm ιΛ=max{ι,Λ}.

    Example 3.2. Let Γ=DΥ, where D={0,12,13,14} and Υ=[1,2]. Define a binary relation by ϱM iff ϱ+M0 and d:Γ×Γ[0,+) as follows:

    {d(ϱ,M)=d(M,ϱ) forallϱ,MΓ,d(ϱ,M)=0 iffϱ=M,

    and

    {d(0,12)=d(12,13)=0.2,d(0,13)=d(13,14)=0.02,d(0,14)=d(12,14)=0.5,d(ϱ,M)=|ϱM|,otherwise.

    Define Ψ,Φ,D:Γ×Γ×(0,+)[0,1] as

    Ψ(ϱ,M,ζ)=ζζ+d(ϱ,M),Φ(ϱ,M,ζ)=d(ϱ,M)ζ+d(ϱ,M),D(ϱ,M,ζ)=d(ϱ,M)ζ.

    Then, we have

    Ψ(ϱ,μ,ζ+υ+ϖ)Ψ(ϱ,M,ζ)Ψ(M,x,υ)Ψ(x,μ,ϖ),
    Φ(ϱ,μ,ζ+υ+ϖ)Φ(ϱ,M,ζ)Φ(x,μ,υ)Φ(x,μ,ϖ),
    D(ϱ,μ,ζ+υ+ϖ)D(ϱ,M,ζ)D(M,x,υ)D(x,μ,ϖ).

    Then (Γ,Ψ,Φ,D,,,) is an orthogonal neutrosophic rectangular metric space with continuous t-norm ιΛ=ιΛ and continuous t-co-norm ιΛ=max{ι,Λ}.

    Definition 3.2. Let (Γ,Ψ,Φ,D,,,) is an orthogonal neutrosophic rectangular metric space and {ϱβ} be an O-sequence in Γ. Then {ϱβ} is said to be:

    (a) an orthogonal convergent(O-convergent) exists if there exists ϱΓ such that

    limβ+Ψ(ϱβ,ϱ,ζ)=1,limβ+Φ(ϱβ,ϱ,ζ)=0,limβ+D(ϱβ,ϱ,ζ)=0 for allζ>0;

    (b) an orthogonal Cauchy sequence(O-Cauchy sequence), if and only if for each Λ>0,ζ>0, there exists β0N such that

    Ψ(ϱβ,ϱβ+M,ζ)1Λ,Φ(ϱβ,ϱβ+M,ζ)Λ,Φ(ϱβ,ϱβ+M,ζ)Λ for allβ,αβ0.

    If every O-Cauchy sequence is convergent in Γ, then (Γ,Ψ,Φ,D,,,) is called a complete orthogonal neutrosophic rectangular metric space.

    Definition 3.3. Let (Γ,Ψ,Φ,D,,,) is an orthogonal neutrosophic rectangular metric space, an open ball is then defined B(ϱ,r,ζ) with center ϱ, radius r,0<r<1 and ζ>0 as follows:

    B(ϱ,r,ζ)={MΓ:Ψ(ϱ,M,ζ)>1r,Φ(ϱ,M,ζ)<r,D(ϱ,M,ζ)<r}.

    Theorem 3.1. Every open ball is an open set in an orthogonal neutrosophic rectangular metric space.

    Proof. Consider B(k,r,ζ) be an open ball with center k and radius r. Assume rB(k,r,ζ). Therefore, (k,d,ζ)>1r,(k,d,ζ)<r,B(k,d,ζ)<r. There exists ζ3(0,ζ) such that (k,d,ζ3)>1r,(k,d,ζ3)<r, D(k,d,ζ3)<r due to (k,d,ζ)>1r. If we take r0=(k,d,ζ3), then for r0>1r,ϵ(0,1) will exist such that r0>1ϵ>1r. Given r0 and ϵ such that r0>1ϵ. Then r1,r2,r3,r4,r5,r6(0,1) will exist such that r0r1r2>1ϵ,(1r0)(1r3)(1r4)ϵ and (1r0)(1r5)(1r6)ϵ. Choose r7=max{r1,r2,r3,r4,r5,r6}. Consider the open ball B(d,1r7,ζ3). We will show that B(d,1r7,ζ3)B(k,r,ζ). If we take vB(d,1r7,ζ3), then (g,d,ζ3)>r7,(g,d,ζ3)<r7,B(g,d,ζ3)<r7 and (d,v,ζ3)>r7,(d,v,ζ3)<r7,B(d,v,ζ3)<r7. Then

    (k,v,ζ)(k,g,ζ3)(g,d,ζ3)(d,v,ζ3)r0r7r7r0r1r21ϵ>1r,(k,v,ζ)(k,g,ζ3)(g,d,ζ3)(d,v,ζ3)(1r0)(1r7)(1r7)(1r0)(1r3)(1r4)ϵ<r,B(k,v,ζ)B(k,g,ζ3)B(g,d,ζ3)B(d,v,ζ3)(1r0)(1r7)(1r7)(1r0)(1r5)(1r6)ϵ<r.

    It shows that vB(k,r,ζ) and B(d,1r7,ζ3)B(k,r,ζ).

    Theorem 3.2. Every orthogonal neutrosophic rectangular metric space is Hausdorff.

    Proof. Let (Γ,Ψ,Φ,D,,,) is an orthogonal neutrosophic rectangular metric space. Let ρ and M be any distinct points in Γ. Then, 0<Ψ(ϱ,M,ζ)<1, 0<Φ(ϱ,M,ζ)<1 and 0<D(ϱ,M,ζ)<1. Put r1=Ψ(ϱ,M,ζ), 1r2=Φ(ϱ,M,ζ), 1r3=D(ϱ,M,ζ) and r4=Ψ(ϱ,g,ζ3), 1r5=Φ(ϱ,g,ζ3),1r6=D(ϱ,g,ζ3) and r=max{r1,1r2,1r3,r4,1r5,1r6}. For each r0(r,1), there exists r7 and r8 such that r4r7r7r0, (1r5)(1r8)(1r8)1r0 and (1r6)(1r8)(1r8)1r0. Put r9=max{r7,r8} and consider the open balls B(ρ,1r9,ζ3) and B(M,1r9,ζ3). Then, clearly

    B(ρ,1r9,ζ3)B(M,1r9,ζ3)=.

    Suppose that vB(ρ,1r9,ζ3)B(M,1r9,ζ3). Then,

    r1=(ρ,v,ζ)(ρ,g,ζ3)(g,M,ζ3)(M,v,ζ3)r4r9r9r4r7r7r0>r1,1r2=(ρ,v,ζ)(ρ,g,ζ3)(g,M,ζ3)(M,v,ζ3)(1r5)(1r9)(1r9)(1r5)(1r8)(1r8)1r0<1r2,1r3=B(ρ,v,ζ)B(ρ,g,ζ3)B(g,M,ζ3)B(M,v,ζ3)(1r6)(1r9)(1r9)(1r6)(1r8)(1r8)1r0<1r3,

    which is a contradiction. Hence, (Γ,Ψ,Φ,D,,,) is Hausdorff.

    Lemma 3.1. Let {ϱβ} be an O-Cauchy sequence in orthogonal neutrosophic rectangular metric space (Γ,Ψ,Φ,D,,,) such that ϱβϱα whenever α,βN with βα. Then the O-sequence {ϱβ} can converge to, at most, one limit point.

    Proof. Contrarily, assume that ϱβϱ and ϱβM, for ϱM. Then, limβ+Ψ(ϱβ,ϱ,ζ)=1,limβ+Φ(ϱβ,ϱ,ζ)=0,limβ+D(ϱβ,ϱ,ζ)=0, and limβ+Ψ(ϱβ,M,ζ) = 1, limβ+Φ(ϱβ,M,ζ)=0,limβ+D(ϱβ,M,ζ)=0, for all ζ>0. Suppose

    Ψ(ϱ,M,ζ)Ψ(ϱ,ϱβ,ζ)Ψ(ϱβ,ϱβ+1,ζ)Ψ(ϱβ+1,M,ζ)111,asβ,+,Φ(ϱ,M,ζ)Φ(ϱ,ϱβ,ζ)Φ(ϱβ,ϱβ+1,ζ)Φ(ϱβ+1,M,ζ)000,asβ,+,D(ϱ,M,ζ)D(ϱ,ϱβ,ζ)D(ϱβ,ϱβ+1,ζ)D(ϱβ+1,M,ζ)000,asβ+.

    That is Ψ(ϱ,M,ζ)111=1,Φ(ϱ,M,ζ)000=0 and D(ϱ,M,ζ)000=0. Hence, ϱ=M.

    Lemma 3.2. Let (Γ,Ψ,Φ,D,,,) is an orthogonal neutrosophic rectangular metric space. If for some 0<σ<1 and for any ϱ,MΓ,ζ>0,

    Ψ(ϱ,M,ζ)Ψ(ϱ,M,ζσ),Φ(ϱ,M,ζ)Φ(ϱ,M,ζσ),D(ϱ,M,ζ)D(ϱ,M,ζσ), (3.1)

    then ϱ=M.

    Proof. (3.1) implies that

    Ψ(ϱ,M,ζ)Ψ(ϱ,M,ζσβ),Φ(ϱ,M,ζ)Φ(ϱ,M,ζσβ),D(ϱ,M,ζ)D(ϱ,M,ζσβ),βN,ζ>0.

    Now,

    Ψ(ϱ,M,ζ)limβ+Ψ(ϱ,M,ζσβ)=1,Φ(ϱ,M,ζ)limβ+Φ(ϱ,M,ζσβ)=0,D(ϱ,M,ζ)limβ+D(ϱ,M,ζσβ)=0,ζ>0.

    Also, by Definition of (iii), (viii), (xiii), that is, ϱ=M.

    Definition 3.4. Let (Γ,Ψ,Φ,D,,,) be an orthogonal neutrosophic rectangular metric space. A mapping ω:ΓΓ is an othogonal neutrosophic rectangular contraction type-1(-neutrosophic rectangular contraction type-1) if there exists 0<σ<1 such that

    Ψ(ωϱ,ωM,σζ)Ψ(ϱ,M,ζ),Φ(ωϱ,ωM,σζ)Φ(ϱ,M,ζ) andD(ωϱ,ωM,σζ)D(ϱ,M,ζ), (3.2)

    for all ϱ,MΓ with ϱM and ζ>0.

    Theorem 3.3. Let (Γ,Ψ,Φ,D,,,) be a complete orthogonal neutrosophic rectangular metric space and ω:ΓΓ be a mapping satisfying

    (a) ω is an -neutrosophic rectangular contraction type-1;

    (b) ω is an -preserving.

    Then ω has a unique fixed point.

    Proof. Since (Γ,) is an O-set,

     ϱ0Γ:(ϱΓ,ϱϱ0)or(ϱΓ,ϱ0ϱ).

    It follows that ϱ0ωϱ0 or ωϱ0ϱ0. Let

    ϱ1=ωϱ0,ϱ2=ωϱ1=ω2x0,......,ϱβ+1=ωϱβ=ωβ+1ϱ0

    for all βN{0}.

    If ϱβ0=ϱβ0+1 for any β0N{0}, then it is clear that ϱβ0 is a fixed point of ω. Assume that ϱβ0ϱβ0+1 for all β0N{0}. Since ω is -preserving, we have

    ϱβ0ϱβ0+1orϱβ0+1ϱβ0

    for all β0N{0}. This implies {ϱβ} is an O-sequence. Since -neutrosophic rectangular contraction type-1, we obtain

    Ψ(ϱβ,ϱβ+1,σζ)=Ψ(ωϱβ1,ωϱβ,σζ)Ψ(ϱβ1,ϱβ,ζ)Ψ(ϱβ2,ϱβ1,ζσ)Ψ(ϱβ3,ϱβ2,ζσ2)Ψ(ϱ0,ϱ1,ζσβ1),Φ(ϱβ,ϱβ+1,σζ)=Φ(ωϱβ1,ωϱβ,σζ)Φ(ϱβ1,ϱβ,ζ)Φ(ϱβ2,ϱβ1,ζσ)Φ(ϱβ3,ϱβ2,ζσ2)Φ(ϱ0,ϱ1,ζσβ1),

    and

    D(ϱβ,ϱβ+1,σζ)=D(ωϱβ1,ωϱβ,ζ)D(ϱβ1,ϱβ,ζ)D(ϱβ2,ϱβ1,ζσ)D(ϱβ3,ϱβ2,ζσ2)D(ϱ0,ϱ1,ζσβ1).

    We obtain

    Ψ(ϱβ,ϱβ+1,σζ)Ψ(ϱ0,ϱ1,ζσβ1),Φ(ϱβ,ϱβ+1,σζ)Φ(ϱ0,ϱ1,ζσβ1),D(ϱβ,ϱβ+1,σζ)D(ϱ0,ϱ1,ζσβ1). (3.3)

    Using (v), (x) and (xv), we have the following cases:

    Case 1. When i=2α+1, i.e., i is odd, then

    Ψ(ϱβ,ϱβ+2α+1,ζ)Ψ(ϱβ,ϱβ+1,ζ3)Ψ(ϱβ+1,ϱβ+2,ζ3)Ψ(ϱβ+2,ϱβ+2α+1,ζ3)Ψ(ϱβ,ϱβ+1,ζ3)Ψ(ϱβ+1,ϱβ+2,ζ3)Ψ(ϱβ+2,ϱβ+3,ζ32)Ψ(ϱβ+3,ϱβ+4,ζ32)Ψ(ϱβ+4,ϱβ+2α+1,ζ32)Ψ(ϱβ,ϱβ+1,ζ3)Ψ(ϱβ+1,ϱβ+2,ζ3)Ψ(ϱβ+2,ϱβ+3,ζ32)Ψ(ϱβ+3,ϱβ+4,ζ32)Ψ(ϱβ+4,ϱβ+5,ζ33)Ψ(ϱβ+5,ϱβ+6,ζ33)Ψ(ϱβ+6,ϱβ+2α+1,ζ33),Ψ(ϱβ,ϱβ+2α+1,ζ)Ψ(ϱβ,ϱβ+1,ζ3)Ψ(ϱβ+1,ϱβ+2,ζ3)Ψ(ϱβ+2,ϱβ+3,ζ32)Ψ(ϱβ+3,ϱβ+4,ζ32)Ψ(ϱβ+4,ϱβ+5,ζ33)Ψ(ϱβ+5,ϱβ+6,ζ33)Ψ(ϱβ+6,ϱβ+2α+1,ζ33)Ψ(ϱβ+2α2,ϱβ+2α1,ζ3α)Ψ(ϱβ+2α1,ϱβ+2α,ζ3α)Ψ(ϱβ+2α,ϱβ+2α+1,ζ3α),
    Φ(ϱβ,ϱβ+2α+1,ζ)Φ(ϱβ,ϱβ+1,ζ3)Φ(ϱβ+1,ϱβ+2,ζ3)Φ(ϱβ+2,ϱβ+2α+1,ζ3)Φ(ϱβ,ϱβ+1,ζ3)Φ(ϱβ+1,ϱβ+2,ζ3)Φ(ϱβ+2,ϱβ+3,ζ32)Φ(ϱβ+3,ϱβ+4,ζ32)Φ(ϱβ+4,ϱβ+2α+1,ζ32)Φ(ϱβ,ϱβ+1,ζ3)Φ(ϱβ+2,ϱβ+3,ζ32)Φ(ϱβ+3,ϱβ+4,ζ32)Φ(ϱβ+4,ϱβ+5,ζ33)Φ(ϱβ+5,ϱβ+6,ζ33)Φ(ϱβ+6,ϱβ+2α+1,ζ33),Φ(ϱβ,ϱβ+2α+1,ζ)Φ(ϱβ,ϱβ+1,ζ3)Φ(ϱβ+1,ϱβ+2,ζ3)Φ(ϱβ+2,ϱβ+3,ζ32)Φ(ϱβ+3,ϱβ+4,ζ32)Φ(ϱβ+4,ϱβ+5,ζ33)Φ(ϱβ+5,ϱβ+6,ζ33)Φ(ϱβ+6,ϱβ+2α+1,ζ33)Φ(ϱβ+2α2,ϱβ+2α1,ζ3α)Φ(ϱβ+2α1,ϱβ+2α,ζ3α)Φ(ϱβ+2α,ϱβ+2α+1,ζ3α),

    and

    D(ϱβ,ϱβ+2α+1,ζ)D(ϱβ,ϱβ+1,ζ3)D(ϱβ+1,ϱβ+2,ζ3)D(ϱβ+2,ϱβ+2α+1,ζ3)D(ϱβ,ϱβ+1,ζ3)D(ϱβ+1,ϱβ+2,ζ3)D(ϱβ+2,ϱβ+3,ζ32)D(ϱβ+3,ϱβ+4,ζ32)D(ϱβ+4,ϱβ+2α+1,ζ32)D(ϱβ,ϱβ+1,ζ3)D(ϱβ+1,ϱβ+2,ζ3)D(ϱβ+2,ϱβ+3,ζ32)D(ϱβ+3,ϱβ+4,ζ32)D(ϱβ+4,ϱβ+5,ζ33)D(ϱβ+5,ϱβ+6,ζ33)D(ϱβ+6,ϱβ+2α+1,ζ33),D(ϱβ,ϱβ+2α+1,ζ)D(ϱβ,ϱβ+1,ζ3)D(ϱβ+1,ϱβ+2,ζ3)D(ϱβ+2,ϱβ+3,ζ32)D(ϱβ+3,ϱβ+4,ζ32)D(ϱβ+4,ϱβ+5,ζ33)D(ϱβ+5,ϱβ+6,ζ33)D(ϱβ+6,ϱβ+2α+1,ζ33)D(ϱβ+2α2,ϱβ+2α1,ζ3α)D(ϱβ+2α1,ϱβ+2α,ζ3α)D(ϱβ+2α,ϱβ+2α+1,ζ3α).

    Using (3.3) in the above inequalities, we deduce

    Ψ(ϱβ,ϱβ+2α+1,ζ)Ψ(ϱ0,ϱ1,ζ3σβ1)Ψ(ϱ0,ϱ1,ζ3σβ)Ψ(ϱ0,ϱ1,ζ32σβ+1)Ψ(ϱ0,ϱ1,ζ32σβ+2)Ψ(ϱ0,ϱ1,ζ33σβ+3)Ψ(ϱ0,ϱ1,ζ33σβ+4)Ψ(ϱ0,ϱ1,ζ33σβ+5)Ψ(ϱ0,ϱ1,ζ3ασβ+2α3)Ψ(ϱ0,ϱ1,ζ3ασβ+2α2)Ψ(ϱ0,ϱ1,ζ3ασβ+2α1),
    Φ(ϱβ,ϱβ+2α+1,ζ)Φ(ϱ0,ϱ1,ζ3σβ1)Φ(ϱ0,ϱ1,ζ3σβ)Φ(ϱ0,ϱ1,ζ32σβ+1)Φ(ϱ0,ϱ1,ζ32σβ+2)Φ(ϱ0,ϱ1,ζ33σβ+3)Φ(ϱ0,ϱ1,ζ33σβ+4)Φ(ϱ0,ϱ1,ζ33σβ+5)Φ(ϱ0,ϱ1,ζ3ασβ+2α3)Φ(ϱ0,ϱ1,ζ3ασβ+2α2)Φ(ϱ0,ϱ1,ζ3ασβ+2α1),
    D(ϱβ,ϱβ+2α+1,ζ)D(ϱ0,ϱ1,ζ3σβ1)D(ϱ0,ϱ1,ζ3σβ)D(ϱ0,ϱ1,ζ32σβ+1)D(ϱ0,ϱ1,ζ32σβ+2)D(ϱ0,ϱ1,ζ33σβ+3)D(ϱ0,ϱ1,ζ33σβ+4)D(ϱ0,ϱ1,ζ33σβ+5)D(ϱ0,ϱ1,ζ3ασβ+2α3)D(ϱ0,ϱ1,ζ3ασβ+2α2)D(ϱ0,ϱ1,ζ3ασβ+2α1).

    Case 2. When i=2α, i.e., i is even, then

    Ψ(ϱβ,ϱβ+2α,ζ)Ψ(ϱβ,ϱβ+1,ζ3)Ψ(ϱβ+1,ϱβ+2,ζ3)Ψ(ϱβ+2,ϱβ+2α,ζ3)Ψ(ϱβ,ϱβ+1,ζ3)Ψ(ϱβ+1,ϱβ+2,ζ3)Ψ(ϱβ+2,ϱβ+3,ζ32)Ψ(ϱβ+3,ϱβ+4,ζ32)Ψ(ϱβ+4,ϱβ+2α,ζ32)Ψ(ϱβ,ϱβ+1,ζ3)Ψ(ϱβ+1,ϱβ+2,ζ3)Ψ(ϱβ+2,ϱβ+3,ζ32)Ψ(ϱβ+3,ϱβ+4,ζ32)Ψ(ϱβ+4,ϱβ+5,ζ33)Ψ(ϱβ+5,ϱβ+6,ζ33)Ψ(ϱβ+6,ϱβ+2α,ζ33),Ψ(ϱβ,ϱβ+2α,ζ)Ψ(ϱβ,ϱβ+1,ζ3)Ψ(ϱβ+1,ϱβ+2,ζ3)Ψ(ϱβ+2,ϱβ+3,ζ32)Ψ(ϱβ+3,ϱβ+4,ζ32)Ψ(ϱβ+4,ϱβ+5,ζ33)Ψ(ϱβ+5,ϱβ+6,ζ33)Ψ(ϱβ+6,ϱβ+2α,ζ33)Ψ(ϱβ+2α4,ϱβ+2α3,ζ3α1)Ψ(ϱβ+2α3,ϱβ+2α2,ζ3α1)Ψ(ϱβ+2α2,ϱβ+2α,ζ3α1),
    Φ(ϱβ,ϱβ+2α,ζ)Φ(ϱβ,ϱβ+1,ζ3)Φ(ϱβ+1,ϱβ+2,ζ3)Φ(ϱβ+2,ϱβ+2α,ζ3)Φ(ϱβ,ϱβ+1,ζ3)Φ(ϱβ+1,ϱβ+2,ζ3)Φ(ϱβ+2,ϱβ+3,ζ32)Φ(ϱβ+3,ϱβ+4,ζ32)Φ(ϱβ+4,ϱβ+2α,ζ32)Φ(ϱβ,ϱβ+1,ζ3)Φ(ϱβ+1,ϱβ+2,ζ3)Φ(ϱβ+2,ϱβ+3,ζ32)Φ(ϱβ+3,ϱβ+4,ζ32)Φ(ϱβ+4,ϱβ+5,ζ33)Φ(ϱβ+5,ϱβ+6,ζ33)Φ(ϱβ+6,ϱβ+2α,ζ33),Φ(ϱβ,ϱβ+2α,ζ)Φ(ϱβ,ϱβ+1,ζ3)Φ(ϱβ+1,ϱβ+2,ζ3)Φ(ϱβ+2,ϱβ+3,ζ32)Φ(ϱβ+3,ϱβ+4,ζ32)Φ(ϱβ+4,ϱβ+5,ζ33)Φ(ϱβ+5,ϱβ+6,ζ33)Φ(ϱβ+6,ϱβ+2α,ζ33)Φ(ϱβ+2α4,ϱβ+2α3,ζ3α1)Φ(ϱβ+2α3,ϱβ+2α2,ζ3α1)Φ(ϱβ+2α2,ϱβ+2α,ζ3α1),

    and

    D(ϱβ,ϱβ+2α,ζ)D(ϱβ,ϱβ+1,ζ3)D(ϱβ+1,ϱβ+2,ζ3)D(ϱβ+2,ϱβ+2α,ζ3)D(ϱβ,ϱβ+1,ζ3)D(ϱβ+1,ϱβ+2,ζ3)D(ϱβ+2,ϱβ+3,ζ32)D(ϱβ+3,ϱβ+4,ζ32)D(ϱβ+4,ϱβ+2α,ζ32)D(ϱβ,ϱβ+1,ζ3)D(ϱβ+1,ϱβ+2,ζ3)D(ϱβ+2,ϱβ+3,ζ32)D(ϱβ+3,ϱβ+4,ζ32)D(ϱβ+4,ϱβ+5,ζ33)D(ϱβ+5,ϱβ+6,ζ33)D(ϱβ+6,ϱβ+2α,ζ33),D(ϱβ,ϱβ+2α,ζ)D(ϱβ,ϱβ+1,ζ3)D(ϱβ+1,ϱβ+2,ζ3)D(ϱβ+2,ϱβ+3,ζ32)D(ϱβ+3,ϱβ+4,ζ32)D(ϱβ+4,ϱβ+5,ζ33)D(ϱβ+5,ϱβ+6,ζ33)D(ϱβ+6,ϱβ+2α,ζ33)D(ϱβ+2α4,ϱβ+2α3,ζ3α1)D(ϱβ+2α3,ϱβ+2α2,ζ3α1)D(ϱβ+2α2,ϱβ+2α,ζ3α1).

    Using (3.3) in the above inequalities, we deduce

    Ψ(ϱβ,ϱβ+2α,ζ)Ψ(ϱ0,ϱ1,ζ3σβ1)Ψ(ϱ0,ϱ1,ζ3σβ)Ψ(ϱ0,ϱ1,ζ32σβ+1)Ψ(ϱ0,ϱ1,ζ32σβ+2)Ψ(ϱ0,ϱ1,ζ33σβ+3)Ψ(ϱ0,ϱ1,ζ33σβ+4)Ψ(ϱ0,ϱ1,ζ33σβ+5)Ψ(ϱ0,ϱ1,ζ3α1σβ+2α5)Ψ(ϱ0,ϱ1,ζ3α1σβ+2α4)Ψ(ϱ0,ϱ1,ζ3α1σβ+2α3),
    Φ(ϱβ,ϱβ+2α,ζ)Φ(ϱ0,ϱ1,ζ3σβ1)Φ(ϱβ+1,ϱβ+2,ζ3σβ)Φ(ϱ0,ϱ1,ζ32σβ+1)Φ(ϱ0,ϱ1,ζ32σβ+2)Φ(ϱ0,ϱ1,ζ33σβ+3)Φ(ϱ0,ϱ1,ζ33σβ+4)Φ(ϱ0,ϱ1,ζ33σβ+5)Φ(ϱ0,ϱ1,ζ3α1σβ+2α5)Φ(ϱ0,ϱ1,ζ3α1σβ+2α4)Φ(ϱ0,ϱ1,ζ3α1σβ+2α3)

    and

    D(ϱβ,ϱβ+2α,ζ)D(ϱ0,ϱ1,ζ3σβ1)D(ϱβ+1,ϱβ+2,ζ3σβ)D(ϱ0,ϱ1,ζ32σβ+1)D(ϱ0,ϱ1,ζ32σβ+2)D(ϱ0,ϱ1,ζ33σβ+3)D(ϱ0,ϱ1,ζ33σβ+4)D(ϱ0,ϱ1,ζ33σβ+5)D(ϱ0,ϱ1,ζ3α1σβ+2α5)D(ϱ0,ϱ1,ζ3α1σβ+2α4)D(ϱ0,ϱ1,ζ3α1σβ+2α3).

    As β+, we deduce

    limβ+Ψ(ϱβ,ϱβ+i,ζ)=111=1,limβ+Φ(ϱβ,ϱβ+i,ζ)=000=0

    and

    limβ+D(ϱβ,ϱβ+i,ζ)=000=0.

    Therefore, {ϱβ} is a Cauchy sequence. Since (Γ,Ψ,Φ,D,,,) is a complete orthogonal neutrosophic rectangular metric space, we can find

    limβ+ϱβ=ϱ.

    Using (v),(x) and (xv), we get

    Ψ(ϱ,ωϱ,ζ)Ψ(ϱ,ϱβ,ζ3)Ψ(ϱβ,ϱβ+1,ζ3)Ψ(ϱβ+1,ωϱ,ζ3)=Ψ(ϱ,ϱβ+1,ζ3)Ψ(ωϱβ1,ωϱβ,ζ3)Ψ(ωϱβ,ωϱ,ζ3)Ψ(ϱ,ϱβ+1,ζ3)Ψ(ϱβ1,ϱβ,ζ3)Ψ(ϱβ,ϱ,ζ3)111=1asβ+,
    Φ(ϱ,ωϱ,ζ)Φ(ϱ,ϱβ,ζ3)Φ(ϱβ,ϱβ+1,ζ3)Φ(ϱβ+1,ωϱ,ζ3)=Φ(ϱ,ϱβ,ζ3)Φ(ωϱβ1,ωϱβ,ζ3)Φ(ωϱβ,ωϱ,ζ3)Φ(ϱ,ϱβ,ζ3)Φ(ϱβ1,ϱβ,ζ3)Φ(ϱβ,ϱ,ζ3)000=0asβ+

    and

    D(ϱ,ωϱ,ζ)D(ϱ,ϱβ,ζ3)D(ϱβ,ϱβ+1,ζ3)D(ϱβ+1,ωϱ,ζ3)=D(ϱ,ϱβ,ζ3)D(ωϱβ1,ωϱβ,ζ3)D(ωϱβ,ωϱ,ζ3)D(ϱ,ϱβ,ζ3)D(ϱβ1,ϱβ,ζ3)D(ϱβ,ϱ,ζ3)000=0asβ+.

    Hence, ωϱ=ϱ. Let ϱ,ηΓ be two fixed points of ω and suppose that ωβϱ=ϱη=ωβη for all βN. By choice of ϱ0, we obtain

    (ϱ0ϱandϱ0η)or(ϱϱ0andηϱ0).

    Since ω is -preserving, we have

    (ωβϱ0ωβϱandωβϱ0ωβη)or(ωβϱωβϱ0andωβηωβϱ0)

    for all nN. Since -neutrosophic rectangular contraction type-1, we have

    1Ψ(η,ϱ,ζ)=Ψ(ωη,ωϱ,ζ)Ψ(η,ϱ,ζσ)=Ψ(ωη,ωϱ,ζσ)Ψ(η,ϱ,ζσ2)Ψ(η,ϱ,ζσβ)1asβ+,0Φ(η,ϱ,ζ)=Φ(ωη,ωϱ,ζ)Φ(η,ϱ,ζσ)=Φ(ωη,ωϱ,ζσ)Φ(η,ϱ,ζσ2)Φ(η,ϱ,ζσβ)0asβ+,

    and

    0D(η,ϱ,ζ)=D(ωη,ωϱ,ζ)D(η,ϱ,ζσ)=D(ωη,ωϱ,ζσ)D(η,ϱ,ζσ2)D(η,ϱ,ζσβ)0asβ+,

    by using (iii),(viii) and (xiii), ϱ=η.

    Definition 3.5. Let (Γ,Ψ,Φ,D,,,) be an orthogonal neutrosophic rectangular metric space. A map ω:ΓΓ is an orthogonal neutrosophic rectangular contraction type-2 (-neutrosophic rectangular contraction type-2) if there exists 0<σ<1, such that

    1Ψ(ωϱ,ωM,ζ)1σ[1Ψ(ϱ,M,ζ)1], (3.4)
    Φ(ωϱ,ωM,ζ)σΦ(ϱ,M,ζ), (3.5)

    and

    D(Pϱ,PM,ζ)σD(ϱ,M,ζ), (3.6)

    for all ϱ,MΓ with ϱM and ζ>0.

    Now, we prove the theorem for O-NRT(orthogonal neutrosophic rectangular) contraction.

    Theorem 3.4. Let (Γ,Ψ,Φ,D,,,) be a complete orthogonal neutrosophic rectangular metric space. and ω:ΓΓ be a mapping satisfying

    (a) ω is an - neutrosophic rectangular contraction type-2,

    (b) ω is an -preserving.

    Then ω has a unique fixed point.

    Proof. Since (Γ,) is an O-set,

     ϱ0Γ:(ϱΓ,ϱϱ0)or(ϱΓ,ϱ0ϱ).

    It follows that ϱ0ωϱ0 or ωϱ0ϱ0. Let

    ϱ1=ωϱ0,ϱ2=ωϱ1=ω2x0,......,ϱβ+1=ωϱβ=ωβ+1ϱ0

    for all βN{0}.

    If ϱβ0=ϱβ0+1 for any β0N{0}, then it is clear that ϱβ0 is a fixed point of ω. Assume that ϱβ0ϱβ0+1 for all β0N{0}. Since ω is -preserving, we have

    ϱβ0ϱβ0+1orϱβ0+1ϱβ0

    for all β0N{0}. This implies {ϱβ} is an O-sequence. Since ω is an -neutrosophic rectangular contraction type-2, we have

    1Ψ(ϱβ,ϱβ+1,ζ)1=1Ψ(ωϱβ1,ωϱβ,ζ)1σ[1Ψ(ϱβ1,ϱβ,ζ)]=σΨ(ϱβ1,ϱβ,ζ)σ1Ψ(ϱβ,ϱβ+1,ζ)σΨ(ϱβ1,ϱβ,ζ)+(1σ)σ2Ψ(ϱβ2,ϱβ1,ζ)+σ(1σ)+(1σ).

    Continuing in this way, we get

    1Ψ(ϱβ,ϱβ+1,ζ)σβΨ(ϱ0,ϱ1,ζ)+σβ1(1σ)+σβ2(1σ)++σ(1σ)+(1σ)σβΨ(ϱ0,ϱ1,ζ)+(σβ1+σβ2++1)(1σ)σβΨ(ϱ0,ϱ1,ζ)+(1σβ).

    We obtain

    1σβΨ(ϱ0,ϱ1,ζ)+(1σβ)Ψ(ϱβ,ϱβ+1,ζ), (3.7)
    Φ(ϱβ,ϱβ+1,ζ)=Φ(ωϱβ1,ωϱβ,ζ)σΦ(ϱβ1,ϱβ,ζ)=Φ(ωϱβ2,ωϱβ1,ζ)σ2Φ(ϱβ2,ϱβ1,ζ)σβΦ(ϱ0,ϱ1,ζ) (3.8)

    and

    D(ϱβ,ϱβ+1,ζ)=D(ωϱβ1,ωϱβ,ζ)σD(ϱβ1,ϱβ,ζ)=D(ωϱβ2,ωϱβ1,ζ)σ2D(ϱβ2,ϱβ1,ζ)σβD(ϱ0,ϱ1,ζ). (3.9)

    Using (v),(x) and (xv), we have the following cases:

    Case 1. When i=2α+1, i.e., i is odd, then

    Ψ(ϱβ,ϱβ+2α+1,ζ)Ψ(ϱβ,ϱβ+1,ζ3)Ψ(ϱβ+1,ϱβ+2,ζ3)Ψ(ϱβ+2,ϱβ+2α+1,ζ3)Ψ(ϱβ,ϱβ+1,ζ3)Ψ(ϱβ+1,ϱβ+2,ζ3)Ψ(ϱβ+2,ϱβ+3,ζ32)Ψ(ϱβ+3,ϱβ+4,ζ32)Ψ(ϱβ+4,ϱβ+2α+1,ζ32)Ψ(ϱβ,ϱβ+1,ζ3)Ψ(ϱβ+1,ϱβ+2,ζ3)Ψ(ϱβ+2,ϱβ+3,ζ32)Ψ(ϱβ+3,ϱβ+4,ζ32)Ψ(ϱβ+4,ϱβ+5,ζ33)Ψ(ϱβ+5,ϱβ+6,ζ33)Ψ(ϱβ+6,ϱβ+2α+1,ζ33),Ψ(ϱβ,ϱβ+2α+1,ζ)Ψ(ϱβ,ϱβ+1,ζ3)Ψ(ϱβ+1,ϱβ+2,ζ3)Ψ(ϱβ+2,ϱβ+3,ζ32)Ψ(ϱβ+3,ϱβ+4,ζ32)Ψ(ϱβ+4,ϱβ+5,ζ33)Ψ(ϱβ+5,ϱβ+6,ζ33)Ψ(ϱβ+6,ϱβ+2α+1,ζ33)Ψ(ϱβ+2α2,ϱβ+2α1,ζ3α)Ψ(ϱβ+2α1,ϱβ+2α,ζ3α)Ψ(ϱβ+2α,ϱβ+2α+1,ζ3α),
    Φ(ϱβ,ϱβ+2α+1,ζ)Φ(ϱβ,ϱβ+1,ζ3)Φ(ϱβ+1,ϱβ+2,ζ3)Φ(ϱβ+2,ϱβ+2α+1,ζ3)Φ(ϱβ,ϱβ+1,ζ3)Φ(ϱβ+1,ϱβ+2,ζ3)Φ(ϱβ+2,ϱβ+3,ζ32)Φ(ϱβ+3,ϱβ+4,ζ32)Φ(ϱβ+4,ϱβ+2α+1,ζ32)Φ(ϱβ,ϱβ+1,ζ3)Φ(ϱβ+1,ϱβ+2,ζ3)Φ(ϱβ+2,ϱβ+3,ζ32)Φ(ϱβ+3,ϱβ+4,ζ32)Φ(ϱβ+4,ϱβ+5,ζ33)Φ(ϱβ+5,ϱβ+6,ζ33)Φ(ϱβ+6,ϱβ+2α+1,ζ33),Φ(ϱβ,ϱβ+2α+1,ζ)Φ(ϱβ,ϱβ+1,ζ3)Φ(ϱβ+1,ϱβ+2,ζ3)Φ(ϱβ+2,ϱβ+3,ζ32)Φ(ϱβ+3,ϱβ+4,ζ32)Φ(ϱβ+4,ϱβ+5,ζ33)Φ(ϱβ+5,ϱβ+6,ζ33)Φ(ϱβ+6,ϱβ+2α+1,ζ33)Φ(ϱβ+2α2,ϱβ+2α1,ζ3α)Φ(ϱβ+2α1,ϱβ+2α,ζ3α)Φ(ϱβ+2α,ϱβ+2α+1,ζ3α),

    and

    D(ϱβ,ϱβ+2α+1,ζ)D(ϱβ,ϱβ+1,ζ3)D(ϱβ+1,ϱβ+2,ζ3)D(ϱβ+2,ϱβ+2α+1,ζ3)D(ϱβ,ϱβ+1,ζ3)D(ϱβ+1,ϱβ+2,ζ3)D(ϱβ+2,ϱβ+3,ζ32)D(ϱβ+3,ϱβ+4,ζ32)D(ϱβ+4,ϱβ+2α+1,ζ32)D(ϱβ,ϱβ+1,ζ3)D(ϱβ+1,ϱβ+2,ζ3)D(ϱβ+2,ϱβ+3,ζ32)D(ϱβ+3,ϱβ+4,ζ32)D(ϱβ+4,ϱβ+5,ζ33)D(ϱβ+5,ϱβ+6,ζ33)D(ϱβ+6,ϱβ+2α+1,ζ33),D(ϱβ,ϱβ+2α+1,ζ)D(ϱβ,ϱβ+1,ζ3)D(ϱβ+1,ϱβ+2,ζ3)D(ϱβ+2,ϱβ+3,ζ32)D(ϱβ+3,ϱβ+4,ζ32)D(ϱβ+4,ϱβ+5,ζ33)D(ϱβ+5,ϱβ+6,ζ33)D(ϱβ+6,ϱβ+2α+1,ζ33)D(ϱβ+2α2,ϱβ+2α1,ζ3α)D(ϱβ+2α1,ϱβ+2α,ζ3α)D(ϱβ+2α,ϱβ+2α+1,ζ3α).

    Using (3.3) in the above inequalities, we deduce

    Ψ(ϱβ,ϱβ+2α+1,ζ)1σβΨ(ϱ0,ϱ1,ζ3)+(1σβ)1σβ+1Ψ(ϱ0,ϱ1,ζ3)+(1σβ+1)1σβ+2Ψ(ϱ0,ϱ1,ζ32)+(1σβ+2)1σβ+3Ψ(ϱ0,ϱ1,ζ32)+(1σβ+3)1σβ+4Ψ(ϱ0,ϱ1,ζ33)+(1σβ+4)1σβ+5Ψ(ϱ0,ϱ1,ζ33)+(1σβ+5)1σβ+6Ψ(ϱ0,ϱ1,ζ33)+(1σβ+6)1σβ+2α2Ψ(ϱ0,ϱ1,ζ3α)+(1σβ+2α2)1σβ+2α1Ψ(ϱ0,ϱ1,ζ3α)+(1σβ+2α1)1σβ+2αΨ(ϱ0,ϱ1,ζ3α)+(1σβ+2α),
    Φ(ϱβ,ϱβ+2α+1,ζ)σβΦ(ϱ0,ϱ1,ζ3)σβ+1Φ(ϱ0,ϱ1,ζ3)σβ+2Φ(ϱ0,ϱ1,ζ32)σβ+3Φ(ϱ0,ϱ1,ζ32)σβ+4Φ(ϱ0,ϱ1,ζ33)σβ+5Φ(ϱ0,ϱ1,ζ33)σβ+6Φ(ϱ0,ϱ1,ζ33)σβ+2α2Φ(ϱ0,ϱ1,ζ3α)σβ+2α1Φ(ϱ0,ϱ1,ζ3α)σβ+2αΦ(ϱ0,ϱ1,ζ3α)

    and

    D(ϱβ,ϱβ+2α+1,ζ)σβD(ϱ0,ϱ1,ζ3)σβ+1D(ϱ0,ϱ1,ζ3)σβ+2D(ϱ0,ϱ1,ζ32)σβ+3D(ϱ0,ϱ1,ζ32)σβ+4D(ϱ0,ϱ1,ζ33)σβ+5D(ϱ0,ϱ1,ζ33)σβ+6D(ϱ0,ϱ1,ζ33)σβ+2α2D(ϱ0,ϱ1,ζ3α)σβ+2α1D(ϱ0,ϱ1,ζ3α)σβ+2αD(ϱ0,ϱ1,ζ3α).

    Case 2. When i=2α, i.e., i is even, then

    Ψ(ϱβ,ϱβ+2α,ζ)Ψ(ϱβ,ϱβ+1,ζ3)Ψ(ϱβ+1,ϱβ+2,ζ3)Ψ(ϱβ+2,ϱβ+2α,ζ3)Ψ(ϱβ,ϱβ+1,ζ3)Ψ(ϱβ+1,ϱβ+2,ζ3)Ψ(ϱβ+2,ϱβ+3,ζ32)Ψ(ϱβ+3,ϱβ+4,ζ32)Ψ(ϱβ+4,ϱβ+2α,ζ32)Ψ(ϱβ,ϱβ+1,ζ3)Ψ(ϱβ+1,ϱβ+2,ζ3)Ψ(ϱβ+2,ϱβ+3,ζ32)Ψ(ϱβ+3,ϱβ+4,ζ32)Ψ(ϱβ+4,ϱβ+5,ζ33)Ψ(ϱβ+5,ϱβ+6,ζ33)Ψ(ϱβ+6,ϱβ+2α,ζ33),Ψ(ϱβ,ϱβ+2α,ζ)Ψ(ϱβ,ϱβ+1,ζ3)Ψ(ϱβ+1,ϱβ+2,ζ3)Ψ(ϱβ+2,ϱβ+3,ζ32)Ψ(ϱβ+3,ϱβ+4,ζ32)Ψ(ϱβ+4,ϱβ+5,ζ33)Ψ(ϱβ+5,ϱβ+6,ζ33)Ψ(ϱβ+6,ϱβ+2α,ζ33)Ψ(ϱβ+2α4,ϱβ+2α3,ζ3α1)Ψ(ϱβ+2α3,ϱβ+2α2,ζ3α1)Ψ(ϱβ+2α2,ϱβ+2α,ζ3α1),
    Φ(ϱβ,ϱβ+2α,ζ)Φ(ϱβ,ϱβ+1,ζ3)Φ(ϱβ+1,ϱβ+2,ζ3)Φ(ϱβ+2,ϱβ+2α,ζ3)Φ(ϱβ,ϱβ+1,ζ3)Φ(ϱβ+1,ϱβ+2,ζ3)Φ(ϱβ+2,ϱβ+3,ζ32)Φ(ϱβ+3,ϱβ+4,ζ32)Φ(ϱβ+4,ϱβ+2α,ζ32)Φ(ϱβ,ϱβ+1,ζ3)Φ(ϱβ+1,ϱβ+2,ζ3)Φ(ϱβ+2,ϱβ+3,ζ32)Φ(ϱβ+3,ϱβ+4,ζ32)Φ(ϱβ+4,ϱβ+5,ζ33)Φ(ϱβ+5,ϱβ+6,ζ33)Φ(ϱβ+6,ϱβ+2α,ζ33),Φ(ϱβ,ϱβ+2α,ζ)Φ(ϱβ,ϱβ+1,ζ3)Φ(ϱβ+1,ϱβ+2,ζ3)Φ(ϱβ+2,ϱβ+3,ζ32)Φ(ϱβ+3,ϱβ+4,ζ32)Φ(ϱβ+4,ϱβ+5,ζ33)Φ(ϱβ+5,ϱβ+6,ζ33)Φ(ϱβ+6,ϱβ+2α,ζ33)Φ(ϱβ+2α4,ϱβ+2α3,ζ3α1)Φ(ϱβ+2α3,ϱβ+2α2,ζ3α1)Φ(ϱβ+2α2,ϱβ+2α,ζ3α1),

    and

    D(ϱβ,ϱβ+2α,ζ)D(ϱβ,ϱβ+1,ζ3)D(ϱβ+1,ϱβ+2,ζ3)D(ϱβ+2,ϱβ+2α,ζ3)D(ϱβ,ϱβ+1,ζ3)D(ϱβ+1,ϱβ+2,ζ3)D(ϱβ+2,ϱβ+3,ζ32)D(ϱβ+3,ϱβ+4,ζ32)D(ϱβ+4,ϱβ+2α,ζ32)D(ϱβ,ϱβ+1,ζ3)D(ϱβ+1,ϱβ+2,ζ3)D(ϱβ+2,ϱβ+3,ζ32)D(ϱβ+3,ϱβ+4,ζ32)D(ϱβ+4,ϱβ+5,ζ33)D(ϱβ+5,ϱβ+6,ζ33)D(ϱβ+6,ϱβ+2α,ζ33),D(ϱβ,ϱβ+2α,ζ)D(ϱβ,ϱβ+1,ζ3)D(ϱβ+1,ϱβ+2,ζ3)D(ϱβ+2,ϱβ+3,ζ32)D(ϱβ+3,ϱβ+4,ζ32)D(ϱβ+4,ϱβ+5,ζ33)D(ϱβ+5,ϱβ+6,ζ33)D(ϱβ+6,ϱβ+2α,ζ33)D(ϱβ+2α4,ϱβ+2α3,ζ3α1)D(ϱβ+2α3,ϱβ+2α2,ζ3α1)D(ϱβ+2α2,ϱβ+2α,ζ3α1).

    Using (3.3) in the above inequalities, we deduce

    Ψ(ϱβ,ϱβ+2α,ζ)1σβΨ(ϱ0,ϱ1,ζ3)+(1σβ)1σβ+1Ψ(ϱ0,ϱ1,ζ3)+(1σβ+1)1σβ+2Ψ(ϱ0,ϱ1,ζ32)+(1σβ+2)1σβ+3Ψ(ϱ0,ϱ1,ζ32)+(1σβ+3)1σβ+4Ψ(ϱ0,ϱ1,ζ33)+(1σβ+4)1σβ+5Ψ(ϱ0,ϱ1,ζ33)+(1σβ+5)1σβ+6Ψ(ϱ0,ϱ1,ζ33)+(1σβ+6)1σβ+2α4Ψ(ϱ0,ϱ1,ζ3α1)+(1σβ+2α4)1σβ+2α3Ψ(ϱ0,ϱ1,ζ3α1)+(1σβ+2α3)1σβ+2α2Ψ(ϱ0,ϱ1,ζ3α1)+(1σβ+2α2),
    D(ϱβ,ϱβ+2α,ζ)σβD(ϱ0,ϱ1,ζ3)σβ+1D(ϱβ+1,ϱβ+2,ζ3)σβ+2D(ϱ0,ϱ1,ζ32)σβ+3D(ϱ0,ϱ1,ζ32)σβ+4D(ϱ0,ϱ1,ζ33)σβ+5D(ϱ0,ϱ1,ζ33)σβ+6D(ϱ0,ϱ1,ζ33)σβ+2α4D(ϱ0,ϱ1,ζ3α1)σβ+2α3D(ϱ0,ϱ1,ζ3α1)σβ+2α2D(ϱ0,ϱ1,ζ3α1),
    Φ(ϱβ,ϱβ+2α,ζ)σβΦ(ϱ0,ϱ1,ζ3)σβ+1Φ(ϱβ+1,ϱβ+2,ζ3)σβ+2Φ(ϱ0,ϱ1,ζ32)σβ+3Φ(ϱ0,ϱ1,ζ32)σβ+4Φ(ϱ0,ϱ1,ζ33)σβ+5Φ(ϱ0,ϱ1,ζ33)σβ+6Φ(ϱ0,ϱ1,ζ33)σβ+2α4Φ(ϱ0,ϱ1,ζ3α1)σβ+2α3Φ(ϱ0,ϱ1,ζ3α1)σβ+2α2Φ(ϱ0,ϱ1,ζ3α1).

    As β+, we deduce

    limβ+Ψ(ϱβ,ϱβ+i,ζ)=11=1,limβ+Φ(ϱβ,ϱβ+i,ζ)=000=0,

    and

    limβ+D(ϱβ,ϱβ+i,ζ)=000=0.

    Therefore, {ϱβ} is a Cauchy sequence. Since (Γ,Ψ,Φ,D,,,) be a complete orthogonal neutrosophic rectangular metric space, we can find

    limβ+ϱβ=ϱ.

    Using (v),(x) and (xv), we get

    1Ψ(ωϱβ,ωϱ,ζ)1σ[1Ψ(ϱβ,ϱ,ζ)1]=σΨ(ϱβ,ϱ,ζ)σ1σΨ(ϱβ,ϱ,ζ)+(1σ)Ψ(ωϱβ,ωϱ,ζ).

    Using the above inequality, we obtain

    Ψ(ϱ,ωϱ,ζ)Ψ(ϱ,ϱβ,ζ3)Ψ(ϱβ,ϱβ+1,ζ3)Ψ(ϱβ+1,ωϱ,ζ3)Ψ(ϱ,ϱβ,ζ3)Ψ(ωϱβ1,ωϱβ,ζ3)Ψ(ωϱβ,ωϱ,ζ3)Ψ(ϱ,ϱβ,ζ3)1σβΨ(ϱ0,ϱ1,ζ3)+(1σβ)1σΨ(ϱβ,ϱ,ζ3)+(1σ)111=1asβ+,
    Φ(ϱ,ωϱ,ζ)Φ(ϱ,ϱβ,ζ3)Φ(ϱβ,ϱβ+1,ζ3)Φ(ϱβ+1,ωϱ,ζ3)Φ(ϱ,ϱβ,ζ3)Φ(ωϱβ1,ωϱβ,ζ3)Φ(ωϱβ,ωϱ,ζ3)Φ(ϱ,ϱβ,ζ3)σβ1Φ(ϱβ1,ϱβ,ζ3)σΦ(ϱβ,ϱ,ζ3)000=0asβ+

    and

    D(ϱ,ωϱ,ζ)D(ϱ,ϱβ,ζ3)D(ϱβ,ϱβ+1,ζ3)D(ϱβ+1,ωϱ,ζ3)D(ϱ,ϱβ,ζ3)D(ωϱβ1,ωϱβ,ζ3)D(ωϱβ,ωϱ,ζ3)D(ϱ,ϱβ,ζ3)σβ1D(ϱβ1,ϱβ,ζ3)σD(ϱβ,ϱ,ζ3)000=0asβ+.

    Hence, ωϱ=ϱ. Let ϱ,ηΓ be two fixed points of ω and suppose that ωβϱ=ϱη=ωβη for all βN. By choice of ϱ0, we obtain

    (ϱ0ϱandϱ0η)or(ϱϱ0andηϱ0).

    Since ω is -preserving, we have

    (ωβϱ0ωβϱandωβϱ0ωβη)or(ωβϱωβϱ0andωβηωβϱ0)

    for all nN. Since -neutrosophic rectangular contraction type-2, we have

    1Ψ(ϱ,η,ζ)1=1Ψ(ωϱ,ωη,ζ)1σ[1Ψ(ϱ,η,ζ)1]<1Ψ(ϱ,η,ζ)1,

    which is a contradiction.

    Φ(ϱ,η,ζ)=Φ(ωϱ,ωη,ζ)σΦ(ϱ,η,ζ)<Φ(ϱ,η,ζ),

    which is a contradiction and

    D(ϱ,η,ζ)=D(ωϱ,ωη,ζ)σD(ϱ,η,ζ)<D(ϱ,η,ζ),

    which is a contradiction. Therefore, we must have Ψ(ϱ,η,ζ)=1,Φ(ϱ,η,ζ)=0 and D(ϱ,η,ζ)=0, hence, ϱ=η.

    Example 3.3. Let Γ=[0,1]. Define the binary relation on Γ by ϱM iff ϱ+M0 and Ψ,Φ,D:Γ×Γ×(0,+)[0,1] by

    Ψ(ϱ,M,ζ)=ζζ+|ϱM|,Φ(ϱ,M,ζ)=|ϱM|ζ+|ϱM|,Φ(ϱ,M,ζ)=|ϱM|ζ,

    for all ϱ,MΓ with ϱM and ζ>0. Then, (Γ,Ψ,Φ,D,,,) is a complete orthogonal neutrosophic rectangular metric space with continuous t-norm ιν=ιν and continuous t-co-norm ιν=max{ι,ν}.

    Define ω:ΓΓ by ω(ϱ)=15ϱ7 and take σ[12,1), then

    Ψ(ωϱ,ωM,σζ)=Ψ(15ϱ7,15M7,σζ)=σζσζ+|15ϱ715M7|=σζσζ+|5ϱ5M|7σζσζ+|ϱM|7=7σζ7σζ+|ϱM|ζζ+|ϱM|=Ψ(ϱ,M,ζ),
    Φ(ωϱ,ωM,σζ)=Φ(15ϱ7,15M7,σζ)=|15ϱ715M7|σζ+|15ϱ715M7|=|5ϱ5M|7σζ+|5ϱ5M|7=|5ϱ5M|7σζ+|5ϱ5M||ϱM|7σζ+|ϱM||ϱM|ζ+|ϱM|=Φ(ϱ,M,ζ)

    and

    D(ωϱ,ωM,σζ)=D(15ϱ7,15M7,σζ)=|15ϱ715M7|σζ=|5ϱ5M|7σζ=|5ϱ5M|7σζ|ϱM|7σζ|ϱM|ζ=D(ϱ,M,ζ).

    Therefore ω is an orthogonal neutrosophic contraction type-1. Clearly ω is an -preserving. Hence, all the hypothesis of Theorem 3.3 are fulfilled, and 0 is the only fixed point for ω.

    Suppose Γ=C([c,a],R) is the set of real value continuous functions defined on [c,a].

    Suppose the integral equation:

    ϱ(τ)=(τ)+δac(τ,v)ϱ(τ)dvforτ,v[c,a], (4.1)

    where δ>0,(v) is a fuzzy function of v:v[c,a] and :C([c,a]×R)R+. Define the binary relation on Γ by ϱM iff ϱ+M0 and Ψ,Φ,D:Γ×Γ×(0,+)[0,1] by

    Ψ(ϱ(τ),M(τ),ζ)=supτ[c,a]ζζ+|ϱ(τ)M(τ)|,Φ(ϱ(τ),M(τ),ζ)=1supτ[c,a]ζζ+|ϱ(τ)M(τ)|

    and

    D(ϱ(τ),M(τ),ζ)=supτ[c,a]|ϱ(τ)M(τ)|ζ,

    for all ϱ,MΓ with ϱM and ζ>0, continuous t-norm and continuous t-co-norm define by ιν=ιν and ιν=max{ι,ν}. Then (Γ,Ψ,Φ,D,,) is a complete orthogonal neutrosophic rectangular metric space. Suppose that |(τ,v)ϱ(τ)(τ,v)M(τ)||ϱ(τ)M(τ)| for \varrho, \mathcal{M}\in\varGamma, \sigma\in(0, 1) and \forall\tau, \mathfrak{v}\in[\mathfrak{c}, \mathfrak{a}] . Also, let \mho(\tau, \mathfrak{v})(\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mathfrak{d}\mathfrak{v})\leq\sigma < 1 . Then, the integral Eq (4.1) has a unique solution.

    Proof. Define \omega\colon\varGamma\rightarrow \varGamma by

    \begin{align*} \omega\varrho(\tau) = \wedge(\tau)+\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mho(\tau, \mathfrak{v})\varrho(\tau)\mathfrak{d}\mathfrak{v}\quad\text{for all}\quad\tau, \mathfrak{v}\in[\mathfrak{c}, \mathfrak{a}]. \end{align*}

    Clearly \omega is an \bot -preserving. Now, for all \varrho, \mathcal{M}\in\varGamma with \varrho\bot\mathcal{M} , we deduce

    \begin{align*} \varPsi(\omega\varrho(\tau), \omega\mathcal{M}(\tau), \sigma\zeta)& = \sup\limits_{\tau\in[\mathfrak{c}, \mathfrak{a}]}\frac{\sigma\zeta}{\sigma\zeta+|\omega\varrho(\tau)-\omega\mathcal{M}(\tau)|}\\ & = \sup\limits_{\tau\in[\mathfrak{c}, \mathfrak{a}]}\frac{\sigma\zeta}{\sigma\zeta+|\wedge(\tau)+\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mho(\tau, \mathfrak{v})\varrho(\tau)\mathfrak{d}\mathfrak{v}-\wedge(\tau)-\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mho(\tau, \mathfrak{v})\varrho(\tau)\mathfrak{d}\mathfrak{v}|}\\ & = \sup\limits_{\tau\in[\mathfrak{c}, \mathfrak{a}]}\frac{\sigma\zeta}{\sigma\zeta+|\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mho(\tau, \mathfrak{v})\varrho(\tau)\mathfrak{d}\mathfrak{v}-\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mho(\tau, \mathfrak{v})\varrho(\tau)\mathfrak{d}\mathfrak{v}|}\\ & = \sup\limits_{\tau\in[\mathfrak{c}, \mathfrak{a}]}\frac{\sigma\zeta}{\sigma\zeta+|\mho(\tau, \mathfrak{v})\varrho(\tau)-\mho(\tau, \mathfrak{v})\mathcal{M}(\tau)|(\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mathfrak{d}\mathfrak{v})}\\ &\geq\sup\limits_{\tau\in[\mathfrak{c}, \mathfrak{a}]}\frac{\zeta}{\zeta+|\varrho(\tau)-\mathcal{M}(\tau)|}\\ &\geq\varPsi(\varrho(\tau), \mathcal{M}(\tau), \zeta), \end{align*}
    \begin{align*} \varPhi(\omega\varrho(\tau), \omega\mathcal{M}(\tau), \sigma\zeta)& = 1-\sup\limits_{\tau\in[\mathfrak{c}, \mathfrak{a}]}\frac{\sigma\zeta}{\sigma\zeta+|\omega\varrho(\tau)-\omega\mathcal{M}(\tau)|}\\ & = 1-\sup\limits_{\tau\in[\mathfrak{c}, \mathfrak{a}]}\frac{\sigma\zeta}{\sigma\zeta+|\wedge(\tau)+\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mho(\tau, \mathfrak{v})\varrho(\tau)\mathfrak{d}\mathfrak{v}-\wedge(\tau)-\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mho(\tau, \mathfrak{v})\varrho(\tau)\mathfrak{d}\mathfrak{v}|}\\ & = 1-\sup\limits_{\tau\in[\mathfrak{c}, \mathfrak{a}]}\frac{\sigma\zeta}{\sigma\zeta+|\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mho(\tau, \mathfrak{v})\varrho(\tau)\mathfrak{d}\mathfrak{v}-\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mho(\tau, \mathfrak{v})\varrho(\tau)\mathfrak{d}\mathfrak{v}|}\\ & = 1-\sup\limits_{\tau\in[\mathfrak{c}, \mathfrak{a}]}\frac{\sigma\zeta}{\sigma\zeta+|\mho(\tau, \mathfrak{v})\varrho(\tau)-\mho(\tau, \mathfrak{v})\mathcal{M}(\tau)|(\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mathfrak{d}\mathfrak{v})}\\ &\leq1-\sup\limits_{\tau\in[\mathfrak{c}, \mathfrak{a}]}\frac{\zeta}{\zeta+|\varrho(\tau)-\mathcal{M}(\tau)|}\\ &\leq\varPhi(\varrho(\tau), \mathcal{M}(\tau), \zeta), \end{align*}

    and

    \begin{align*} \mathcal{D}(\omega\varrho(\tau), \omega\mathcal{M}(\tau), \sigma\zeta)& = \sup\limits_{\tau\in[\mathfrak{c}, \mathfrak{a}]}\frac{|\omega\varrho(\tau)-\omega\mathcal{M}(\tau)|}{\sigma\zeta}\\ & = \sup\limits_{\tau\in[\mathfrak{c}, \mathfrak{a}]}\frac{|\wedge(\tau)+\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mho(\tau, \mathfrak{v})\varrho(\tau)\mathfrak{d}\mathfrak{v}-\wedge(\tau)-\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mho(\tau, \mathfrak{v})\varrho(\tau)\mathfrak{d}\mathfrak{v}|}{\sigma\zeta}\\ & = \sup\limits_{\tau\in[\mathfrak{c}, \mathfrak{a}]}\frac{|\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mho(\tau, \mathfrak{v})\varrho(\tau)\mathfrak{d}\mathfrak{v}-\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mho(\tau, \mathfrak{v})\varrho(\tau)\mathfrak{d}\mathfrak{v}|}{\sigma\zeta}\\ & = \sup\limits_{\tau\in[\mathfrak{c}, \mathfrak{a}]}\frac{|\mho(\tau, \mathfrak{v})\varrho(\tau)-\mho(\tau, \mathfrak{v})\mathcal{M}(\tau)|(\delta\int_{\mathfrak{c}}^{\mathfrak{a}}\mathfrak{d}\mathfrak{v})}{\sigma\zeta}\\ &\leq\sup\limits_{\tau\in[\mathfrak{c}, \mathfrak{a}]}\frac{|\varrho(\tau)-\mathcal{M}(\tau)|}{\zeta}\\ &\leq\varPsi(\varrho(\tau), \mathcal{M}(\tau), \zeta). \end{align*}

    Therefore, \omega is an orthogonal neutrosophic contraction type-1. Hence, all the conditions of Theorem 3.3 are satisfied and operator \omega has a unique fixed point.

    Example 4.1. Assume the following non-linear integral equation.

    \begin{align*} \varrho(\tau) = |\sin\tau|+\frac{1}{7}\int_{0}^{1}\mathfrak{v}\varrho(\mathfrak{v})\mathfrak{d}\mathfrak{v}, \quad\ {for \ all}\quad\mathfrak{v}\in[0, 1]. \end{align*}

    Then it has a solution in \varGamma .

    Proof. Let \omega\colon\varGamma\rightarrow \varGamma be defined by

    \begin{align*} \omega\varrho(\tau) = |\sin\tau|+\frac{1}{7}\int_{0}^{1}\mathfrak{v}\varrho(\mathfrak{v})\mathfrak{d}\mathfrak{v}, \end{align*}

    and set \mho(\tau, \mathfrak{v})\varrho(\tau) = \frac{1}{7}\mathfrak{v}\varrho(\mathfrak{v}) and \mho(\tau, \mathfrak{v})\mathcal{M}(\tau) = \frac{1}{7}\mathfrak{v}\mathcal{M}(\mathfrak{v}) , where \varrho, \mathcal{M}\in\varGamma , and for all \tau, \mathfrak{v}\in[0, 1] . Then, we have

    \begin{align*} &|\mho(\tau, \mathfrak{v})\varrho(\tau)-\mho(\tau, \mathfrak{v})\mathcal{M}(\tau)|\\& = |\frac{1}{7}\mathfrak{v}\varrho(\mathfrak{v})-\frac{1}{7}\mathfrak{v}\mathcal{M}(\mathfrak{v})|\\ & = \frac{\mathfrak{v}}{7}|\varrho(\mathfrak{v})-\mathcal{M}(\mathfrak{v})|\leq|\varrho(\mathfrak{v})-\mathcal{M}(\mathfrak{v})|. \end{align*}

    Furthermore, see that \frac{1}{7}\int_{0}^{1}\mathfrak{v}\mathfrak{d}\mathfrak{v} = \frac{1}{7}\big(\frac{(1)^2}{2}-\frac{(0)^2}{2}\big) = \frac{1}{7} = \sigma\leq1 , where \delta = \frac{1}{7} . Hence, it is easy to see that all other conditions of the above application are easy to examine and the above problem has a solution in \varGamma .

    Let us consider a series electric circuit which contain a resistor ( \mathcal{R} , Ohms) a capacitor ( \mathcal{C} , Faradays), an inductor ( \mathcal{L} , Henries) a voltage ( \mathcal{V} , Volts) and an electromotive force ( \mathcal{E} , Volts), as in the following scheme, Figure 1.

    Figure 1.  Series RLC.

    Considering the definition of the intensity of electric current \mathcal{I} = \frac{d\mathcal{M}}{d\mathfrak{t}} , where \mathcal{M} denote the electric charge and \mathfrak{t} -the time, let us recall the following usual formulas

    \mathcal{V}_{\mathcal{R}} = \mathcal{I}\mathcal{R};

    \mathcal{V}_{\mathcal{C}} = \frac{\mathcal{M}}{\mathcal{C}};

    \mathcal{V}_{\mathcal{L}} = \mathcal{L}\frac{d\mathcal{I}}{d\mathfrak{t}}.

    Since in a series circuit there is only one current flowing, then \mathcal{I} have the same value in the entire circuit. Kirchhoff's Voltage Law is the second of his fundamental laws we can use for circuit analysis. His voltage law states that for a closed loop series path the algebraic sum of all the voltages around any closed loop in a circuit is equal to zero. The Kirchhoff's Voltage Law states: "the algebraic sum of all the voltages around any closed loop in a circuit is equal to zero".

    The main idea of the Kirchhoff's Voltage Law is that as you move around a closed loop/circuit, you will end up back where you started in the circuit. Therefore you back to the same initial potential without voltage losses around the loop. Therefore, any voltage drop around the loop must be equal to any voltage source encountered along the way. The mathematical expression of this consequence of the Kirchhoff's Voltage Law is: "the sum of the voltage rises across any loops is equal to the sum of voltage drops across that loop". Then we have the following relation:

    \begin{align*} \mathcal{I}\mathcal{R}+\frac{\mathcal{M}}{\mathcal{C}}+\mathcal{L}\frac{d\mathcal{I}}{d\mathfrak{t}} = \mathcal{V}(\mathfrak{t}). \end{align*}

    We can write this voltage equation in the parameters of a second-order differential equation as follows.

    \begin{align} \mathcal{L}\frac{d^{2}{\mathcal{M}}}{d\mathfrak{t}^{2}}+\mathcal{R}\frac{d\mathcal{M}}{d\mathfrak{t}}+\frac{\mathcal{M}}{\mathcal{C}} = \mathcal{V}(\mathfrak{t}), \text{with the initial conditions}, \mathcal{M}(0) = 0, \mathcal{M}^{'}(0) = 0, \end{align} (5.1)

    where \mathcal{C} = \frac{4\mathcal{L}}{\mathcal{R}^{2}} and \tau = \frac{\mathcal{R}}{2\mathcal{L}} - the nondimensional time for the resonance case in Physics. The Green function associated with Eq (5.1) is the following:

    \begin{align*} \mathcal{G}(\mathfrak{t}, \mathfrak{s}) = \begin{cases} -\mathfrak{s}\mathfrak{e}^{-\tau(\mathfrak{s}-\mathfrak{t})}, if 0\leq\mathfrak{s}\leq\mathfrak{t}\leq1, \\ -\mathfrak{t}\mathfrak{e}^{-\tau(\mathfrak{s}-\mathfrak{t})}, if 0\leq\mathfrak{t}\leq\mathfrak{s}\leq1. \end{cases} \end{align*}

    The seccond order differential Eq (5.1) can be rewrite as the following integral equation by using the above conditions, we have

    \begin{align} \varrho(\mathfrak{t}) = \int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}) \mathfrak{f}(\mathfrak{s}, \varrho(\mathfrak{s}))d\mathfrak{s}, \, \, \text{where}\, \, \mathfrak{t}\in[0, 1] \end{align} (5.2)

    and \mathfrak{f} (\mathfrak{s}, \cdot) : [0, 1] \times \mathbb{R} \rightarrow \mathbb{R} is a monotone non decreasing mapping for all \mathfrak{s} \in [0, 1] .

    Let \varGamma = (C[0, 1], \mathbb{R}) be the set of all continuous functions defined on [0, 1] . Define the binary relation \bot on \varGamma by \varrho\bot\mathcal{M} iff \varrho+\mathcal{M}\geq 0 and \varPsi, \varPhi, \mathcal{D}\colon\varGamma\times\varGamma\times(0, +\infty)\rightarrow [0, 1] by

    \begin{align*} \varPsi(\varrho(\vartheta), \mathcal{M}(\vartheta), \zeta)& = \sup\limits_{\vartheta\in[\mathfrak{c}, \mathfrak{a}]}\frac{\zeta}{\zeta+|\varrho(\vartheta)-\mathcal{M}(\vartheta)|}, \\ \varPhi(\varrho(\vartheta), \mathcal{M}(\vartheta), \zeta)& = 1-\sup\limits_{\vartheta\in[\mathfrak{c}, \mathfrak{a}]}\frac{\zeta}{\zeta+|\varrho(\vartheta)-\mathcal{M}(\vartheta)|}, \end{align*}

    and

    \begin{align*} \mathcal{D}(\varrho(\vartheta), \mathcal{M}(\vartheta), \zeta)& = \sup\limits_{\vartheta\in[\mathfrak{c}, \mathfrak{a}]}\frac{|\varrho(\vartheta)-\mathcal{M}(\vartheta)|}{\zeta}, \end{align*}

    for all \varrho, \mathcal{M}\in\varGamma with \varrho\bot\mathcal{M} and \zeta > 0 , continuous t-norm and continuous t-co-norm define by \mathfrak{e}\ast\flat = \mathfrak{e}\flat and \mathfrak{e}\circ\flat = \max\{\mathfrak{e}, \flat\} . Then (\varGamma, \varPsi, \varPhi, \mathcal{D}, \ast, \circ, \bot) is a complete orthogonal neutrosophic rectangular metric space. Further, let us give the main result of the section.

    Theorem 5.1. Let \omega\colon\varGamma\rightarrow \varGamma be a mapping such that the following assertions hold:

    (i) \mathcal{G}\colon[0, 1]^2\rightarrow [0, \infty) is a continuous function;

    (ii) \mathfrak{f}(\mathfrak{s}, \cdot)\colon[0, 1]\times\mathbb{R}\rightarrow \mathbb{R} is a monotone non decreasing function for all \mathfrak{s}\in[0, 1] such that \varrho, \mathcal{M}\in\varGamma , we have the inequality:

    \begin{align*} |\mathfrak{f}(\mathfrak{t}, \varrho)-\mathfrak{f}(\mathfrak{t}, \mathcal{M})\leq|\varrho(\mathfrak{t})-\mathcal{M}(\mathfrak{t})|; \end{align*}

    (iii) \int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s})d\mathfrak{s}\leq \sigma < 1.

    Then the voltage differential Eq (5.1) has a unique solution.

    Proof. Define \omega\colon\varGamma\rightarrow \varGamma by

    \begin{align*} \omega\varrho(\mathfrak{t}) = \int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}) \mathfrak{f}(\mathfrak{s}, \varrho(\mathfrak{s}))d\mathfrak{s}, \, \, \text{where}\, \, \mathfrak{t}\in[0, 1]. \end{align*}

    Clearly \omega is an \bot -preserving. Now, for all \varrho, \mathcal{M}\in \varGamma with \varrho\bot\mathcal{M} , we deduce

    \begin{align*} \varPsi(\omega\varrho(\mathfrak{t}), \omega\mathcal{M}(\mathfrak{t}), \sigma\zeta)& = \sup\limits_{\mathfrak{t}\in[0, 1]}\frac{\sigma\zeta}{\sigma\zeta+|\omega\varrho(\mathfrak{t})-\omega\mathcal{M}(\mathfrak{t})|}\\ & = \sup\limits_{\mathfrak{t}\in[0, 1]}\frac{\sigma\zeta}{\sigma\zeta+|\int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}) \mathfrak{f}(\mathfrak{s}, \varrho(\mathfrak{s}))d\mathfrak{s}-\int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}) \mathfrak{f}(\mathfrak{s}, \mathcal{M}(\mathfrak{s}))d\mathfrak{s}|}\\ & = \sup\limits_{\mathfrak{t}\in[0, 1]}\frac{\sigma\zeta}{\sigma\zeta+\int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s})|\mathfrak{f}(\mathfrak{s}, \varrho(\mathfrak{s}))-\mathfrak{f}(\mathfrak{s}, \mathcal{M}(\mathfrak{s}))|d\mathfrak{s}}\\ & = \sup\limits_{\mathfrak{t}\in[0, 1]}\frac{\sigma\zeta}{\sigma\zeta+|\mathfrak{f}(\mathfrak{s}, \varrho(\mathfrak{s}))-\mathfrak{f}(\mathfrak{s}, \mathcal{M}(\mathfrak{s}))|}\\ &\geq\sup\limits_{\mathfrak{t}\in[0, 1]}\frac{\zeta}{\zeta+|\varrho(\mathfrak{t})-\mathcal{M}(\mathfrak{t})|}\\ &\geq\varPsi(\varrho(\mathfrak{t}), \mathcal{M}(\mathfrak{t}), \zeta), \end{align*}
    \begin{align*} \varPhi(\omega\varrho(\mathfrak{t}), \omega\mathcal{M}(\mathfrak{t}), \sigma\zeta)& = 1-\sup\limits_{\mathfrak{t}\in[0, 1]}\frac{\sigma\zeta}{\sigma\zeta+|\omega\varrho(\mathfrak{t})-\omega\mathcal{M}(\mathfrak{t})|}\\ & = 1-\sup\limits_{\mathfrak{t}\in[0, 1]}\frac{\sigma\zeta}{\sigma\zeta+|\int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}) \mathfrak{f}(\mathfrak{s}, \varrho(\mathfrak{s}))d\mathfrak{s}-\int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}) \mathfrak{f}(\mathfrak{s}, \mathcal{M}(\mathfrak{s}))d\mathfrak{s}|}\\ & = 1-\sup\limits_{\mathfrak{t}\in[0, 1]}\frac{\sigma\zeta}{\sigma\zeta+\int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s})|\mathfrak{f}(\mathfrak{s}, \varrho(\mathfrak{s}))-\mathfrak{f}(\mathfrak{s}, \mathcal{M}(\mathfrak{s}))|d\mathfrak{s}}\\ &\leq1-\sup\limits_{\mathfrak{t}\in[0, 1]}\frac{\zeta}{\zeta+|\varrho(\mathfrak{t})-\mathcal{M}(\mathfrak{t})|}\\ &\leq\varPhi(\varrho(\mathfrak{t}), \mathcal{M}(\mathfrak{t}), \zeta), \end{align*}

    and

    \begin{align*} \mathcal{D}(\omega\varrho(\mathfrak{t}), \omega\mathcal{M}(\mathfrak{t}), \sigma\zeta)& = \sup\limits_{\mathfrak{t}\in[0, 1]}\frac{|\omega\varrho(\mathfrak{t})-\omega\mathcal{M}(\mathfrak{t})|}{\sigma\zeta}\\ & = \sup\limits_{\mathfrak{t}\in[0, 1]}\frac{|\int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}) \mathfrak{f}(\mathfrak{s}, \varrho(\mathfrak{s}))d\mathfrak{s}-\int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}) \mathfrak{f}(\mathfrak{s}, \mathcal{M}(\mathfrak{s}))d\mathfrak{s}|}{\sigma\zeta}\\ & = \sup\limits_{\mathfrak{t}\in[0, 1]}\frac{\int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s})|\mathfrak{f}(\mathfrak{s}, \varrho(\mathfrak{s}))-\mathfrak{f}(\mathfrak{s}, \mathcal{M}(\mathfrak{s}))|d\mathfrak{s}}{\sigma\zeta}\\ &\leq\sup\limits_{\mathfrak{t}\in[0, 1]}\frac{|\varrho(\mathfrak{t})-\mathcal{M}(\mathfrak{t})|}{\zeta}\\ &\leq\mathcal{D}(\varrho(\mathfrak{t}), \mathcal{M}(\mathfrak{t}), \zeta). \end{align*}

    Therefore, all the hypothesis of Theorem 3.3 are satisfied and \omega has a unique fixed-point and the differential voltage Eq (5.1) has a unique solution.

    In this paper, we introduced the concept of orthogonal neutrosophic rectangular metric space and prove fixed point theorems. Recently, Khaelehoghli, Rahimi and Eshaghi Gordji [24,25] introduced R-metric spaces and obtained a generalization of Banach's fixed point theorem. It is an interesting open problem to study the relation R instead of orthogonal relation and obtained neutrosophic rectangular metric space results on R-complete neutrosophic rectangular metric spaces.

    The authors declare no conflicts of interest.



    [1] H. Yarmand, S. Gharehkhani, G. Ahmadi, S. F. S. Shirazi, S. Baradaran, E. Montazer, et al., Graphene nanoplatelets-silver hybrid nanofluids for enhanced heat transfer, Energy Convers. Management, 100 (2015), 419–428. https://doi.org/10.1016/j.enconman.2015.05.023 doi: 10.1016/j.enconman.2015.05.023
    [2] O. K. Koriko, K. S. Adegbie, I. L. Animasaun, M. A. Olotu, Numerical solutions of the partial differential equations for investigating the significance of partial slip due to lateral velocity and viscous dissipation: the case of blood-gold Carreau nanofluid and dusty fluid, Numer. Methods Part. Differ. Equ., 2021. https://doi.org/10.1002/num.22754 doi: 10.1002/num.22754
    [3] Y. N. Jiang, X. M. Zhou, Y. Wang, Effects of nanoparticle shapes on heat and mass transfer of nanofluid thermocapillary convection around a gas bubble, Microgravity Sci. Technol., 32 (2020), 167–177.
    [4] M. C. Arno, M. Inam, A. C. Weems, Z. Li, A. L. A. Binch, C. I. Platt, et al., Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties, Nat. commun., 11 (2020), 1–9.
    [5] L. Th. Benos, E. G. Karvelas, I. E. Sarris, A theoretical model for the manetohydrodynamic natural convection of a CNT-water nanofluid incorporating a renovated Hamilton-Crosser model, Int. J. Heat Mass Trans., 135 (2019), 548–560. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.148 doi: 10.1016/j.ijheatmasstransfer.2019.01.148
    [6] H. Liu, I. L. Animasaun, N. A. Shah, O. K. Koriko, B. Mahanthesh, Further discussion on the significance of quartic autocatalysis on the dynamics of water conveying 47 nm alumina and 29 nm cupric nanoparticles, Arab. J. Sci. Eng., 45 (2020), 5977–6004.
    [7] A. S. Sabu, A. Wakif, S. Areekara, A. Mathew, N. A. Shah, Significance of nanoparticles' shape and thermo-hydrodynamic slip constraints on MHD alumina-water nanoliquid flows over a rotating heated disk: the passive control approach, Int. Commun. Heat Mass Trans., 129 (2021), 105711. https://doi.org/10.1016/j.icheatmasstransfer.2021.105711 doi: 10.1016/j.icheatmasstransfer.2021.105711
    [8] Q. Lou, B. Ali, S. U. Rehman, D. Habib, S. Abdal, N. A. Shah, et al., Micropolar dusty fluid: Coriolis force effects on dynamics of MHD rotating fluid when Lorentz force is significant, Mathematics, 10 (2022), 2630. https://doi.org/10.3390/math10152630 doi: 10.3390/math10152630
    [9] M. Z. Ashraf, S. U. Rehman, S. Farid, A. K. Hussein, B. Ali, N. A. Shah, et al., Insight into significance of bioconvection on MHD tangent hyperbolic nanofluid flow of irregular thickness across a slender elastic surface, Mathematics, 10 (2022), 2592. https://doi.org/10.3390/math10152592 doi: 10.3390/math10152592
    [10] K. Vajravelu, Convection heat transfer at a stretching sheet with suction or blowing, J. Math. Anal. Appl., 188 (1994), 1002–1011. https://doi.org/10.1006/jmaa.1994.1476 doi: 10.1006/jmaa.1994.1476
    [11] C-K. Chen, M-I. Char, Heat transfer of a continuous, stretching surface with suction or blowing, J. Math. Anal. Appl., 135 (1988), 568–580. https://doi.org/10.1016/0022-247X(88)90172-2 doi: 10.1016/0022-247X(88)90172-2
    [12] R. N. Kumar, R. J. P. Gowda, A. M. Abusorrah, Y. M. Mahrous, N. H. Abu-Hamdeh, A. Issakhov, et al., Impact of magnetic dipole on ferromagnetic hybrid nanofluid flow over a stretching cylinder, Phys. Scr., 96 (2021), 045215. https://doi.org/10.1088/1402-4896/abe324 doi: 10.1088/1402-4896/abe324
    [13] B. Ali, I. Siddique, I. Khan, B. Masood, S. Hussain, Magnetic dipole and thermal radiation effects on hybrid base micropolar CNTs flow over a stretching sheet: finite element method approach, Results Phys., 25 (2021), 104145. https://doi.org/10.1016/j.rinp.2021.104145 doi: 10.1016/j.rinp.2021.104145
    [14] G. C. Rana, S. K. Kango, Effect of rotation on thermal instability of compressible Walters' (Model B′) fluid in porous medium, J. Adv. Res. Appl. Math., 3 (2011), 44–57. https://doi.org/10.5373/jaram.815.030211 doi: 10.5373/jaram.815.030211
    [15] A. V. Kuznetsov, D. A. Nield, Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model, Transp. Porous Media, 81 (2010), 409–422.
    [16] L. J. Sheu, Linear stability of convection in a viscoelastic nanofluid layer, Eng. Int. J. Mech. Mechatron. Eng., 5 (2011), 1970–1976.
    [17] L. L. Lee, Boundary layer over a thin needle, Phys. Fluids, 10 (1967), 820–822. https://doi.org/10.1063/1.1762194 doi: 10.1063/1.1762194
    [18] J. L. S. Chen, Mixed convection flow about slender bodies of revolution, ASME J. Heat Mass Trans., 109 (1987), 1033–1036. https://doi.org/10.1115/1.3248177 doi: 10.1115/1.3248177
    [19] T. Fang, J. Zhang, Y. Zhong, Boundary layer flow over a stretching sheet with variable thickness, Appl. Math. Comput., 218 (2012), 7241–7252. https://doi.org/10.1016/j.amc.2011.12.094 doi: 10.1016/j.amc.2011.12.094
    [20] R. Jusoh, R. Nazar, I. Pop, Three-dimensional flow of a nanofluid over a permeable stretching/shrinking surface with velocity slip: A revised model, Phys. Fluids, 30 (2018), 033604. https://doi.org/10.1063/1.5021524 doi: 10.1063/1.5021524
    [21] A. Jamaludin, R. Nazar, I. Pop, Three-dimensional magnetohydrodynamic mixed convection flow of nanofluids over a nonlinearly permeable stretching/shrinking sheet with velocity and thermal slip, Appl. Sci., 8 (2018), 1128. https://doi.org/10.3390/app8071128 doi: 10.3390/app8071128
    [22] N. S. Khashi'ie, N. M. Arifin, R. Nazar, E. H. Hafidzuddin, N. Wahi, I. Pop, A stability analysis for magnetohydrodynamics stagnation point flow with zero nanoparticles flux condition and anisotropic slip, Energies, 12 (2019), 1268. https://doi.org/10.3390/en12071268 doi: 10.3390/en12071268
    [23] P. Rana, A. Kumar, G. Gupta, Impact of different arrangements of heated elliptical body, fins and differential heater in MHD convective transport phenomena of inclined cavity utilizing hybrid nanoliquid: Artificial neutral network prediction, Int. Commun. Heat Mass Trans., 132 (2022), 105900. https://doi.org/10.1016/j.icheatmasstransfer.2022.105900 doi: 10.1016/j.icheatmasstransfer.2022.105900
    [24] C. S. K. Raju, N. A. Ahammad, K. Sajjan, N. A. Shah, S-J. Yook, M. D. Kumar, Nonlinear movements of axisymmetric ternary hybrid nanofluids in a thermally radiated expanding or contracting permeable Darcy Walls with different shapes and densities: simple linear regression, Int. Commun. Heat Mass Trans., 135 (2022), 106110. https://doi.org/10.1016/j.icheatmasstransfer.2022.106110 doi: 10.1016/j.icheatmasstransfer.2022.106110
    [25] P. Rana, S. Gupta, G. Gupta, Unsteady nonlinear thermal convection flow of MWCNT-MgO/EG hybrid nanofluid in the stagnation-point region of a rotating sphere with quadratic thermal radiation: RSM for optimization, Int. Commun. Heat Mass Trans., 134 (2022), 106025. https://doi.org/10.1016/j.icheatmasstransfer.2022.106025 doi: 10.1016/j.icheatmasstransfer.2022.106025
    [26] N. A. Shah, A. Wakif, E. R. El-Zahar, T. Thumma, S.-J. Yook, Heat transfers thermodynamic activity of a second-grade ternary nanofluid flow over a vertical plate with Atangana-Baleanu time-fractional integral, Alexandria Eng. J., 61 (2022), 10045–10053. https://doi.org/10.1016/j.aej.2022.03.048 doi: 10.1016/j.aej.2022.03.048
    [27] R. Zhang, N. A. Ahammad, C. S. K. Raju, S. M. Upadhya, N. A. Shah, S-J. Yook, Quadratic and linear radiation impact on 3D convective hybrid nanofluid flow in a suspension of different temperature of waters: transpiration and fourier fluxes, Int. Commun. Heat Mass Trans., 138 (2022), 106418. https://doi.org/10.1016/j.icheatmasstransfer.2022.106418 doi: 10.1016/j.icheatmasstransfer.2022.106418
    [28] N. Acharya, Spectral quasi linearization simulation on the radiative nanofluid spraying over a permeable inclined spinning disk considering the existence of heat source/sink, Appl. Math. Comput., 411 (2021), 126547. https://doi.org/10.1016/j.amc.2021.126547 doi: 10.1016/j.amc.2021.126547
    [29] P. Rana, W. Al-Kouz, B. Mahanthesh, J. Mackolil, Heat transfer of TiO2-EG nanoliquid with active and passive control of nanoparticles subject to nonlinear Boussinesq approximation, Int. Commun. Heat Mass Trans., 126 (2021), 105443. https://doi.org/10.1016/j.icheatmasstransfer.2021.105443 doi: 10.1016/j.icheatmasstransfer.2021.105443
    [30] T. Elnaqeeb, I. L. Animasaun, N. A. Shah, Ternary-hybrid nanofluids: significance of suction and dual-stretching on three-dimensional flow of water conveying nanoparticles with various shapes and densities, Z. Naturforsch. A, 76 (2021). https://doi.org/10.1515/zna-2020-0317 doi: 10.1515/zna-2020-0317
    [31] N. A. Shah, A. Wakif, E. R. El-Zahar, S. Ahmad, S-J Yook, Numerical simulation of a thermally enhanced EMHD flow of a heterogeneous micropolar mixture comprising (60%)-ethylene glycol (EG), (40%)-water (W), and copper oxide nanomaterials (CuO), Case Study. Therm. Eng., 35 (2022), 102046. https://doi.org/10.1016/j.csite.2022.102046 doi: 10.1016/j.csite.2022.102046
    [32] M. S. Upadhya, C. S. K. Raju, Implementation of boundary value problems in using MATLAB®, In: Micro and nanofluid convection with magnetic field effects for heat and mass transfer applications using MATLAB, Elsevier, 2022,169–238. https://doi.org/10.1016/B978-0-12-823140-1.00010-5
    [33] M. Khader, A. M. Megahed, Numerical solution for boundary layer flow due to a nonlinearly stretching sheet with variable thickness and slip velocity, Eur. Phys. J. Plus, 128 (2013), 100–108.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2036) PDF downloads(98) Cited by(16)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog