Processing math: 68%
Research article

On an axiomatization of the grey Banzhaf value

  • The Banzhaf value with grey data is a solution concept in cooperative grey games that has been extensively studied in the context of operations research. The author aims to define the traits of the Banzhaf value in cooperative grey games, where the values of coalitions are depicted as grey numbers within intervals. The grey Banzhaf value is defined by several axioms, including the grey dummy player, grey van den Brink fairness, and grey superadditivity. By presenting these axioms, this investigation contributes novel insights to the axiomatic characterization of the grey Banzhaf value, offering a distinct perspective. Finally, the study concludes by presenting applications in cooperative grey game models, thereby enriching the understanding of this concept.

    Citation: Mustafa Ekici. On an axiomatization of the grey Banzhaf value[J]. AIMS Mathematics, 2023, 8(12): 30405-30418. doi: 10.3934/math.20231552

    Related Papers:

    [1] Mohammad Faisal Khan . Certain new applications of Faber polynomial expansion for some new subclasses of υ-fold symmetric bi-univalent functions associated with q-calculus. AIMS Mathematics, 2023, 8(5): 10283-10302. doi: 10.3934/math.2023521
    [2] F. Müge Sakar, Arzu Akgül . Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator. AIMS Mathematics, 2022, 7(4): 5146-5155. doi: 10.3934/math.2022287
    [3] Zeya Jia, Nazar Khan, Shahid Khan, Bilal Khan . Faber polynomial coefficients estimates for certain subclasses of q-Mittag-Leffler-Type analytic and bi-univalent functions. AIMS Mathematics, 2022, 7(2): 2512-2528. doi: 10.3934/math.2022141
    [4] H. M. Srivastava, Sheza M. El-Deeb . The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of Bi-Close-to-Convex functions connected with the q-convolution. AIMS Mathematics, 2020, 5(6): 7087-7106. doi: 10.3934/math.2020454
    [5] Bilal Khan, H. M. Srivastava, Muhammad Tahir, Maslina Darus, Qazi Zahoor Ahmad, Nazar Khan . Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(1): 1024-1039. doi: 10.3934/math.2021061
    [6] Shuhai Li, Lina Ma, Huo Tang . Meromorphic harmonic univalent functions related with generalized (p, q)-post quantum calculus operators. AIMS Mathematics, 2021, 6(1): 223-234. doi: 10.3934/math.2021015
    [7] Tariq Al-Hawary, Ala Amourah, Abdullah Alsoboh, Osama Ogilat, Irianto Harny, Maslina Darus . Applications of qUltraspherical polynomials to bi-univalent functions defined by qSaigo's fractional integral operators. AIMS Mathematics, 2024, 9(7): 17063-17075. doi: 10.3934/math.2024828
    [8] Luminiţa-Ioana Cotîrlǎ . New classes of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(10): 10642-10651. doi: 10.3934/math.2021618
    [9] Shujaat Ali Shah, Ekram Elsayed Ali, Adriana Cătaș, Abeer M. Albalahi . On fuzzy differential subordination associated with q-difference operator. AIMS Mathematics, 2023, 8(3): 6642-6650. doi: 10.3934/math.2023336
    [10] Ahmad A. Abubaker, Khaled Matarneh, Mohammad Faisal Khan, Suha B. Al-Shaikh, Mustafa Kamal . Study of quantum calculus for a new subclass of q-starlike bi-univalent functions connected with vertical strip domain. AIMS Mathematics, 2024, 9(5): 11789-11804. doi: 10.3934/math.2024577
  • The Banzhaf value with grey data is a solution concept in cooperative grey games that has been extensively studied in the context of operations research. The author aims to define the traits of the Banzhaf value in cooperative grey games, where the values of coalitions are depicted as grey numbers within intervals. The grey Banzhaf value is defined by several axioms, including the grey dummy player, grey van den Brink fairness, and grey superadditivity. By presenting these axioms, this investigation contributes novel insights to the axiomatic characterization of the grey Banzhaf value, offering a distinct perspective. Finally, the study concludes by presenting applications in cooperative grey game models, thereby enriching the understanding of this concept.



    In 1985, Yabuta [1] proposed the definitions of ϖ(t)-type Calderón-Zygmund operators, he introduced certain ϖ(t)-type Calderón-Zygmund operators to facilitate his study of certain classes of pseudodifferential operators. After that, Maldonado and Naibo [2] established the weighted norm inequalities for the bilinear Calderón-Zygmund operators of type ϖ(t), and applied them to the study of para-products and bilinear pseudo-differential operators with mild regularity. In 2009, Lu and Zhang [3] established the a number of results concerning boundedness of multi-linear ϖ(t)-type Calderón-Zygmund operators. we recall the so-called ϖ(t)-type Calderón-Zygmund operators.

    Let ϖ(t): [0,)[0,) be a nondecreasing function with 0<ϖ(1)<. For α>0, we say that ϖDini(a) if

    |ϖ|Dini(α)=10ϖα(t)tdt<. (1.1)

    It is evident that for 0<α1<α2, there is Dini(α1)<Dini(α2). If ϖDini(1), then

    0ϖ(2j)10ϖ(t)tdt<,

    here and in what follows, for any quantities A and B, if there exists a constant C>0 such that ACB, we write AB. If AB and BA, we write AB.

    A measurable function K(,,) on Rn×Rn×Rn{(x,y1,y2):x=y1=y2} is said to be a bilinear ϖ(t)-type Calderón-Zygmund kernel if it satisfies: for all (x,y1,y2)Rn with xyi,i=1,2, if there exists a constant A>0 such that

    |K(x,y1,y2)|Aϖ(2i=1|xyi|)2n, (1.2)

    and for (x,y1,y2)(Rn)3 with xy1,y2, and

    |K(x,y1,y2)K(z,,y1,y2)|Aω(|xz|2i=1|xyi|)[2i=1|xyi|]2n. (1.3)

    whenever 2|xz|<max{|xy1|,|xy2|}.

    Definition 1.1. ([2]) Let ϖDini(1). One can say that Tϖ is a bilinear ϖ(t)-type operator with the kernel K satisfying (1.2) and (1.3), for all f1, f2Cc(Rn),

    Tϖ(f1,f2)(x)=RnRnK(x,y1,y2)f1(y1)f2(y2)dy1dy2,xsuppf1suppf2. (1.4)

    In the following, for each kZ, we define Bk={xRn:|x|2k}, Dk=BkBk1, χk=χDk, m1, ˜χ0=χB0.

    Given a function p(x)P(Rn), the space Lp(x)(Rn) is now defined by

    fLp()(Rn)=inf{η>0:Rn(|f(x)|η)p(x)dx1}.

    Denote P(Rn) to be the set of the all measurable functions p(x) with

    p=:essinfxRnp(x)>1

    and

    p+=:esssupxRnp(x)<,

    and B(Rn) to be the set of all functions p()P(Rn) satisfying the condition that the Hardy-littlewood maximal operator M is bounded on Lp()(Rn), P0(Rn) the set of all measurable functions p(x) with p>0 and p+<.

    The space Lp()loc(Rn) is defined by

    Lp()loc(Rn)={f:fχKLp()loc(Rn) for all compact subsets KRn},

    where and what follows, χS denotes the characteristic function of a measurable set SRn.

    Let p()P(Rn) and ω be a nonnegative measurable function on Rn. Then the weighted variable exponent Lebesgue space Lp()(ω) is the set of all complex-valued measurable functions f such that fωLp(). The space Lp()(ω) is a Banach space equipped with the norm

    fLp()(ω)=fωLp().

    Let fL1loc(Rn). Then the standard Hardy-Littlewood maximal function of f is defined by

    Mf(x)=supxB1|B|Bf(y)dy,xRn,

    where the supremum is taken over all balls containing x in Rn.

    Definition 1.2. ([4]) Let α() be a real-valued function on Rn.

    (ⅰ) For any x,yRn, |xy|<1/2, if

    |α(x)α(y)|1log(e+1/|xy|),

    then α() is said local log-Hölder continuous on Rn.

    (ⅱ) For all xRn, if

    |α(x)α(0)|1log(e+1/|x|),

    then α() is said log-Hölder continuous functions at origin, denote by Plog0(Rn) the set of all log-Hölder continuous at origin.

    (ⅲ) If there exists αR, for xRn, if

    |α(x)α|1log(e+|x|),

    then α() is said log-Hölder continuous at infinity, denote by Plog(Rn) the set of all log-Hölder continuous functions at infinity.

    (ⅳ) The function α() is global log-Hölder continuous if α() are both locally log-Hölder continuous and log-Hölder continuous at infinity. Denote by Plog(Rn) the set of all global log-Hölder continuous functions.

    Let ω be a weighted function on Rn, that is, ω is real-valued, non-negative and locally integrable. ω is said to be a Muckenhoupt A1 weight if

    Mω(x)ω(x)a.e.,xRn.

    For 1<p<, we say that ω is an Ap weight if

    supB(1|B|Bω(x)dx)(1|B|Bω(x)1pdx)p1<.

    Definition 1.3. ([5]) Let p()P(Rn). For some constant C, a weight ω is said to be an Ap() weight, if for all balls B in Rn such that

    1|B|ωχBLp()(Rn)ω1χBLp()(Rn)C.

    Lemma 1.1. ([5]) If p()Plog(Rn)P(Rn) and ωAp(), then for each fLp()(ω),

    (Mf)ωLp()fωLp(),

    Before give the definitions of the weighted Herz space and Herz-Morrey space with variable exponents, we also need the notation of the variable mixed sequence space q(Lp()), which was firstly defined in [6]. Let ω be a nonnegative measurable function. Given a sequence of functions {fj}jZ, we define the modular

    ρq(Lp()(ω))((fj)j)=jZinf{λj:Rn(|fj(x)ω(x)|λ1q(x)j)p(x)dx1},

    where λ1=1. If q+< or q()p(), the above can be written as

    ρq(Lp()(ω))((fj)j)=jZfjω|q()Lp()q().

    The norm is

    (fj)jρq(Lp()(ω))=inf{μ>0:ρq(Lp()(ω))((fjμ)j)1}.

    Definition 1.4. ([7]) Let p()P(Rn), qP0(Rn). Let α() be a bounded real-valued measurable function on Rn. The homogeneous weighted Herz space ˙Kα(),q()p()(ω) are defined by

    ˙Kα(),q()p()(ω)={fLp()loc(Rn{0},ω):f˙Kα(),q()p()(ω)<},

    where

    f˙Kα(),q()p()(ω)=(2jα()fχj)jρq(Lp()(ω)).

    Lemma 1.2. ([7]) Let α()L(Rn), p(),q()P0(Rn) and ω be a weight. If α() and q() are log-Hölder continuous at the origin, then T

    f˙Kα(),q()p()(ω)=f˙Kα,qp()(ω).

    Additionally, if α() and q() are log-Hölder continuous at the origin, then

    f˙Kα(),q()p()(ω)(k02kα(0)fχkq(0)Lp())1q(0)+(k>02kαfχkq(0)Lp())1q.

    Definition 1.5. ([8]) Let p(),q()P0(Rn), λ[0,1). Let α() be a bounded real-valued measurable function on Rn. The homogeneous weighted Herz-Morrey space M˙Kα(),q()p(),λ(ω) are defined by

    M˙Kα(),q()p(),λ(ω)={fLp()loc(Rn{0},ω):fM˙Kα(),q()p(),λ(ω)<},

    where

    fM˙Kα(),q()p(),λ(ω)=supLZ2Lλ(2kα()kfχk)kLρq(Lp()(ω)).

    Lemma 1.3. ([8]) Let p(),q()P0(Rn), ω be a weight, λ[0,) and αL(Rn). If α(), q()Plog0(Rn)Plog(Rn), then for any fLp()loc(Rn{0},ω),

    fM˙Kα(),q()p(),λ(ω)max{supL0,LZ2Lλ(2kα(0)fχk)kLlq0(Lp()(ω)),supL>0,LZ[2Lλ(2kα(0)fχk)kLρq0(Lp()(ω))+2Lλ(2kαfχk)Lk=0ρq0(Lp()(ω))]},

    where and hereafter, q0=q(0).

    Lemma 1.4. ([8]) If p()Plog(Rn)P(Rn) and ωAp(), then there exist constants δ1,δ2(0,1), such that for all balls B in Rn and all measurable subsets SB,

    χSLp()(ω)χBLp()(ω)(|S||B|)δ1,χSLp()(ω1)χBLp()(ω1)(|S||B|)δ2.

    Before proving the main results, we need the following lemmas.

    For δ>0, we denote [M(|f|δ)]1δ by Mδ. Let fL1loc(Rn). Then the sharp maximal function is defined by

    M#f(x)=supQ1QQ|f(y)fQ|dy,

    where the supremum is taken over all the cubes Q containing the point x, and where as usual fQ denotes the average of f on Q. we denote [M#(|f|δ)]1δ by M#δ.

    Lemma 2.1. ([3]) Let Tω be a bilinear ω(t)-type Calderón-Zygmund operator with ϖDini(1) and let 0<δ<12. Then, for any vector function f=(f1,f2), where each component is smooth and with compact support, the following inequality holds

    M#δ(Tω(f1,f2))(x)M(f1)(x)M(f2)(x).

    Lemma 2.2. ([9]) Let 0<p,δ< and ωA. There exists a positive constant C such that

    Rn[Mδf(x)]pω(x)dxRn[M#δf(x)]pω(x)dx

    for every function f such that the left hand side is finite.

    Lemma 2.3. ([10]) Let p(),p1(),p2()P0(Rn) such that 1p(x)=1p1(x)+1p2(x). Then for every fLp1()(Rn) and gLp2()(Rn), there exists

    fgLp()fLp1()gLp2()

    If pP(Rn), ω is a weight with ω=ω1×ω2, there exists

    fgLp()(ω)fLp1()(ω1)gLp2()(ω2).

    Lemma 2.4. ([11]) Let 0<p, δ>0. Then for non-negative sequence {aj}j=, there exists

    (j=(k=2|kj|δak)p)1p(j=apj)1p,

    when p=, above inequality stands for

    k=(2|kj|δak)supjZaj.

    Lemma 2.5. ([12]) Assume that for some p0(0,) and every ω0A, let F be a family of pairs of non-negative functions such that

    Rnf(x)p0ω0(x)dxRng0(x)p0ω0(x)dx,(f,g)F. (2.1)

    Then for all 0<p< and ω0A,

    Rnf(x)pω0(x)dxRng0(x)pω0(x)dx,(f,g)F.

    Furthermore, for every p,q(0,), ω0A, and sequences {(fj,gj)}F,

    (j=1(fj))qLp(ω0)(j=1(gj))qLp(ω0). (2.2)

    Lemma 2.6. ([8]) Assume that for some p0 and let F be a family of pairs of non-negative functions such that (2.1) holds. Let p()P0(Rn). If there exists sp such that ωsAp()s and M is bounded on L(p()s)(ωs). Then for every q(1,) and sequence {(fj,gj)}jNF

    (j=1(fj))qLp()(ω)(j=1(gj))qLp()(ω).

    Lemma 2.7. ([13]) Let p()P(Rn), and ω be a weight. If the maximal operator M is bounded both on Lp()(ω) and Lp()(ω1), q(1.), then

    (j=1(Mfj)q)1qLp()(ω)(j=1|fj|q)1qLp()(ω).

    Lemma 2.8. Let Tϖ be a bilinear Calderón-Zygmund operator with ϖDini(1) and p()P0 such that there exists sp such that ωsAp()s and M is bounded on L(p()s)(ωs). Suppose that ω=ω1×ω2 and ωiApi(),i=1,2. If piPlog(Rn)P(Rn)(i=1,2) satisfying

    1p(x)=1p1(x)+1p2(x)

    for xRn. Then for compactly supported bounded functions fj1,fj2Lp0(Rn), jN such that

    (j=1|Tϖ(fj1,fj2)|q)1qLp()(ω)2i=1(j=1|fji|qi)1qiLpi()(ωi),

    where qi(1,) for i=1,2 and

    1q=1q1+1q2.

    Proof of Lemma 2.8. Since fj1,fj2 are bounded functions with compact support, Tϖ(fj1,fj2)Lp(Rn) for every 0<p<. With Lemmas 2.1 and 2.2, Lu and Zhang [3] showed that for all ωA,

    Rn|Tϖ(f1,f2)(x)|pω(x)dxRn(Mf1(x)Mf2(x))pω(x)dx.

    Therefore, by Lemmas 2.5 and 2.6, we have

    (j=1|Tϖ(fj1,fj2)|q)1qLp()(ω)(j=1|Mfj1(x)Mfj2(x)|q)1qLp()(ω).

    Since

    1q=1q1+1q2,    1p=1p1+1p2

    and ω=ω1ω2, together with Hölders inequality, Lemmas 2.3 and 2.7, we have

    (j=1|Mfj1(x)Mfj2(x)|q)1qLp()(ω)2i=1(j=1|Mfji|qi)1qiLpi()(ωi)2i=1(j=1|fji|qi)1qiLpi()(ωi).

    We complete the proof of Lemma 2.8.

    Theorem 3.1. Let Tϖ be a bilinear ϖ-type Calderón-Zygmund operator with ϖDini(1), p1 and p2Plog(Rn)Plog(Rn) santisfying

    1p(x)=1p1(x)+1p2(x)

    and p()P0 such that there exists sp such that ωsAp()s and M is bounded on L(p()s)(ωs), where ω=ω1ω2 and ωiApi(), i=1,2. Suppose that

    α()L(Rn)Plog0(Rn)Plog(Rn),α(0)=α1(0)+α2(0),
    α=α1+α2,q()Plog0(Rn)Plog(Rn),
    1q(0)=1q1(0)+1q2(0),1q=1q1+1q2,
    λ=λ1+λ2,0λi<,δi1,δi2(0,1)

    are the constants in Lemma 1.4 for exponents pi() and weights ωi(i=1,2). Let ri(1,) and

    1r=1r1+1r2.

    If λinδi1<αi, αi(0)nδi2, then

    (j=1|Tϖ(fj1,fj2)|r)1rM˙Kα(),q()p(),λ(ω)2i=1(j=1|(fji)|ri)1riM˙Kαi(),qi()pi(),λi(ωi)

    for all fjiM˙Kαi(),qi()pi(),λi(ωi), jN, i=1,2.

    Proof of Theorem 3.1. We only consider bounded compact supported functions for the set of all bounded compactly supported functions is dense in weighted variable Lebesgue spaces (see [13]). Let fv1 and fv2 be bounded functions with compact support for vN and write

    fvi=l=fvilχl=l=fvil,i=1,2,vN.

    By Lemma 1.3, we have

    (v=1|Tϖ(fv1,fv2)|r)1rM˙Kα(),q()p(),λ(w)max{supL0,LZ2Lλ(2kα(0)(v=1|Tϖ(fv1,fv2)|r)1rχk)kLq0(Lp()(w))    supL>0,LZ[2Lλ(2kα(0)(v=1|Tϖ(fv1,fv2)|r)1rχk)k<0q0(Lp()(w))     +2Lλ(2kα(v=1|Tϖ(fv1,fv2)|r)1rχk)Lk=0q(Lp()(w))]}=max{E,F},

    where

    E=supL0,LZ2Lλ(2kα(0)(v=1|Tϖ(fv1,fv2)|r)1rχk)kLq0(Lp()(w)),F=supL>0,LZ{G+H},G=2Lλ(2kα(0)(v=1|Tϖ(fv1,fv2)|r)1rχk)k<0q0(Lp()(w)),H=2Lλ(2kα(v=1|Tϖ(fv1,fv2)|r)1rχk)Lk=0q(Lp()(w)).

    Since to estimate G is essentially similar to estimate E, it is suffice to obtain that E and H are bounded in Herz-Morrey space with variable exponents. It is easy to see that

    E9i=iEi,H9i=iHi,

    where

    E1=supL0,LZ2Lλ(Lk=2kα(0)q(0)(v=1|k2l=k2j=Tϖ(fv1l,fv2j)|r)1rχkq(0)Lp()(w))1q(0),E2=supL0,LZ2Lλ(Lk=2kα(0)q(0)(v=1|k2l=k+1j=k1Tϖ(fv1l,fv2j)|r)1rχkq(0)Lp()(w))1q(0),E3=supL0,LZ2Lλ(Lk=2kα(0)q(0)(v=1|k2l=j=k+2Tϖ(fv1l,fv2j)|r)1rχkq(0)Lp()(w))1q(0),E4=supL0,LZ2Lλ(Lk=2kα(0)q(0)(v=1|k+1l=k1k2j=Tϖ(fv1l,fv2j)|r)1rχkq(0)Lp()(w))1q(0),E5=supL0,LZ2Lλ(Lk=2kα(0)q(0)(v=1|k+1l=k1k+1j=k1Tϖ(fv1l,fv2j)|r)1rχkq(0)Lp()(w))1q(0),E6=supL0,LZ2Lλ(Lk=2kα(0)q(0)(v=1|k+1l=k1j=k+2Tϖ(fv1l,fv2j)|r)1rχkq(0)Lp()(w))1q(0),E7=supL0,LZ2Lλ(Lk=2kα(0)q(0)(v=1l=k+2k2j=Tϖ(fv1l,fv2j)r)1rχkq(0)Lp()(w))1q(0),E8=supL0,LZ2Lλ(Lk=2kα(0)q(0)(v=1|l=k+2k+1j=k1Tϖ(fv1l,fv2j)|r)1rχkq(0)Lp()(w))1q(0),E9=supL0,LZ2Lλ(Lk=2kα(0)q(0)(v=1|l=k+2j=k+2Tϖ(fv1l,fv2j)|r)1rχkq(0)Lp()(w))1q(0),
    H1=2Lλ(Lk=02kαq(v=1|k2l=k2j=Tϖ(fv1l,fv2j)|r)1rχkqLp()(w))1q,H2=2Lλ(Lk=02kαq(v=1|k2l=k+1j=k1Tϖ(fv1l,fv2j)|r)1rχkqLp()(w))1q,H3=2Lλ(Lk=02kαq(v=1|k2l=j=k+2Tϖ(fv1l,fv2j)|r)1rχkqLp()(w))1q,H4=2Lλ(Lk=02kαq(v=1|k+1l=k1k2j=Tϖ(fv1l,fv2j)|r)1rχkqLp()(w))1q,H5=2Lλ(Lk=02kαq(v=1|k+1l=k1k+1j=k1Tϖ(fv1l,fv2j)|r)1rχkqLp()(w))1q,H6=2Lλ(Lk=02kαq(v=1|k+1l=k1j=k+2Tϖ(fv1l,fv2j)|r)1rχkqLp()(w))1q,H7:=2Lλ(Lk=02kαq(v=1|l=k+2k2j=Tϖ(fv1l,fv2j)|r)1rχkqLp()(w))1q,H8:=2Lλ(Lk=02kαq(v=1|l=k+2k+1j=k1Tϖ(fv1l,fv2j)|r)1rχkqLp()(w))1q,H9:=2Lλ(Lk=02kαq(v=1|l=k+2j=k+2Tϖ(fv1l,fv2j)|r)1rχkqLp()(w))1q.

    We will use the following estimates. If lk1, by Hölder's inequality, Lemma 1.4 and Definition 1.3, we have

    2knRn(v=1|fvil|ri)1ridyiχkLpi()(wi)C2knχBkLpi()(wi)(v=1|fvi|ri)1riwiχlLpi()χlw1iLpi()C2kn|Bk|χBk1Lpi()(w1i)χBlLpi()(w1i)(v=1|fvi|ri)1riχlLpi()(wi)C2(lk)nδ2i(v=1|fvi|ri)1riχlLpi()(wi). (3.1)

    If l=k, then

    2knRn(v=1|fvil|ri)1ridyiχkLpi()(wiC2knχBkLpi()(wi)(v=1|fvi|ri)1riwiχlLpi()χlw1iLpi()C2knχBkLpi()(wi)χBlLpi()(w1i)(v=1|fvi|ri)1riχlLpi()(wi)(v=1|fvi|ri)1riχlLpi()(wi). (3.2)

    If lk+1, then

    2knRn(v=1|fvil|ri)1ridyiχkLpi()(wi)C2knχBkLpi()(wi)(v=1|fvi|ri)1riwiχlLpi()χlw1iLpi()C2knχBkLpi()(wi)χBlLpi()(wi)χBl1Lpi()(wi)×χBlLpi()(w1i)(v=1|fvi|ri)1riχlLpi()(wi)C2(lk)n(1δ1i)(v=1|fvi|ri)1riχlLpi()(wi). (3.3)

    Reverse the order of f1 and f2, it is obviously that the estimates of E2, E3 and E6 are similar to those of E4, E7 and E8, respectively. Thus We just need to estimate E1E3,E5,E6 and E9.

    For E1, since l, jk2, then for i=1,2,

    |xyi||x||yi|>2k12min{l,j}2k2,xDk, y1Dl, y2Dj.

    Therefore, for xDk, we have

    |K(x,y1,y2)|C(|xy1|+|xy2|)2nC22kn.

    Thus, for any xDkandl,jk2, we have

    |T(fv1l,fv2j)(x)|RnRn|fv1l(y1)||fv2j(y2)|(|xy1|+|xy2|)2ndy1dy222knRnRn|fv1l(y1)||fv2j(y2)|dy1dy2.

    Hence, together with the Hölder's and Minkowski's inequality, we have

    (v=1|k2l=k2j=Tϖ(fv1l,fv2j)|r)1rχkLp()(w)(v=1(k2l=2knRn|fv1l(y1)|dy1k2j=2knRn|fv2j(y2)|dy2)r)1rχkLp()(w)(v=1(k2l=2knRn|fv1l(y1)|dy1)r1)1r1χkLp1()(w1)×(v=1(k2j=2knRn|fv2j(y2)|dy2)r2)1r2χkLp2()(w2)k2l=2knRn(v=1|fv1l(y1)|r1)1r1dy1χkLp1()(w1)×k2j=2knRn(v=1|fv2j(y2)|r2)1r2dy2χkLp2()(w2). (3.4)

    Since

    \frac{1}{q_(0)} = \frac{1}{q_{1}(0)}+\frac{1}{q_{2}(0)}\; \; \; \text{and}\; \; \; \lambda = \lambda_{1}+\lambda_{2},

    by Hölder's inequality, we have

    \begin{eqnarray*} E_{1}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha(0)q(0)}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}})^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q(0)}\Big.\\ &&\times\Big\|\sum\limits_{j = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q(0)}\Big)^{\frac{1}{q(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{1}} \times(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{1}(0)q_{1}(0)}\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}})^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1}(0)})^{\frac{1}{q_{1}(0)}}\\ &&\times\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}} \times(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{2}(0)q_{2}(0)}\|\sum\limits_{j = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}})^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2}(0)})^{\frac{1}{q_{2}(0)}}\\ & = &E_{1,1}\times E_{1,2}. \end{eqnarray*}

    For convenience's sake, we write

    \begin{eqnarray*} E_{1,i} = \sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{i}}\times\Big\{\sum\limits_{k = -\infty}^{L}2^{k\alpha_{i}(0)q_{i}(0)}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{il}(y_{i})|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\mathrm{d}y_{i}\chi_{k}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i}(0)}\Big\}^{\frac{1}{q_{i}(0)}}. \end{eqnarray*}

    For n\delta_{i2}-\alpha_{i}(0) > 0 , by (3.1) and Lemma 2.4 we have

    \begin{eqnarray*} E_{1,i}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{i}}\Big\{\sum\limits_{k = -\infty}^{L}2^{k\alpha_{i}(0)q_{i}(0)}\Big.Big.\times\Big(\sum\limits_{l = -\infty}^{k-2}2^{(l-k)n\delta_{i2}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}\Big)^{q_{i}(0)}\Big\}^{\frac{1}{q_{i}(0)}}\\ & = &\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{i}} \times\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{l = -\infty}^{k-2}2^{l\alpha_{i}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}2^{(l-k)\Big(n\delta_{i2}-\alpha_{i}(0)\Big)}\Big)^{q_{i}(0)}\Big\}^{\frac{1}{q_{i}(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{i}}\Big(\sum\limits_{l = -\infty}^{L-2}2^{l\alpha_{i}(0)q_{i}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i}(0)}\Big)^{\frac{1}{q_{i}(0)}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\Big\|_{M\dot{K}_{p_{i}(\cdot),\lambda_{i}}^{\alpha_{i}(\cdot),q_{i}(\cdot)}(w_{i})}, \end{eqnarray*}

    where we write 2^{-|k-l|(n\delta_{i2}-\alpha_{i}(0))} = 2^{-|k-l|\varepsilon_{i}} for \varepsilon_{i} = n\delta_{i2}-\alpha_{i}(0) > 0 , then we have

    E_{1}\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}.

    To estimate E_{2} , since l\leq k-2 , k-1\leq j\leq k+1, then we have

    |x-y_{2}|\geq|x-y_{1}|\geq|x|-|y_{1}|\geq2^{k-2},\quad x\in D_{k},\ y_{1}\in D_{l},\ y_{2}\in D_{j}.

    Therefore, for x\in D_{k} , we have

    |K(x,y_{1},y_{2})|\leq C(|x-y_{1}|+|x-y_{2}|)^{-2n}\leq C2^{-2kn}.

    Thus, for any x\in D_{k}, l\leq k-2, k-1\leq j\leq k+1 , we have

    \begin{eqnarray*} |T(f_{1l}^{v},f_{2j}^{v})(x)|&\lesssim&\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}\frac{|f_{1l}^{v}(y_{1})||f_{2j}^{v}(y_{2})|}{(|x-y_{1}|+|x-y_{2}|)^{2n}}\mathrm{d}y_{1}\mathrm{d}y_{2}\\ &\lesssim&2^{-2kn}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})||f_{2j}^{v}(y_{2})|\mathrm{d}y_{1}\mathrm{d}y_{2}. \end{eqnarray*}

    Combining the Hölder's with and Minkowski's inequality, hence we obtain

    \begin{eqnarray} &&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = -\infty}^{k-2}\sum\limits_{j = k-1}^{k+1}T_{\varpi}(f_{1l}^{v},f_{2j}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})|\mathrm{d}y_{1}\sum\limits_{j = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}|f_{2j}^{v}(y_{2})|\mathrm{d}y_{2}\Big)^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})|\mathrm{d}y_{1}\Big)^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}\\ &&\times\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{j = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}|f_{2j}^{v}(y_{2})|\mathrm{d}y_{2}\Big)^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\\ &\lesssim&\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r}\Big)^{\frac{1}{r}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}\\ &&\times\Big\|\sum\limits_{j = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r}\Big)^{\frac{1}{r}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}. \end{eqnarray} (3.5)

    Since

    \frac{1}{q(0)} = \frac{1}{q_{1}(0)}+\frac{1}{q_{2}(0)}\; \; \; \text{and}\; \; \; \lambda = \lambda_{1}+\lambda_{2},

    by Hölder's inequality, we have

    \begin{eqnarray*} E_{2}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha(0)q(0)}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r}\Big)^{\frac{1}{r}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q(0)}\Big.\\ &&\Big.\times\Big\|\sum\limits_{j = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r}\Big)^{\frac{1}{r}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q(0)}\Big)^{\frac{1}{q(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{1}} \times\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{1}(0)q_{1}(0)}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r}\Big)^{\frac{1}{r}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1}(0)}\Big)^{\frac{1}{q_{1}(0)}}\\ &&\times\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}} \Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{2}(0)q_{2}(0)}\Big\|\sum\limits_{j = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2}\Big)\Big|^{r}\Big)^{\frac{1}{r}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ & = &E_{2,1}\times E_{2,2}. \end{eqnarray*}

    It is obvious that

    E_{2,1} = E_{1,1}\lesssim\|(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}})^{\frac{1}{r_{1}}}\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}.

    Now we turn to estimate E_{2, 2}. By (3.1)–(3.3), we have

    \begin{eqnarray*} E_{2,2}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{2}(0)q_{2}(0)}\Big\|\sum\limits_{j = k-1}^{k+1}2^{(j-k)n}\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}}\Big(\sum\limits_{k = -\infty}^{L+1}2^{k\alpha_{2}(0)q_{2}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}, \end{eqnarray*}

    where we use 2^{-n\delta_{22}} < 1 and 2^{(j-k)n(1-\delta_{12})} < 2^{(j-k)n} < 2^{2n}, j\in\{k-1, k, k+1\} for (3.1) and (3.3) respectively. Thus, we obtain

    E_{2}\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}.

    To estimate E_{3} , since l\leq k-2 and j\geq k+2 , we have

    |x-y_{1}|\geq|x|-|y_{1}|\geq2^{k-2},\quad|x-y_{2}|\geq|y_{2}|-|x| > 2^{j-2},\quad x\in D_{k},\; y_{1}\in D_{l},\; y_{2}\in D_{j}.

    Therefore, for any x\in D_{k}, l\leq k-2, j\geq k+2, we get

    \begin{eqnarray*} |T_{\varpi}(f_{1l},f_{2j})(x)|&\lesssim&\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}\frac{|f_{1l}^{v}(y_{1})||f_{2j}^{v}(y_{2})|}{(|x-y_{1}|+|x-y_{2}|)^{2n}}\mathrm{d}y_{1}\mathrm{d}y_{2}\\ &\lesssim&2^{-kn}2^{-jn}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})||f_{2j}^{v}(y_{2})|\mathrm{d}y_{1}\mathrm{d}y_{2}. \end{eqnarray*}

    Thus, by Hölder's inequality and Minkowski's inequality, we have

    \begin{eqnarray} &&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = -\infty}^{k-2}\sum\limits_{j = k+2}^{\infty}T(f_{1l}^{v},f_{2j}^{v})|^{r})^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})|\mathrm{d}y_{1}\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}|f_{2j}^{v}(y_{2})|\mathrm{d}y_{2}\Big)^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})|\mathrm{d}y_{1}\Big)^{r_{1}}\Big)^{\frac{1}{r_{1}}}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}\\ &&\times\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}|f_{2j}^{v}(y_{2})|\mathrm{d}y_{2}\Big)^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\\ &\lesssim&\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}\\ &&\times\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}. \end{eqnarray} (3.6)

    Since

    \frac{1}{q(0)} = \frac{1}{q_{1}(0)}+\frac{1}{q_{2}(0)}\; \; \; \text{and}\; \; \; \lambda = \lambda_{1}+\lambda_{2},

    by Hölder's inequality, we have

    \begin{eqnarray*} E_{3}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha(0)q(0)}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q(0)}\Big.\\ &&\Big.\times\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}})^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q(0)}\Big)^{\frac{1}{q(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{1}} \times\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{1}(0)q_{1}(0)}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1}(0)}\Big)^{\frac{1}{q_{1}(0)}}\\ &&\times\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}} \times\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{2}(0)q_{2}(0)}\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ & = &E_{3,1}\times E_{3,2}. \end{eqnarray*}

    It is obvious that

    E_{3,1} = E_{1,1}\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}.

    Since n\delta_{21}+\alpha_{2}(0) > 0 , by (3.3), we obtain

    \begin{eqnarray*} E_{3,2}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{2}(0)q_{2}(0)}\Big. \Big.\times\Big(\sum\limits_{j = k+2}^{\infty}2^{(k-j)n\delta_{21}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\Big)^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}} \times\Big(\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{j = k+2}^{L}2^{j\alpha_{2}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}2^{(k-j)(n\delta_{21}+\alpha_{2}(0))}\Big)^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &&+\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}} \times\Big(\sum\limits_{k = -\infty}^{L}\Big(2^{k\alpha_{2}(0)}\sum\limits_{j = L+1}^{0}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}2^{(k-j)n\delta_{21}}\Big)^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &&+\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}} \times\Big(\sum\limits_{k = -\infty}^{L}\Big(2^{k\alpha_{2}(0)}\sum\limits_{j = 1}^{\infty}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}2^{(k-j)n\delta_{21}}\Big)^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ & = &I_{1}+I_{2}+I_{3}. \end{eqnarray*}

    First, we consider I_{1} . By Lemma 2.4, we have

    \begin{eqnarray*} I_{1}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}} \times\Big(\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{j = k+2}^{L}2^{j\alpha_{2}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}2^{(k-j)(n\delta_{21}+\alpha_{2}(0))}\Big)^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}}\Big(\sum\limits_{j = -\infty}^{L+2}2^{j\alpha_{2}(0)q_{2}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)(w_{2})}}^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}\Big(w_{2}\Big)}, \end{eqnarray*}

    where we write 2^{-|k-j|(n\delta_{21}+\alpha_{2}(0))} = 2^{-|k-j|\eta_{2}} for \eta_{2} = n\delta_{21}+\alpha_{2}(0) > 0 . Next, we consider I_{2} . Since n\delta_{21}+\alpha_{2}(0)-\lambda_{2} > 0 , we obtain

    \begin{eqnarray*} I_{2}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}}\Big(\sum\limits_{k = -\infty}^{L}\Big(2^{k(n\delta_{21}+\alpha_{2}(0))}\sum\limits_{j = L+1}^{0}2^{j\alpha_{2}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\\ &&\times2^{-j(n\delta_{21}+\alpha_{2}(0))}\Big)^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}} \times2^{-L\lambda_{2}}\Big(\sum\limits_{k = -\infty}^{L}\Big(2^{k(n\delta_{21}+\alpha_{2}(0))}\sum\limits_{j = L+1}^{0}2^{-j(n\delta_{21}+\alpha_{2}(0)-\lambda_{2})}\Big)^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}\sup\limits_{j\leq0}2^{-j\lambda_{2}}2^{j\alpha_{2}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{L\Big(-n\delta_{21}-\alpha_{2}(0)\Big)}\Big(\sum\limits_{k = -\infty}^{L}2^{k\Big(n\delta_{21}+\alpha_{2}(0)\Big)q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}.\\ \end{eqnarray*}

    Then, we consider I_{3} . Since \delta_{21}+\alpha_{2}(0)-\lambda_{2} > 0 , we obtain

    \begin{eqnarray*} I_{3}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}}\Big(\sum\limits_{k = -\infty}^{L}\Big(2^{k(n\delta_{21}+\alpha_{2}(0))}\Big.\Big. \times\sum\limits_{j = 1}^{\infty}2^{j\alpha_{2\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}2^{-j(n\delta_{21}+\alpha_{2\infty})}\Big)^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}\sup\limits_{j\geq1}2^{-j\lambda_{2}}2^{j\alpha_{\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\\ &&\times2^{-L\lambda_{2}}\Big(\sum\limits_{k = -\infty}^{L}\Big(2^{k(n\delta_{21}+\alpha_{2}(0))}\sum\limits_{j = 1}^{\infty}2^{-j(n\delta_{21}+\alpha_{2\infty}-\lambda_{2})}\Big)^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}}\Big(\sum\limits_{k = -\infty}^{L}2^{k(n\delta_{21}+\alpha_{2}(0))q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{L\Big(-\lambda_{2}+n\delta_{21}+\alpha_{2}(0)\Big)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}. \end{eqnarray*}

    Thus, we have

    E_{3}\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}.

    To estimate E_{5} , using Hölder's inequality and Lemma 2.8, we have

    \begin{eqnarray*} E_{5}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha(0)q(0)}\sum\limits_{l = k-1}^{k+1}\sum\limits_{j = k-1}^{k+1}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|T_{\varpi}(f_{1l},f_{2j})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}^{q(0)}\Big)^{\frac{1}{q(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha(0)q(0)}\Big(\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}\Big.\Big. \times\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\Big)^{q(0)}\Big)^{\frac{1}{q(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{1}}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{1}(0)q_{1}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1}(0)}\Big)^{\frac{1}{q_{1}(0)}}\\ &&\times2^{-L\lambda_{2}}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{2}(0)q_{2}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}. \end{eqnarray*}

    To estimate E_{6} , since k-1\leq l\leq k+1 and j\geq k+2 , we obtain

    |x-y_{1}| > 2^{k-2},\quad|x-y_{2}| > 2^{j-2},\quad x\in D_{k},\; y_{1}\in D_{l},\; y_{2}\in D_{j}.

    Thus, for any x\in D_{k}, k-1\leq l\leq k+1 and j\geq k+2 , we obtain

    \begin{eqnarray*} |T(f_{1l}^{v},f_{2j}^{v})(x)|&\lesssim&\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}\frac{|f_{1l}^{v}(y_{1})||f_{2j}^{v}(y_{2})|}{(|x-y_{1}|+|x-y_{2}|)^{2n}}\mathrm{d}y_{1}\mathrm{d}y_{2}\\ &\lesssim&2^{-kn}2^{-jn}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})||f_{2j}^{v}(y_{2})|\mathrm{d}y_{1}\mathrm{d}y_{2}. \end{eqnarray*}

    Therefore, by Hölder's inequality and Minkowski's inequality, we obtain

    \begin{eqnarray} &&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = k-1}^{k+1}\sum\limits_{j = k+2}^{\infty}T(f_{1l}^{v},f_{2j}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{l = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})|\mathrm{d}y_{1}\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}|f_{2j}^{v}(y_{2})|\mathrm{d}y_{2}\Big)^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{l = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})|\mathrm{d}y_{1}\Big)^{r_{1}}\Big)^{\frac{1}{r_{1}}}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}\\ &&\times\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}|f_{2j}^{v}(y_{2})|\mathrm{d}y_{2}\Big)^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\\ &\lesssim&\Big\|\sum\limits_{l = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}\\ &&\times\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}. \end{eqnarray} (3.7)

    Since

    \frac{1}{q_(0)} = \frac{1}{q_{1}(0)}+\frac{1}{q_{2}(0)}\; \; \; \text{and}\; \; \; \lambda = \lambda_{1}+\lambda_{2},

    by Hölder's inequality, we have

    \begin{eqnarray*} E_{6}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha(0)q(0)}\Big\|\sum\limits_{l = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q(0)}\Big.\\ &&\Big.\times\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q(0)}\Big)^{\frac{1}{q(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{1}} \times\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{1}(0)q_{1}(0)}\Big\|\sum\limits_{l = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1}(0)}\Big)^{\frac{1}{q_{1}(0)}}\\ &&\times\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}} \times\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{2}(0)q_{2}(0)}\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}}(\cdot)(w_{2})}^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ & = &E_{6,1}\times E_{6,2}. \end{eqnarray*}

    By the interchange of f_{1} and f_{2} , we find the estimateof E_{6, 1} and E_{2, 2} are similar, and E_{6, 2} = E_{3, 2} . To estimate E_{9} , since l, j\geq k+2 , we get

    |x-y_{i}| > 2^{k-2},\quad x\in D_{k},\; y_{1}\in D_{l},\; y_{2}\in D_{j}.

    Therefore, for any x\in D_{k}, \ l, j\geq k+2 , we have

    \begin{eqnarray*} |T_{\varpi}(f_{1l}^{v},f_{2j}^{v})(x)|&\lesssim&\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}\frac{|f_{1l}^{v}(y_{1})||f_{2j}^{v}(y_{2})|}{(|x-y_{1}|+|x-y_{2}|)^{2n}}\mathrm{d}y_{1}\mathrm{d}y_{2}\\ &\lesssim&2^{-ln}2^{-jn}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})||f_{2j}^{v}(y_{2})|\mathrm{d}y_{1}\mathrm{d}y_{2}. \end{eqnarray*}

    Thus, by Hölder's inequality and Minkowski's inequality, we have

    \begin{eqnarray} &&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = k+2}^{\infty}\sum\limits_{j = k+2}^{\infty}T(f_{1l}^{v},f_{2j}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{l = k+2}^{\infty}2^{-ln}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})|\mathrm{d}y_{1}\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}|f_{2j}^{v}(y_{2})|\mathrm{d}y_{2}\Big)^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{l = k+2}^{\infty}2^{-\ln}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})|\mathrm{d}y_{1}\Big)^{r_{1}}\Big)^{\frac{1}{r_{1}}}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}\\ &&\times\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}|f_{2j}^{v}(y_{2})|\mathrm{d}y_{2}\Big)^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\\ &\lesssim&\Big\|\sum\limits_{l = k+2}^{\infty}2^{-ln}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}\\ &&\times\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}. \end{eqnarray} (3.8)

    Since

    \frac{1}{q_(0)} = \frac{1}{q_{1}(0)}+\frac{1}{q_{2}(0)}\; \; \; \text{and}\; \; \; \lambda = \lambda_{1}+\lambda_{2},

    by Hölder's inequality, we have

    \begin{eqnarray*} E_{9}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha(0)q(0)}\Big\|\sum\limits_{l = k+2}^{\infty}2^{-ln}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}})^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q(0)}\Big.\\ &&\times\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q(0)}\Big)^{\frac{1}{q(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{1}} \times\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{1}(0)q_{1}(0)}\Big\|\sum\limits_{l = k+2}^{\infty}2^{-ln}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1}(0)}\Big)^{\frac{1}{q_{1}(0)}}\\ &&\times\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}} \times\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{2}(0)q_{2}(0)}\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ & = &E_{9,1}\times E_{9,2}. \end{eqnarray*}

    Obviously, the estimates of E_{9, i} are similar to those of E_{3, 2}(i = 1, 2) .

    All estimates for E_{i} i = 1, 2, \cdots, 9 considered, we have

    E\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}.

    Finally, we estimate H . By the interchange of f_{1} and f_{2} , we see that the estimates of H_{2}, H_{3} and H_{6} are similar to those of H_{4}, H_{7} and H_{8} , respectively. Thus we just need to estimate H_{1} H_{3} , H_{5}, H_{6} and H_{9} .

    For the subsequent proof process, we need following further preparation. If l < 0 , by Lemma 1.3, we have

    \begin{eqnarray} \Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})} & = &2^{-l\alpha_{i}(0)}\Big(2^{l\alpha_{i}(0)q_{i}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i}(0)}\Big)^{\frac{1}{q_{i}(0)}}\\ &\lesssim&2^{-l\alpha_{i}(0)}\Big(\sum\limits_{t = -\infty}^{l}2^{t\alpha_{i}(0)q_{i}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{t}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i}(0)}\Big)^{\frac{1}{q_{i}(0)}}\\ &\lesssim&2^{l(\lambda-\alpha_{i}(0))}2^{-l\lambda}\Big(\sum\limits_{t = -\infty}^{l}\Big\|2^{t\alpha_{i}(0)}\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{t}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i}(0)}\Big)^{\frac{1}{q_{i}(0)}}\\ &\lesssim&2^{l(\lambda-\alpha_{i}(0))}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\Big\|_{M\dot{K}_{p_{i}(\cdot),\lambda_{i}}^{\alpha_{i}(\cdot),q_{i}(\cdot)}(w_{i})}. \end{eqnarray} (3.9)

    To estimate H_{1} , since

    l,j\leq k-2,\ \ \ \ \frac{1}{q_{\infty}} = \frac{1}{q_{1\infty}}+\frac{1}{q_{2\infty}}

    and \lambda = \lambda_{1}+\lambda_{2} , by (3.4) and Hölder's inequality, we have

    \begin{eqnarray*} H_{1}&\lesssim&2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{\infty}}\Big.\\ &&\Big.\times\Big\|\sum\limits_{j = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{\infty}}\Big)^{\frac{1}{q_{\infty}}}\\ &\lesssim&2^{-L\lambda_{1}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{1\infty}q_{1\infty}}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1\infty}}\Big)^{\frac{1}{q_{1\infty}}}\\ &&\times2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{2\infty}q_{2\infty}}\Big\|\sum\limits_{j = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ & = &H_{1,1}\times H_{1,2}, \end{eqnarray*}

    where

    H_{1,i} = 2^{-L\lambda_{i}}\Big\{\sum\limits_{k = 0}^{L}2^{k\alpha_{i\infty}q_{i\infty}}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{il}(y_{i})|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\mathrm{d}y_{i}\chi_{k}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i\infty}}\Big\}^{\frac{1}{q_{i\infty}}}.

    By (3.1), we obtain

    \begin{eqnarray*} H_{1,i}&\lesssim&2^{-L\lambda_{i}}\Big\{\sum\limits_{k = 0}^{L}2^{k\alpha_{i\infty}q_{i\infty}}\Big(\sum\limits_{l = -\infty}^{k-2}2^{(l-k)n\delta_{i2}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}\Big)^{q_{i\infty}}\Big\}^{\frac{1}{q_{i\infty}}}\\ &\lesssim&2^{-L\lambda_{i}}\Big\{\sum\limits_{k = 0}^{L}2^{k\alpha_{i\infty}q_{i\infty}}\Big(\sum\limits_{l = -\infty}^{-1}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}2^{(l-k)n\delta_{i2}}\Big.\Big.\\ &&+\sum\limits_{l = 0}^{k}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}2^{(l-k)n\delta_{i2}}\Big)^{q_{i\infty}}\Big\}^{\frac{1}{q_{i\infty}}}\\&\lesssim&2^{-L\lambda_{i}}\Big\{\sum\limits_{k = 0}^{L}2^{k\alpha_{i\infty}q_{i\infty}}\Big(\sum\limits_{l = -\infty}^{-1}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}2^{(l-k)n\delta_{i2}}\Big)^{q_{i\infty}}\Big\}^{\frac{1}{q_{i\infty}}}\\ &&+2^{-L\lambda_{i}}\Big\{\sum\limits_{k = 0}^{L}2^{k\alpha_{i\infty}q_{i\infty}}\Big(\sum\limits_{l = 0}^{k}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}2^{(l-k)n\delta_{i2}}\Big)^{q_{i\infty}}\Big\}^{\frac{1}{q_{i\infty}}}\\ & = &I_{4}+I_{5}. \end{eqnarray*}

    If q_{i\infty}\geq1 , since n\delta_{i2}-\alpha_{i\infty} > 0 and n\delta_{i2}-\alpha_{i}(0) > 0 , by the Minkowski's inequality and (3.9), we obtain

    \begin{eqnarray*} I_{4}& = &2^{-L\lambda_{i}}\Big\{\sum\limits_{k = 0}^{L}2^{k\alpha_{i\infty}q_{i\infty}}\Big(\sum\limits_{l = -\infty}^{-1}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}2^{(l-k)n\delta_{i2}}\Big)^{q_{i\infty}}\Big\}^{\frac{1}{q_{i\infty}}}\\ &&\lesssim2^{-L\lambda_{i}}\sum\limits_{l = -\infty}^{-1}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}\Big\{\sum\limits_{k = 0}^{L}\Big(2^{k\alpha_{i\infty}}2^{(l-k)n\delta_{i2}}\Big)^{q_{i\infty}}\Big\}^{\frac{1}{q_{i\infty}}}\\ &&\lesssim2^{-L\lambda_{i}}\sum\limits_{l = -\infty}^{-1}2^{ln\delta_{i2}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}\Big\{\sum\limits_{k = 0}^{L}2^{-k\Big(n\delta_{i2}-\alpha_{i\infty}\Big)q_{i\infty}}\Big\}^{\frac{1}{q_{i\infty}}}\\ &&\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\Big\|_{M\dot{K}_{p_{i}(\cdot),\lambda_{i}}^{\alpha_{i}(\cdot),q_{i}(\cdot)}(w_{i})}2^{-L\lambda_{i}}\sum\limits_{l = -\infty}^{-1}2^{l\Big(n\delta_{i2}+\lambda_{i}-\alpha_{i}(0)\Big)}\\ &&\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\Big\|_{M\dot{K}_{p_{i}(\cdot),\lambda_{i}}^{\alpha_{i}(\cdot),q_{i}(\cdot)}(w_{i})}. \end{eqnarray*}

    If q_{i\infty} < 1 , since n\delta_{i2}-\alpha_{i\infty} > 0 and n\delta_{i2}-\alpha_{i}(0) > 0 , by (3.9), we have

    \begin{eqnarray*} I_{4}&\lesssim&2^{-L\lambda_{i}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{i\infty}q_{i\infty}}\sum\limits_{l = -\infty}^{-1}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i\infty}}2^{(l-k)n\delta_{i2}q_{i\infty}}\Big)^{\frac{1}{q_{i\infty}}}\\ & = &2^{-L\lambda_{i}}\Big(\sum\limits_{l = -\infty}^{-1}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i\infty}}2^{ln\delta_{i2}q_{i\infty}}\sum\limits_{k = 0}^{L}2^{k\alpha_{i\infty}q_{i\infty}}2^{-kn\delta_{i2}q_{i\infty}}\Big)^{\frac{1}{q_{i\infty}}}\\ & = &2^{-L\lambda_{i}}\Big(\sum\limits_{l = -\infty}^{-1}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i\infty}}2^{\ln\delta_{i2}q_{i\infty}}\sum\limits_{k = 0}^{L}2^{-k\Big(n\delta_{i2}-\alpha_{i\infty}\Big)q_{i\infty}}\Big)^{\frac{1}{q_{i\infty}}}\\ &\lesssim&2^{-L\lambda_{i}}\Big(\sum\limits_{l = -\infty}^{-1}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i\infty}}2^{\ln\delta_{i2}q_{i\infty}}\Big)^{\frac{1}{q_{i\infty}}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\Big\|_{M\dot{K}_{p_{i}(\cdot),\lambda_{i}}^{\alpha_{i}(\cdot),q_{i}(\cdot)}(w_{i})}2^{-L\lambda_{i}}\Big(\sum\limits_{l = -\infty}^{-1}2^{l\Big(n\delta_{i2}+\lambda_{i}-\alpha_{i}(0)\Big)q_{i\infty}}\Big)^{\frac{1}{q_{i\infty}}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\Big\|_{M\dot{K}_{p_{i}(\cdot),\lambda_{i}}^{\alpha_{i}(\cdot),q_{i}(\cdot)}(w_{i})}. \end{eqnarray*}

    We consider I_{5} . Since n\delta_{i2}-\alpha_{i\infty} > 0 , by Lemma 2.4, we have

    \begin{eqnarray*} I_{5}& = &2^{-L\lambda_{i}}\Big\{\sum\limits_{k = 0}^{L}2^{k\alpha_{i\infty}q_{i\infty}}\Big(\sum\limits_{l = 0}^{k}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}2^{(l-k)n\delta_{i2}}\Big)^{q_{i\infty}}\Big\}^{\frac{1}{q_{i\infty}}}\\ & = &2^{-L\lambda_{i}}\Big\{\sum\limits_{k = 0}^{L}\Big(\sum\limits_{l = 0}^{k}2^{l\alpha_{i\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}2^{(l-k)(n\delta_{i2}-\alpha_{i\infty})}\Big)^{q_{i\infty}}\Big\}^{\frac{1}{q_{i\infty}}}\\ &\lesssim&2^{-L\lambda_{i}}\Big(\sum\limits_{l = 0}^{k}2^{l\alpha_{i\infty}q_{i\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i\infty}}\Big)^{\frac{1}{q_{i\infty}}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\Big\|_{M\dot{K}_{p_{i}(\cdot),\lambda_{i}}^{\alpha_{i}(\cdot),q_{i}(\cdot)}\Big(w_{i}\Big)}, \end{eqnarray*}

    where we write 2^{-|k-l|(n\delta_{i2}-\alpha_{i\infty})}\lesssim2^{-|k-l|\eta_{i}} for \eta_{i} = n\delta_{i2}-\alpha_{i\infty} .

    Thus, we get

    H_{1}\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}.

    To estimate H_{2} , since

    l\leq k-2,\ \ \ \ k-1\leq j\leq k+1,\ \ \ \ \frac{1}{q_{\infty}} = \frac{1}{q_{1\infty}}+\frac{1}{q_{2\infty}}

    and \lambda = \lambda_{1}+\lambda_{2} , by (3.6) and Hölder's inequality, we have

    \begin{eqnarray*} H_{2}&\lesssim&2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}\Big(y_{1}\Big)|^{r}\Big)^{\frac{1}{r}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{\infty}}\Big.\\ &&\Big.\times\Big\|\sum\limits_{j = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r}\Big)^{\frac{1}{r}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{\infty}}\Big)^{\frac{1}{q_{\infty}}}\\ &\lesssim&2^{-L\lambda_{1}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{1\infty}q_{1\infty}}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r}\Big)^{\frac{1}{r}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1\infty}}\Big)^{\frac{1}{q_{1\infty}}}\\ &&\times2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{2\infty}q_{2\infty}}\Big\|\sum\limits_{j = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r}\Big)^{\frac{1}{r}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ & = &H_{2,1}\times H_{2,2}. \end{eqnarray*}

    It isobvious that

    H_{2,1} = H_{1,1}\lesssim\|(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}})^{\frac{1}{r_{1}}}\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}.

    Now we estimate H_{2, 2} . Combining (3.1)–(3.3), we have

    \begin{eqnarray*} H_{2,2}&\lesssim&2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{2\infty}q_{2\infty}}\sum\limits_{j = k-1}^{k+1}2^{(j-k)n}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ &\lesssim&2^{-L\lambda_{2}}\Big(\sum\limits_{k = -1}^{L+1}2^{k\alpha_{2\infty}q_{2\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}, \end{eqnarray*}

    where we use 2^{-n\delta_{22}} < 1 and 2^{(j-k)n(1-\delta_{21})} < 2^{(j-k)n} for (3.6) and (3.8), respectively. Thus, we obtain

    H_{2}\lesssim\|(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}})^{\frac{1}{r_{1}}}\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}.

    To estimate H_{3} , since

    l\leq k-2,\ \ \ \ j\geq k+2,\ \ \ \ \frac{1}{q_{\infty}} = \frac{1}{q_{1\infty}}+\frac{1}{q_{2\infty}}

    and \lambda = \lambda_{1}+\lambda_{2} , together (3.6) with the Hölder's inequality, we have

    \begin{eqnarray*} H_{3}&\lesssim&2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{\infty}}\Big.\\ &&\Big.\times\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{\rho_{\infty}}}\Big)^{\frac{1}{q_{\infty}}}\\ &\lesssim&2^{-L\lambda_{1}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{1\infty}q_{1\infty}}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1\infty}}\Big)^{\frac{1}{q_{1\infty}}}\\ &&\times2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{2\infty}q_{2\infty}}\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ & = &H_{3,1}\times H_{3,2}. \end{eqnarray*}

    It is easy to see that

    H_{3,1} = H_{1,1}\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}.

    Since n\delta_{21}+\alpha_{2\infty} > 0 , by (3.3), we obtain

    \begin{eqnarray*} H_{3,2}&\lesssim&2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{2\infty}q_{2\infty}}\Big(\sum\limits_{j = k+2}^{\infty}2^{(k-j)n\delta_{21}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\Big)^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ &\lesssim&2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}\Big(\sum\limits_{j = k+2}^{L+2}2^{j\alpha_{2\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}2^{(k-j)\Big(n\delta_{21}+\alpha_{2\infty}\Big)}\Big)^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ &&+2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}\Big(2^{k\alpha_{2\infty}}\sum\limits_{j = L+3}^{\infty}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}2^{(k-j)n\delta_{21}}\Big)^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ & = &I_{6}+I_{7}. \end{eqnarray*}

    For I_{6} , by Lemma 2.4, we obtain

    \begin{eqnarray*} I_{6}&\lesssim&2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}\Big(\sum\limits_{j = k+2}^{L+2}2^{j\alpha_{2\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}2^{(k-j)\Big(n\delta_{21}+\alpha_{2\infty}\Big)}\Big)^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ &\lesssim&2^{-L\lambda_{2}}\Big(\sum\limits_{j = 0}^{L+2}2^{j\alpha_{2\infty}q_{2\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)(w_{2})}}^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha(\cdot),q_{2}(\cdot)}\Big(w_{2}\Big)}, \end{eqnarray*}

    where we write 2^{-|k-j|(n\delta_{21}+\alpha_{2\infty})} = 2^{-|k-j|\vartheta_{2}} for \vartheta_{2} = n\delta_{21}+\alpha_{2\infty} > 0.

    For I_{7} , since n\delta_{21}+\alpha_{2\infty}-\lambda_{2} > 0, we have

    \begin{eqnarray*} I_{7}&\lesssim&2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}\Big(2^{k(n\delta_{21}+\alpha_{2\infty})}\sum\limits_{j = L+3}^{\infty}2^{j\alpha_{2\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})} \times2^{-j(n\delta_{21}+\alpha_{2\infty})}\Big)^{q_{2\infty}}\Big)^{\frac{1}{q_{2}\infty}}\\ &\lesssim&\sup\limits_{j\geq1}2^{-j\lambda_{2}}2^{j\alpha_{2\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})} \times2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}\Big(2^{k(n\delta_{21}+\alpha_{2\infty})}\sum\limits_{j = L+3}^{\infty}2^{-j(n\delta_{21}+\alpha_{2\infty}-\lambda_{2})}\Big)^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}2^{-L\lambda_{2}+\Big(n\delta_{21}+\alpha_{2\infty}\Big)L-L\Big(n\delta_{21}+\alpha_{2\infty}-\lambda_{2}\Big)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}. \end{eqnarray*}

    Thus, we get

    H_{3}\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}.

    To estimate {H}_{5} , using Hölder's inequality and Lemma 2.8, we have

    \begin{eqnarray*} H_{5}&\lesssim&2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\sum\limits_{l = k-1}^{k+1}\sum\limits_{j = k-1}^{k+1}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|T(f_{1l},f_{2j})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}^{q_{\infty}}\Big)^{\frac{1}{q_{\infty}}}\\ &\lesssim&2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\Big(\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|\|_{L^{p_{1}(\cdot)}(w_{1})} \Big.\Big.\times\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\Big)^{q_{\infty}}\Big)^{\frac{1}{q_{\infty}}}\\ &\lesssim&2^{-L\lambda_{1}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{1\infty}q_{1\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1\infty}}\Big)^{\frac{1}{q_{1\infty}}}\\ &&\times2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{2\infty}q_{2\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}. \end{eqnarray*}

    To estimate H_{6} , since

    k-1\leq l\leq k+1,\ \ \ \ j\geq k+2,\ \ \ \ \frac{1}{q_{\infty}} = \frac{1}{q_{1\infty}}+\frac{1}{q_{2\infty}}

    and \lambda = \lambda_{1}+\lambda_{2} , by (3.7) and Hölder's sinequality, we have

    \begin{eqnarray*} H_{6}&\lesssim&2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\Big\|\sum\limits_{l = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{\infty}}\Big.\\ &&\Big.\times\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{\infty}}\Big)^{\frac{1}{q_{\infty}}}\\ &\lesssim&2^{-L\lambda_{1}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{1\infty}q_{1\infty}}\Big\|\sum\limits_{l = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1\infty}}\Big)^{\frac{1}{q_{1\infty}}}\\ &&\times2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{2\infty}q_{2\infty}}\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ & = &H_{6,1}\times H_{6,2}. \end{eqnarray*}

    By the interchange of f_{1} and f_{2} , we see that that of H_{6, 1} is similar to the estimate of H_{2, 2} and H_{6, 2} = H_{3, 2}.

    To estimate H_{9} , since

    l,j\geq k+2,\ \ \ \ \frac{1}{q_{\infty}} = \frac{1}{q_{1\infty}}+\frac{1}{q_{2\infty}}

    and \lambda = \lambda_{1}+\lambda_{2} , by (3.8) and Hölder's inequality, we have

    \begin{eqnarray*} H_{9}&\lesssim&2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\Big\|\sum\limits_{l = k+2}^{\infty}2^{-ln}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{\infty}}\Big.\\ &&\Big.\times\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{\infty}}\Big)^{\frac{1}{q_{\infty}}}\\ &\lesssim&2^{-L\lambda_{1}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{1\infty}q_{1\infty}}\Big\|\sum\limits_{l = k+2}^{\infty}2^{-ln}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1\infty}}\Big)^{\frac{1}{q_{1\infty}}}\\ &&\times2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{2\infty}q_{2\infty}}\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ & = &H_{9,1}\times H_{9,2}. \end{eqnarray*}

    Obviously, the estimates of H_{9, i} are similar to those of H_{3, 2} for i = 1, 2 , respectively.

    Taking all estimates for H_{i} together, i = 1, 2, \cdots, 9 , we obtain

    H\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),(\cdot)}(w_{1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}.

    This completes the proof.

    On the basis of vector valued bilinear Calderón-Zygmund operators with kernels of Dini's type are bounded on variable Lebesgue spaces, with the help of properties of the \varpi(t) and space decomposition methods for variable exponents Herz-Morrey spaces. We establish the weighted boundedness result of vector valued bilinear \varpi(t) -type Calderón-Zygmund operators in variable exponents Herz-Morrey spaces, this is a new and meaningful result.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work is supported by the Doctoral Scientific Research Foundation of Northwest Normal University (202003101203), Young Teachers Scientific Research Ability Promotion Project of Northwest Normal University (NWNU-LKQN2021-03) and Open Foundation of Hubei Key Laboratory of Applied Mathematics (Hubei University) (HBAM202205).

    The authors declare that there are no conflicts of interest.



    [1] R. Branzei, S. Z. Alparslan Gök, O. Branzei, Cooperative games under interval uncertainty: on the convexity of the interval undominated cores, Cent. Eur. J. Oper. Res., 19 (2011), 523–532. http://doi.org/10.1007/s10100-010-0141-z doi: 10.1007/s10100-010-0141-z
    [2] L. Y. Yu, The grey forecast for urban domestic wastes, Environ. Pollut. Control, 5 (1986), 7–9.
    [3] S. Liu, Y. Lin, Grey prediction, Springer, 2006. https://doi.org/10.1007/1-84628-342-6_9
    [4] S. F. Liu, Y. Lin, Introduction to grey systems theory, Springer, 2010. https://doi.org/10.1007/978-3-642-16158-2_1
    [5] Z. Li, Primary applications of grey system theory in the study of earthquake forecasting, J. Seismol., 4 (1986), 27–31.
    [6] C. Lee, Grey system theory win application on earthquake forecasting, J. Seismol., 4 (1986), 27–31.
    [7] M. Wang, W. Liu, Long period forecasting of first frost by grey system theory, Fuzzy Math., 2 (1985), 59–66.
    [8] D. Julong, On Grey and fuzzy decision of lining Building of irrigation channels, Syst. Sci. Compr. Stud. Agric., 2 (1985), 26–30.
    [9] E. Kose, I. Temiz, S. Erol, Grey system approach for economic order quantity models under uncertainty, J. Grey Syst., 1 (2011), 71–82.
    [10] B. Li, J. Deng, The grey model of biological prevention and cure systems of aphis gossypii Glover, Explor. Nature, 3 (1984), 44–46.
    [11] J. Deng, Grey system and agriculture, J. Shanxi Agric. Sci., 5 (1985), 34–37.
    [12] L. Senra, Grey forecasting the freight volume for vehicle of railway, J. Xiangfan Univ., 1 (1986), 33–35.
    [13] G. Hong, Grey classification of medical diagnosis, Explor. Nat., 4 (1986), 69–75.
    [14] B. Cheng, The grey control on industrial process, J. Huangshi College, 1 (1986), 11–23.
    [15] D. Zhang, Grey relational analysis of the shape function and the level of body quality for youngsters and children, Sport Science in Guizhou Province, 2 (1986), 1–5.
    [16] X. Ma, P. Zhen, The forecasting of creep behaviour for low alloy steel, Fuzzy Math. 2 (1985), 85–88.
    [17] X. Jiling, Analysis of potentials of the load of judicial system of China, Grey Syst., 1988,195–210.
    [18] E. F. H. Qasim, S. Z. A. Gök, O. Palanci, An application of cooperative grey games to post-disaster housing problem, Int. J. Supply Oper. Manage., 6 (2019), 57–66. http://doi.org/10.22034/2019.1.4 doi: 10.22034/2019.1.4
    [19] E. F. H. Qasim, S. Z. A. Gök, O. Palanci, G. W. Weber, Airport situations and games with grey uncertainty, Int. J. Ind. Eng. Oper. Res., 1 (2019), 51–59.
    [20] U. A. Yılmaz, S. Z. A. Gök, M. Ekici, O. Palanci, On the grey equal surplus sharing solutions, Int. J. Supply Oper. Manage., 5 (2018), 1–10. http://doi.org/10.22034/2018.1.1 doi: 10.22034/2018.1.1
    [21] J. Deng, Control problems of Grey Systems, Syst. Control Lett., 5 (1982), 288–294. http://doi.org/10.1016/S0167-6911(82)80025-X doi: 10.1016/S0167-6911(82)80025-X
    [22] W. Xie, C. Liu, W. Z. Wu, A novel fractional grey system model with non-singular exponential kernel for forecasting enrollments, Expert Syst. Appl., 219 (2023), 119652. http://doi.org/10.1016/j.eswa.2023.119652 doi: 10.1016/j.eswa.2023.119652
    [23] M. Zhang, Y. Lan, J. Chen, A comprehensive college coaches evaluation model based on AHP and grey correlation theory, 2015 IEEE Fifth International Conference on Big Data and Cloud Computing, 2015. http://doi.org/10.1109/BDCloud.2015.69
    [24] S. Liu, Y. Yang, J. Y. Forrest, Grey models for decision making, Springer, 2010. https://doi.org/10.1007/978-981-19-6160-1_10
    [25] S. A. Javed, A. Gunasekaran, A. Mahmoudi, DGRA: multi-sourcing and supplier classification through dynamic grey relational analysis method, Comput. Ind. Eng., 173 (2022), 108674. http://doi.org/10.1016/j.cie.2022.108674 doi: 10.1016/j.cie.2022.108674
    [26] M. Ekici, O. Palanci, S. Z. A. Gök, The grey Shapley value: an axiomatization, IOP Conf. Ser., 300 (2018), 012082. http://doi.org/10.1088/1757-899X/300/1/012082 doi: 10.1088/1757-899X/300/1/012082
    [27] O. Palanci, The new axiomatization of the grey Shapley value, J. Grey Syst., 33 (2021), 67–77.
    [28] O. Palanci, M. O. Olgun, S. Ergun, S. Z. A. Gök, G. W. Weber, Cooperative grey games: grey solutions and an optimization algorithm, Int. J. Supply Oper. Manage., 4 (2017), 202–215. http://doi.org/10.22034/2017.3.02 doi: 10.22034/2017.3.02
    [29] G. Owen, Multilinear extensions and the Banzhaf value, Naval Res. Logist. Q., 22 (1975), 741–750. http://doi.org/10.1002/nav.3800220409 doi: 10.1002/nav.3800220409
    [30] L. S. Shapley, A value for n-person games, Princeton University Press, 1953.
    [31] E. Lehrer, An axiomatization of the Banzhaf value, Int. J. Game Theory, 17 (1988), 89–99. http://doi.org/10.1007/BF01254541 doi: 10.1007/BF01254541
    [32] H. Haller, Collusion properties of values, Int. J. Game Theory, 23 (1994), 261–281. http://doi.org/10.1007/BF01247318 doi: 10.1007/BF01247318
    [33] V. Feltkamp, Alternative axiomatic characterizations of the Shapley and Banzhaf values, Int. J. Game Theory, 24 (1995), 179–186. http://doi.org/10.1007/BF01240041 doi: 10.1007/BF01240041
    [34] A. S. Nowak, On an axiomatization of the Banzhaf value without the additivity axiom, Int. J. Game Theory, 26 (1997), 137–141. http://doi.org/10.1007/BF01262517 doi: 10.1007/BF01262517
    [35] H. P. Young, Monotonic solutions of cooperative games, Int. J. Game Theory, 14 (1985), 65–72. http://doi.org/10.1007/BF01769885 doi: 10.1007/BF01769885
    [36] A. Casajus, Marginality, differential marginality, and the Banzhaf value, Theory Decision, 71 (2011), 365–372. https://doi.org/10.1007/s11238-010-9224-5 doi: 10.1007/s11238-010-9224-5
    [37] R. van den Brink, An axiomatization of the Shapley value using a fairness property, Int. J. Game Theory, 30 (2002), 309–319. http://doi.org/10.1007/s001820100079 doi: 10.1007/s001820100079
    [38] Y. Kamijo, T. Kongo, Axiomatization of the Shapley value using the balanced cycle contributions property, Int. J. Game Theory, 39 (2010), 563–571. http://doi.org/10.1007/s00182-009-0187-0 doi: 10.1007/s00182-009-0187-0
    [39] S. Hart, A. Mas-Colell, Potential, value, and consistency, Econometrica, 57 (1989), 589–614. http://doi.org/10.2307/1911054 doi: 10.2307/1911054
    [40] Y. Chun, A new axiomatization of the Shapley value, Game. Econ. Behav., 1 (1989), 119–130. http://doi.org/10.1016/0899-8256(89)90014-6 doi: 10.1016/0899-8256(89)90014-6
    [41] R. B. Myerson, Conference structures and fair allocation rules, Int. J. Game Theory, 9 (1980), 169–182. http://doi.org/10.1007/BF01781371 doi: 10.1007/BF01781371
    [42] S. Tijs, Introduction to game theory, Springer, 2003.
    [43] R. E. Moore, Methods and applications of interval analysis, Society for Industrial and Applied Mathematics, 1979. http://doi.org/10.1137/1.9781611970906
    [44] O. Palanci, S. Z. A. Gök, S. Ergün, G. W. Weber, Cooperative grey games and grey Shapley value, Optimization, 64 (2015), 1657–1668. http://doi.org/10.1080/02331934.2014.956743 doi: 10.1080/02331934.2014.956743
    [45] A. Casajus, Differential marginality, van den Brink fairness, and the Shapley value, Theory Decision, 71 (2009), 163–174. http://doi.org/10.1007/s11238-009-9171-1 doi: 10.1007/s11238-009-9171-1
    [46] J. J. M. Derks, H. H. Haller, Null players out? Linear values for games with variable supports, Int. J. Game Theory Rev., 1 (1999), 301–314. http://doi.org/10.1142/S0219198999000220 doi: 10.1142/S0219198999000220
    [47] S. H. Tijs, T. Parthasarathy, J. A. M. Potters, V. R. Prasad, Permutation games: another class of totally balanced games, Oper. Res. Spektrum, 6 (1984), 119–123. http://doi.org/10.1007/BF01721088 doi: 10.1007/BF01721088
    [48] J. C. Harsanyi, A bargaining model for cooperative n-person games, Princeton University Press, 1959. http://doi.org/10.1515/9781400882168-019
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1433) PDF downloads(76) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog