In this work, we consider the model of shallow water equation with horizontal density gradients. We develop the modified Rusanov (mR) scheme to solve this model in one and two dimensions. Predictor and corrector are the two stages of the suggested scheme. The predictor stage is dependent on a local parameter (αni+12) that allows for diffusion control. The balance conservation equation is recovered in the corrector stage. The proposed approach is well-balanced, conservative, and straightforward. Several 1D and 2D test cases are produced after presenting the shallow water model and the numerical technique. In the 1D case, we compared the proposed scheme with the Rusanov scheme, mR with constant α and analytical solutions. The numerical simulation demonstrates the mR's great resolution and attests to its capacity to produce accurate simulations of the shallow water equation with horizontal density gradients. Our results demonstrate that the mR technique is a highly effective instrument for solving a variety of equations in applied science and developed physics.
Citation: Kamel Mohamed, H. S. Alayachi, Mahmoud A. E. Abdelrahman. The mR scheme to the shallow water equation with horizontal density gradients in one and two dimensions[J]. AIMS Mathematics, 2023, 8(11): 25754-25771. doi: 10.3934/math.20231314
[1] | Ndolane Sene . Fractional input stability for electrical circuits described by the Riemann-Liouville and the Caputo fractional derivatives. AIMS Mathematics, 2019, 4(1): 147-165. doi: 10.3934/Math.2019.1.147 |
[2] | Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay. AIMS Mathematics, 2024, 9(3): 7372-7395. doi: 10.3934/math.2024357 |
[3] | Hadjer Belbali, Maamar Benbachir, Sina Etemad, Choonkil Park, Shahram Rezapour . Existence theory and generalized Mittag-Leffler stability for a nonlinear Caputo-Hadamard FIVP via the Lyapunov method. AIMS Mathematics, 2022, 7(8): 14419-14433. doi: 10.3934/math.2022794 |
[4] | Sabri T. M. Thabet, Reem M. Alraimy, Imed Kedim, Aiman Mukheimer, Thabet Abdeljawad . Exploring the solutions of a financial bubble model via a new fractional derivative. AIMS Mathematics, 2025, 10(4): 8587-8614. doi: 10.3934/math.2025394 |
[5] | Minghung Lin, Yiyou Hou, Maryam A. Al-Towailb, Hassan Saberi-Nik . The global attractive sets and synchronization of a fractional-order complex dynamical system. AIMS Mathematics, 2023, 8(2): 3523-3541. doi: 10.3934/math.2023179 |
[6] | Wei Liu, Qinghua Zuo, Chen Xu . Finite-time and global Mittag-Leffler stability of fractional-order neural networks with S-type distributed delays. AIMS Mathematics, 2024, 9(4): 8339-8352. doi: 10.3934/math.2024405 |
[7] | Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani . Existence and data dependence results for neutral fractional order integro-differential equations. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052 |
[8] | Anumanthappa Ganesh, Swaminathan Deepa, Dumitru Baleanu, Shyam Sundar Santra, Osama Moaaz, Vediyappan Govindan, Rifaqat Ali . Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform. AIMS Mathematics, 2022, 7(2): 1791-1810. doi: 10.3934/math.2022103 |
[9] | Weerawat Sudsutad, Chatthai Thaiprayoon, Aphirak Aphithana, Jutarat Kongson, Weerapan Sae-dan . Qualitative results and numerical approximations of the (k,ψ)-Caputo proportional fractional differential equations and applications to blood alcohol levels model. AIMS Mathematics, 2024, 9(12): 34013-34041. doi: 10.3934/math.20241622 |
[10] | Rabah Khaldi, Assia Guezane-Lakoud . On a generalized Lyapunov inequality for a mixed fractional boundary value problem. AIMS Mathematics, 2019, 4(3): 506-515. doi: 10.3934/math.2019.3.506 |
In this work, we consider the model of shallow water equation with horizontal density gradients. We develop the modified Rusanov (mR) scheme to solve this model in one and two dimensions. Predictor and corrector are the two stages of the suggested scheme. The predictor stage is dependent on a local parameter (αni+12) that allows for diffusion control. The balance conservation equation is recovered in the corrector stage. The proposed approach is well-balanced, conservative, and straightforward. Several 1D and 2D test cases are produced after presenting the shallow water model and the numerical technique. In the 1D case, we compared the proposed scheme with the Rusanov scheme, mR with constant α and analytical solutions. The numerical simulation demonstrates the mR's great resolution and attests to its capacity to produce accurate simulations of the shallow water equation with horizontal density gradients. Our results demonstrate that the mR technique is a highly effective instrument for solving a variety of equations in applied science and developed physics.
The colored noise was first introduced in [23,24] in order to obtain the information of velocity of randomly moving particles, which cannot be obtained from the white noise since the the Wiener process is nowhere differentiable. Moreover, for many physical systems, the stochastic fluctuations are correlated and should be modeled by the colored noise rather than the white noise, see [20].
This paper is concerned the asymptotic behavior of the plate equation driven by nonlinear colored noise in unbounded domains:
{utt+αut+Δ2u+∫∞0μ(s)Δ2(u(t)−u(t−s))ds+νu+f(x,u) =g(x,t)+h(t,x,u)ζδ(θtω), t>τ, x∈Rn,u(x,τ)=u0(x),ut(x,τ)=u1,0(x), x∈Rn, t≤τ, | (1.1) |
where τ∈R, α,ν are positive constants, μ is the memory kernel, f and h are given nonlinearity, g∈L2loc(R,H1(Rn)), and ζδ is a colored noise with correlation time δ>0.
It is clear that (1.1) becomes a deterministic plate equation as μ≡0 and h≡0. In this case, we can characterize the long-time behavior of solutions by virtue of the concept of global attractors under the framework of semigroup. Some authors have extensively studied the existence of global attractors for the autonomous plate equation. For instance, the attractors of deterministic plate equations have been investigated in [2,8,12,14,30,32,33,34,35,44] in bounded domains. In [2,30,34,35], the authors considered global attractor for the plate equation with thermal memory; Khanmamedov investigated a global attractor for the plate equation with displacement-dependent damping in [8]; Liu and Ma obtained the existence of time-dependent strong pullback attractors for non-autonomous plate equations in [12,14]; Yang and Zhong studied the uniform attractor and global attractor for non-autonomous plate equations with nonlinear damping in [32,33], respectively; In [44], the author obtained global existence and blow-up of solutions for a Kirchhoff type plate equation with damping. For the case of unbounded domains, see refereces [9,10,13,31,42].
The existence and uniqueness of pathwise random attractors of stochastic plate equations have been studied in [15,16,21,22] in the case of bounded domains; and in [36,37,38,39,40,41] in the case of unbounded domains. In all these publications ([36,37,38,39,40,41]), only the additive white noise and linear multiplicative white noise were considered. Notice that the random equation (1.1) is driven by the colored noise rather than the white noise. In general, it is very hard to study the asymptotic dynamics of differential equations driven by nonlinear white noise, including the random attractors. Indeed, only when the white noise is linear, the stochastic equations can be transformed into a deterministic equations, then one can obtain the existence of random attractors of the plate equation (1.1). However, this transformation does not apply to stochastic equations driven by nonlinear white noise, and that is why we are currently unable to prove the existence of random attractors for systems with nonlinear white noise.
For the colored noise, even it is nonlinear, we are able to show system (1.1) has a random attractor in H2(Rn)×L2(Rn)×Rμ,2 (the definition of Rμ,2 see Section 3), which is quite different from the nonlinear white noise. The reader is referred to [6,7,26,27] for more details on random attractors of differential equations driven by colored noise. However, for the random plate equations driven by colored noise (1.1), we find that there is no results available to the existence of random attractors. In the present paper, we will prove that (1.1) is pathwise well-posed and generate a continuous cocycle, and the cocycle possesses a unique tempered random attractor. This is different from the corresponding stochastic system driven by white noise
utt+αut+Δ2u+∫∞0μ(s)Δ2(u(t)−u(t−s))ds+νu+f(x,u)=g(x,t)+h(t,x,u)∘dWdt,t>τ, x∈Rn, | (1.2) |
where the symbol ∘ indicates that the equation is understood in the sense of stratonovich integration. For (1.2), one can define a random dynamical system when h(⋅,⋅,u) is a linear function, see [41]. But for a general nonlinear function h, random dynamical system associated with (1.2) can not be defined due to the absence of appropriate transformation, hence asymptotic behavior of such stochastic equations has not been investigated until now by the random dynamical system approach. This paper indicates that the colored noise is much easier to handle than the white noise for studying pathwise dynamics of such stochastic equations.
The main purpose of the paper is establish the existence and uniqueness of measurable tempered random attractors in H2(Rn)×L2(Rn)×Rμ,2 for the dynamical system associated with (1.1). The key for achieving our goal is to establish the tempered pullback asymptotic compactness of solutions of (1.1) in H2(Rn)×L2(Rn)×Rμ,2. Involving to our problem (1.1), there are two essential difficulties in verifying the compactness. On the one hand, notice that system (1.1) is defined in the unbounded domain Rn where the noncompactness of Sobolev embeddings on unbounded domains gives rise to difficulty in showing the pullback asymptotic compactness of solutions, to get through of it, we use the tail-estimates method (as in[25]) and the splitting technique (see [3]) to obtain the pullback asymptotic compactness. On the other hand, there is no applicable compact embedding property in the "history'' space. In this case, we solve it with the help of a useful result in [19]. For our purpose, we introduce a new variable and an extend Hilbert space.
The rest of this article consists of four sections. In the next section, we define some functions sets and recall some useful results. In Section 3, we first establish the existence, uniqueness and continuity of solutions in initial data of (1.1) in H2(Rn)×L2(Rn)×Rμ,2, then define a non-autonomous random dynamical system based on the solution operator of problem (1.1). The last two section are devoted to derive necessary estimates of solutions of (1.1) and the existence of random attractors.
Throughout the paper, the inner product and the norm of L2(Rn) will be denoted by (⋅,⋅) and ||⋅||, respectively. The letters c and ci(i=1,2,…) are generic positive constants which may depend on some parameters in the contexts.
In this section, we define some functions sets and recall some useful results, see [4,17,18,28,29,43]. These results will be used to establish the asymptotic compactness of the solutions and attractor for the random plate equation defined on the entire space Rn.
From now on, we assume (Ω,F,P) is the canonical probability space where Ω={ω∈C(R,R):ω(0)=0} with compact-open topology, F is the Borel σ-algebra of Ω, and P is the Wiener measure on (Ω,F). Recall the standard group of transformations {θt}t∈R on Ω:
θtω(⋅)=ω(t+⋅)−ω(t), ∀ t∈R and ∀ ω∈Ω. |
Suppose Φ:R+×R×Ω×X→X is a continuous cocycle on X over (Ω,F,P,{θt}t∈R). Let D be a collection of some families of nonempty subset of X:
D={D={D(τ,ω)⊆X:D(τ,ω)≠∅,τ∈R,ω∈Ω}}. |
Suppose Φ has a D-pullback absorbing set K={K(τ,ω):τ∈R,ω∈Ω}∈D; that is, for every τ∈R, ω∈Ω and D∈D there exists T=T(τ,ω,D)>0 such that for all t≥T,
Φ(t,τ−t,θ−tω,D(τ−t,θ−tω))⊆K(τ,ω). | (2.1) |
Assume that
Φ(t,τ,ω,x)=Φ1(t,τ,ω,x)+Φ2(t,τ,ω,x), ∀ t∈R+, τ∈R, ω∈Ω, x∈X, | (2.2) |
where both Φ1 and Φ2 are mappings from R+×R×Ω×X to X.
Given k∈N, denote by Ok={x∈Rn:|x|<k} and ˜Ok={x∈Rn:|x|>k}. Let X be a Banach space with norm ‖⋅‖X which consists of some functions defined on Rn. Given a function u:Rn→R, the restrictions of u to Ok and ˜Ok are written as u|Ok and u|˜Ok, respectively. Denote by
XOk={u|Ok:u∈X} and X˜Ok={u|˜Ok:u∈X}. |
Suppose XOk and X˜Ok are Banach spaces with norm ‖⋅‖Ok and ‖⋅‖˜Ok, respectively, and
‖u‖X≤‖u|Ok‖Ok+‖u|˜Ok‖˜Ok, ∀ u∈X. | (2.3) |
We further assume that for every δ>0, τ∈R, and ω∈Ω, there exists t0=t0(δ,τ,ω,K)>0 and k0=k0(δ,τ,ω)≥1 such that
‖Φ(t0,τ−t0,θ−t0ω,x)|˜Ok0‖˜Ok0<δ, ∀ x∈K(τ−t0,θ−t0ω), | (2.4) |
and
Φ1(t0,τ−t0,θ−t0ω,K(τ−t0,θ−t0ω))|Ok0has a finite cover of balls of radius δ in X|Ok0. | (2.5) |
In addition, we assume that for every k∈N, t∈R+, τ∈R, and ω∈Ω, the set
Φ2(t,τ−t,θ−tω,K(τ−t,θ−tω)) is precompact in X|Ok. | (2.6) |
Theorem 2.1 [29]. If (2.1)-(2.6) hold, then the cocycle Φ is D-pullback asymptotically compact in X; that is, the sequence {Φ(tn,τ−tn,θ−tnω,xn)}∞n=1 is precompact in X for any τ∈R,ω∈Ω,D∈D,tn→∞ monotonically, and xn∈D(τ−tn,θ−tnω).
Theorem 2.2 [29]. Let D be an inclusion closed collection of some families of nonempty subsets of X, and Φ be a continuous cocycle on X over (Ω,F,P,{θt}t∈R). Then Φ has a unique D-pullback random attractor A in D if Φ is D-pullback asymptotically compact in X and Φ has a closed measurable D-pullback absorbing set K in D.
In this section, we first establish the existence of solution for problem (1.1), then define a non-autonomous cocycle of (1.1).
Given δ>0, let ζδ(θtω) be the unique stationary solution of the stochastic equation:
dζδ+1δζδdt=1δdW, | (3.1) |
where W is a two-sided real-valued Wiener process on (Ω,F,P). The process ζδ(θtω) is called the one-dimensional colored noise. Recall that there exists a θt-invariant subset of full measure (see [1]), which is still denoted by Ω, such that for all ω∈Ω, ζδ(θtω) is continuous in t∈R and
limt→±∞ζδ(θtω)t=0. |
Let −Δ denote the Laplace operator in Rn, A=Δ2 with the domain D(A)=H4(Rn). We can also define the powers Aν of A for ν∈R. The space Vν=D(Aν4) is a Hilbert space with the following inner product and norm
(u,v)ν=(Aν4u,Aν4v),‖⋅‖ν=‖Aν4⋅‖. |
Following Dafermos [5], we introduce a Hilbert "history" space Rμ,2=L2μ(R+,V2) with the inner product
(η1,η2)μ,2=∫∞0μ(s)(Δη1(s),Δη2(s))ds, ∀η1,η2∈Rμ,2, |
and new variables
η=ηt(x,s)=u(x,t)−u(x,t−s), (x,s)∈Rn×R+, t≥τ. |
By differentiation we have
ηtt(x,s)=−ηts(x,s)+ut(x,t), (x,s)∈Rn×R+, t≥τ. |
Then (1.1) can be rewritten as the equivalent system
{utt+αut+Δ2u+∫∞0μ(s)Δ2ηt(s)ds+νu+f(x,u) =g(x,t)+h(t,x,u)ζδ(θtω), t>τ, x∈Rn,ηtt+ηts=ut,u(x,τ)=u0(x),ut(x,τ)=u1,0(x), x∈Rn, t≤τ,ητ(x,s)=η0(x,s)=u(x,τ)−u(x,τ−s), x∈Rn,s∈R+. | (3.2) |
We introduce the following hypotheses to complete the uniform estimates.
Assume that the memory kernel function μ∈C1(R+)∩L1(R+), and satisfy the following conditions:
∀ s∈R+ and some ϱ>0.
μ(s)≥0,μ′(s)+ϱμ≤0, | (3.3) |
note that (3.3) implies ϖdef=‖μ‖L1(R+)=∫∞0μ(s)ds>0.
Let f:Rn×R→R be a continuous function and F(x,r)=∫r0f(x,s)ds for all x∈Rn,r∈R and s,s1,s2∈R,
lim inf|s|→∞infx∈Rn(f(x,s)s)>0, | (3.4) |
f(x,0)=0, |f(x,s1)−f(x,s2)|≤α1(φ(x)+|s1|p+|s2|p)|s1−s2|, | (3.5) |
F(x,s)+φ1(x)≥0, | (3.6) |
where p>0 for 1≤n≤4 and 0<p≤4n−4 for n≥5, α1 is a positive constant, φ1∈L1(Rn), and φ∈L∞(Rn).
Let h:R×Rn×R→×R be continuous such that for all t,s,s1,s2∈R and x∈Rn,
|h(t,x,s)|≤α2|s|+φ2(t,x), | (3.7) |
|h(t,x,s1)−h(t,x,s2)|≤α3|s1−s2|, | (3.8) |
where α2 and α3 are positive constants, and φ2∈L2loc(R,L2(Rn)).
By (3.3), the space Rμ,r=L2μ(R+,Vr)(r∈R) is a Hilbert space of Vr-valued functions on R+ with the inner product and norm
(ηt1,ηt2)μ,r=∫∞0μ(s)(Ar4ηt1(s),Ar4ηt2(s))ds,‖ηt‖2μ,r=∫∞0μ(s)(Ar4ηt(s),Ar4ηt(s))ds,∀ηt,ηt1,ηt2∈Vr, |
and on Rμ,r, the linear operator −∂s has domain
D(−∂s)={ηt∈H1μ(R+,Vr):η0=0} where H1μ(R+,Vr)={ηt:ηt(s),∂sηt∈L2μ(R+,Vr)}. |
Definition 3.1. Given τ∈R,ω∈Ω, T>0,u0∈H2(Rn), u1,0∈L2(Rn), and η0∈Rμ,2, a function z(t)=(u,ut,ηt) is called a (weak) solution of (3.2) if the following conditions are fulfilled:
(i) u(⋅,τ,ω,u0,u1,0)∈L∞(τ,τ+T;H2(Rn))∩C([τ,τ+T],L2(Rn)) with u(τ,τ,ω,u0,u1,0)=u0,ut(⋅,τ,ω,u0,u1,0)∈L∞(τ,τ+T;L2(Rn))∩C([τ,τ+T],L2(Rn)) with ut(τ,τ,ω,u0,u1,0)=u1,0 and ηt(⋅,τ,ω,η0,s)∈L∞(τ,τ+T;Rμ,2)∩C([τ,τ+T],L2(Rn)) with ηt(τ,τ,ω,η0,s)=η0.
(ii) u(t,τ,⋅,u0,u1,0):Ω→H2(Rn) is (F,B(H2(Rn))-measurable, ut(t,τ,⋅,u0,u1,0):Ω→L2(Rn) is (F,B(L2(Rn))-measurable, and ηt(t,τ,⋅,η0,s):Ω→Rμ,2 is (F,B(Rμ,2)-measurable.
(iii) For all ξ∈C∞0((τ,τ+T)×Rn),
−∫τ+Tτ(ut,ξt)dt+α∫τ+Tτ(ut,ξ)dt+∫τ+Tτ(Δu,Δξ)dt +∫∞0μ(s)(Δ2ηt(s),ξ)ds+ν∫τ+Tτ(u,ξ)dt+∫τ+Tτ∫Rnf(x,u(t,x))ξ(t,x)dxdt=∫τ+Tτ(g(t,x),ξ)dt+∫τ+Tτ∫Rnh(t,x,u(t,x))ζδ(θtω)ξ(t,x)dxdt. |
In order to investigate the long-time dynamics, we are now ready to prove the existence and uniqueness of solutions of (3.2). We first recall the following well-known existence and uniqueness of solutions for the corresponding linear plate equations of (1.1)(see [34,35]).
Lemma 3.1. Let u0∈H2(Rn),u1,0∈L2(Rn) and g∈L1(τ,τ+T;L2(Rn)) with τ∈R and T>0. Then the linear plate equation
utt+αut+Δ2u+∫∞0μ(s)Δ2(u(t)−u(t−s))ds+νu=g(t), τ<t≤τ+T, |
with the initial conditions
u(τ)=u0, and ut(τ)=u1,0, |
possesses a unique solution (u,ut,ηt) in the sense of Definition 3.1. In addition,
u∈C([τ,τ+T],H2(Rn)), ut∈C([τ,τ+T],L2(Rn)) and ηt∈C([τ,τ+T],Rμ,2) |
and there exists a positive number C depending only on ν (but independent of τ,T,u0,u1,0 and g) such that for all t∈[τ,τ+T],
‖u(t)‖H2(Rn)+‖ut(t)‖+‖ηt‖μ,2≤C(‖u0‖H2(Rn)+‖u1,0‖+∫τ+Tτ‖g(t)‖dt). | (3.9) |
Furthermore, the solution (u,ut,ηt) satisfies the energy equation
ddt(‖ut‖2+‖Δu‖2+ν‖u‖2+‖ηt‖2μ,2)=−2α‖ut‖2+∫∞0μ′(s)‖Δηt‖2ds+2(g(t),ut), | (3.10) |
and
ddt(u(t),ut(t))+α(u(t),ut(t))+‖Δu(t)‖2+(ηt(s),u(t))μ,2+ν‖u(t)‖2=‖ut(t)‖2+(g(t),u(t)), | (3.11) |
for almost all t∈[τ,τ+T].
Theorem 3.1. Let τ∈R,u0∈H2(Rn),u1,0∈L2(Rn) and η0∈Rμ,2. Suppose (3.3)-(3.8) hold, then:
(a) Problem (3.2) possesses a solution z(t)=(u,ut,ηt) in the sense of Definition 3.1;
(b) The solution z(t)=(u,ut,ηt) to problem (3.2) is unique, continuous in initial data in H2(Rn)×L2(Rn)×Rμ,2, and
u∈C([τ,τ+T],H2(Rn)), ut∈C([τ,τ+T],L2(Rn)) and ηt∈C([τ,τ+T],Rμ,2). | (3.12) |
Moreover, the solution z(t)=(u,ut,ηt) to problem (3.2) satisfies the energy equation:
ddt(‖ut‖2+ν‖u‖2+‖Δu‖2+‖ηt‖2μ,2+2∫RnF(x,u(t,x))dx)+2α‖ut‖2=∫∞0μ′(s)‖Δηt‖2ds+2(g(t),ut)+2ζδ(θtω)∫Rnh(t,x,u(t,x))ut(t,x)dx | (3.13) |
for almost all t∈[τ,τ+T].
Proof. The proof will be divided into four steps. We first construct a sequence of approximate solutions, and then derive uniform estimates, in the last two steps we take the limit of those approximate solutions to prove the uniqueness of solutions.
Step (i): Approximate solutions. Given k∈N, define a function ηk:R→R by
ηk(s)={s, if −k≤s≤k,k, if s>k,−k, if s<−k. | (3.14) |
Then for every fixed k∈N, the function ηk as defined by (3.14) is bounded and Lipschitz continuous; more precisely, for all s,s1,s2∈R
ηk(0)=0,|ηk(s)|≤|s| and |ηk(s1)−ηk(s2)|≤|s1−s2|. | (3.15) |
For all x∈Rn and t,s∈R, denote
fk(x,s)=f(x,ηk(s)), Fk(x,s)=∫s0fk(x,r)dr and hk(t,x,s)=h(t,x,ηk(s)). | (3.16) |
By (3.4) we know that there exists k0∈N such that for all |s|≥k0 and x∈Rn,
f(x,s)s>0, | (3.17) |
thus, for all k≥k0 and x∈Rn,
fk(x,k)>0, fk(x,−k)<0. | (3.18) |
By (3.5)-(3.6), (3.15)-(3.16) and (3.18) we know that for all s,s1,s2∈R and x∈Rn,
|fk(x,s1)−fk(x,s2)|≤α1(φ(x)+|s1|p+|s2|p)|s1−s2|, ∀ k≥1, | (3.19) |
and
Fk(x,s)+φ1(x)≥0, ∀ k≥k0. | (3.20) |
By (3.19) we get that for all s∈N and x∈Rn,
|Fk(x,s)|≤α1(φ(x)|s|2+|s|p+2), ∀ k≥1. | (3.21) |
By (3.7)-(3.8) and (3.15)-(3.16) we obtain that for all k≥1,t,s,s1,s2∈R and x∈Rn,
|hk(t,x,s)|≤α2|s|+φ2(t,x), | (3.22) |
|hk(t,x,s1)−hk(t,x,s2)|≤α3|s1−s2|. | (3.23) |
By (3.3) and (3.15)-(3.16), we find that for all k∈N,s,s1,s2∈N and x∈Rn,
|fk(x,s)|≤α1k(φ(x)+kp), | (3.24) |
|fk(x,s1)−fk(x,s2)|≤α1(φ(x)+2kp)|s1−s2|. | (3.25) |
For every k∈N, consider the following approximate system for uk,ηtk:
{∂2∂t2uk+α∂∂tuk+Δ2uk+∫∞0μ(s)Δ2ηtk(s)ds+νuk+fk(⋅,uk) =g(⋅,t)+hk(t,⋅,uk)ζδ(θtω), t>τ,uk(τ)=u0,∂∂tuk(τ)=u1,0,ητk(x,s)=η0(x,s). | (3.26) |
From (3.23)-(3.24), φ∈L∞(Rn) and the standard method (see, e.g., [11]), it follows that for each τ∈R,ω∈Ω,u0∈H2(Rn),u1,0∈L2(Rn) and η0∈Rμ,2, problem (3.26) has a unique global solution (uk,∂tuk,ηtk) defined on [τ,τ+T] for every T>0 in the sense of Definition 3.1. In particular, uk(⋅,τ,ω,u0)∈C([τ,τ+T],H2(Rn)) and uk(t,τ,ω,u0) is measurable with respect to ω∈Ω in H2(Rn) for every t∈[τ,τ+T]; ∂tuk(⋅,τ,ω,u0)∈C([τ,τ+T],L2(Rn)) and ∂tuk(t,τ,ω,u0) is measurable with respect to ω∈Ω in L2(Rn) for every t∈[τ,τ+T]; ηtk(⋅,τ,ω,η0,s)∈C([τ,τ+T],Rμ,2) and ηtk(t,τ,ω,η0,s) is measurable with respect to ω∈Ω in Rμ,2 for every t∈[τ,τ+T] Furthermore, the solution uk satisfies the energy equation:
ddt(‖∂tuk‖2+ν‖uk‖2+‖Δuk‖2+‖ηtk‖2μ,2+2∫RnFk(x,uk(t,x))dx)+2α‖∂tuk‖2=∫∞0μ′(s)‖Δηtk‖2ds+2(g(t),∂tuk)+2ζδ(θtω)∫Rnhk(t,x,uk(t,x))∂tuk(t,x)dx | (3.27) |
for almost all t∈[τ,τ+T]. Next, we use the energy equation (3.25) to derive uniform estimate on the sequence {uk,∂tuk,ηtk}∞k=1.
Step (ii): Uniform estimates.
For the last term on the right-hand side of (3.25), by (3.21) we have
2ζδ(θtω)∫Rnhk(t,x,uk(t,x))∂tuk(t,x)dx≤2|ζδ(θtω)|(α2∫Rn|uk(t,x)|⋅|∂tuk(t,x)|dx+∫Rn|φ2(t,x)|⋅|∂tuk(t,x)|dx)≤|ζδ(θtω)|(α2‖uk(t)‖2+(1+α2)‖∂tuk(t)‖2+‖φ2(t)‖2). | (3.28) |
By Young's inequality, we get
2(g(t),∂tuk)≤‖∂tuk(t)‖2+‖g(t)‖2. | (3.29) |
By (3.27)–(3.29) together with (3.3), it follows that for almost all t∈[τ,τ+T],
ddt(‖∂tuk‖2+ν‖uk‖2+‖Δuk‖2+‖ηtk‖2μ,2+2∫RnFk(x,uk(t,x))dx)+2α‖∂tuk‖2≤c1(1+|ζδ(θtω)|)(‖uk(t)‖2+‖∂tuk(t)‖2)+|ζδ(θtω)|⋅‖φ2(t)‖2+‖g(t)‖2, | (3.30) |
where c1>0 depends only on α2, but independent of k.
By (3.20) and (3.30) we obtain
ddt(‖∂tuk‖2+ν‖uk‖2+‖Δuk‖2+‖ηtk‖2μ,2+2∫RnFk(x,uk(t,x))dx)≤c2(1+|ζδ(θtω)|)(‖∂tuk(t)‖2+ν‖uk(t)‖2+‖Δuk‖2+‖ηtk‖2μ,2+2∫RnFk(x,uk(t,x))dx)+|ζδ(θtω)|⋅‖φ2(t)‖2+2c1(1+|ζδ(θtω)|)‖φ1‖L1(Rn)+‖g(t)‖2, | (3.31) |
where c2>0 depends only on ν and α2, but independent of k.
Multiplying (3.31) with e−c2∫t0(1+|ζδ(θrω)|)dr, and then integrating the inequality on (τ,t), we have
‖∂tuk‖2+ν‖uk‖2+‖Δuk‖2+‖ηtk‖2μ,2+2∫RnFk(x,uk(t,x))dx≤ec2∫tτ(1+|ζδ(θrω)|)dr(‖u1,0‖2+ν‖u0‖2+‖Δu0‖2+‖η0‖2μ,2+2∫RnFk(x,u0(x))dx)+∫tτec2∫ts(1+|ζδ(θrω)|)dr(|ζδ(θsω)|⋅‖φ2(s)‖2+2c1(1+|ζδ(θsω)|)‖φ1‖L1(Rn)+‖g(s)‖2)ds. | (3.32) |
By (3.21) we get, for all k≥1,
2∫Rn|Fk(x,u0(x))|dx≤2α1(‖φ‖L∞(Rn)‖u0‖2+‖u0‖p+2Lp+2(Rn))≤2α1(‖φ‖L∞(Rn)‖u0‖2+‖u0‖p+2H2(Rn)). | (3.33) |
By (3.32)-(3.33) imply that there exists a positive constant c3=c3(τ,T,φ,φ1,φ2,g,ω,δ,α1,ν) (but independent of k,u0,u1,0) such that for all t∈[τ,τ+T] and k≥1,
‖∂tuk‖2+ν‖uk‖2+‖Δuk‖2+‖ηtk‖2μ,2+2∫RnFk(x,uk(t,x))dx≤c3+c3(1+‖u1,0‖2+‖u0‖p+2H2(Rn)+‖η0‖2μ,2), |
which along with (3.20) show that for all t∈[τ,τ+T] and k≥k0,
‖∂tuk‖2+ν‖uk‖2+‖Δuk‖2+‖ηtk‖2μ,2+2∫RnFk(x,uk(t,x))dx≤c3+2‖φ1‖L1(Rn)+c3(1+‖u1,0‖2+‖u0‖p+2H2(Rn)+‖η0‖2μ,2), | (3.34) |
thus,
{uk}∞k=1 is bounded in L∞(τ,τ+T;H2(Rn)), | (3.35) |
{∂tuk}∞k=1 is bounded in L∞(τ,τ+T;L2(Rn)). | (3.36) |
{ηtk}∞k=1 is bounded in L∞(τ,τ+T;Rμ,2), | (3.37) |
By (3.19), there exists a positive constant c4=c4(p,n,α1) such that
∫Rn|fk(x,uk(t,x))|2dx≤c4(∫Rn|φ(x)|2dx+∫Rn|uk(t,x)|2(p+1)dx), |
which along with the embedding H2(Rn)↪L2(p+1)(Rn) and the assumption φ∈L∞(Rn) implies that there exists c5=c5(p,n,α1,φ)>0 (independent of k) such that
∫Rn|fk(x,uk(t,x))|2dx≤c5(1+‖uk(t)‖2(p+1)H2(Rn)). | (3.38) |
By (3.35) and (3.38) we see that
{fk(⋅,uk)}∞k=1 is bounded in L2(τ,τ+T;L2(Rn)). | (3.39) |
By (3.22) we get
∫Rn|hk(t,x,uk(t,x))|2dx≤2α2‖uk‖2+2‖φ2(t)‖2, |
which together with (3.35) shows that
{hk(⋅,⋅,uk)}∞k=1 is bounded in L2(τ,τ+T;L2(Rn)). | (3.40) |
By (3.35)–(3.37) and (3.39)-(3.40), it follows that there exists u∈L∞(τ,τ+T;H2(Rn)) with ∂tu∈L∞(τ,τ+T;L2(Rn)),κ1∈L2(τ,τ+T;L2(Rn)),κ2∈L2(τ,τ+T;L2(Rn)),vτ+T∈H2(Rn) and vτ+T1∈L2(Rn) such that
uk→u weak-star in L∞(τ,τ+T;H2(Rn)), | (3.41) |
∂tuk→∂tu weak-star in L∞(τ,τ+T;L2(Rn)), | (3.42) |
ηtk→ηt weak-star in L∞(τ,τ+T;Rμ,2), | (3.43) |
fk(⋅,uk)→κ1 weakly in L2(τ,τ+T;L2(Rn)), | (3.44) |
hk(⋅,⋅,uk)→κ2 weakly in L2(τ,τ+T;L2(Rn)), | (3.45) |
uk(τ+T)→vτ+T weakly in H2(Rn), | (3.46) |
∂tuk(τ+T)→vτ+T1 weakly in L2(Rn). | (3.47) |
It follows from (3.41)-(3.42) that there exists a subsequence which is still denoted uk, such that
uk(t,x)→u(t,x) for almost all (t,x)∈[τ,τ+T]×Rn. | (3.48) |
By (3.15) and (3.48) we get that for almost all (t,x)∈[τ,τ+T]×Rn,
|ηk(uk(t,x))−u(t,x)|≤|ηk(uk(t,x))−ηk(u(t,x))|+|ηk(u(t,x))−u(t,x)|≤|uk(t,x)−u(t,x)|+|ηk(u(t,x))−u(t,x)|→0, as k→∞. | (3.49) |
By (3.49), we have
fk(x,uk(t,x))→f(x,u(t,x)) for almost all (t,x)∈[τ,τ+T]×Rn, | (3.50) |
hk(t,x,uk(t,x))→h(t,x,u(t,x)) for almost all (t,x)∈[τ,τ+T]×Rn. | (3.51) |
It follows from (3.44)-(3.45), (3.50)-(3.51) that
fk(⋅,uk)→f(⋅,u) weakly in L2(τ,τ+T;L2(Rn)), | (3.52) |
hk(⋅,⋅,uk)→h(⋅,⋅,u) weakly in L2(τ,τ+T;L2(Rn)). | (3.53) |
Step (iii): Existence of solutions.
Choosing an arbitrary ξ∈C∞0((τ,τ+T)×Rn). By (3.26) we get
−∫τ+Tτ(∂tuk,ξt)dt+α∫τ+Tτ(∂tuk,ξ)dt+∫τ+Tτ(Δuk,Δξ)dt+ν∫τ+Tτ(uk,ξ)dt +∫τ+Tτ∫∞0μ(s)(Δ2ηtk(s),ξ)dsdt+∫τ+Tτ∫Rnfk(x,uk(t,x))ξ(t,x)dxdt=∫τ+Tτ(g(t),ξ)dt+∫τ+Tτ∫Rnhk(t,x,uk(t,x))ζδ(θtω)ξ(t,x)dxdt. | (3.54) |
Letting k→∞ in (3.54), it follows from (3.41)-(3.43) and (3.52)-(3.53) that for any ξ∈C∞0((τ,τ+T)×Rn),
−∫τ+Tτ(ut,ξt)dt+α∫τ+Tτ(ut,ξ)dt+∫τ+Tτ(Δu,Δξ)dt+ν∫τ+Tτ(u,ξ)dt +∫τ+Tτ∫∞0μ(s)(Δ2ηt(s),ξ)dsdt+∫τ+Tτ∫Rnf(x,u(t,x))ξ(t,x)dxdt=∫τ+Tτ(g(t),ξ)dt+∫τ+Tτ∫Rnh(t,x,u(t,x))ζδ(θtω)ξ(t,x)dxdt. | (3.55) |
Notice that
u∈L∞(τ,τ+T;H2(Rn)) and ∂tu∈L∞(τ,τ+T;L2(Rn)). | (3.56) |
By (3.56) we obtain
h(⋅,⋅,u)∈L2(τ,τ+T;L2(Rn)). | (3.57) |
We claim that
f(⋅,u) belongs to L∞(τ,τ+T;L2(Rn)). | (3.58) |
In fact, by (3.5) we obtain that there exists some c6=c6(p,n,α1,φ)>0 such that
‖f(⋅,u(t))‖2≤2α21(‖φ‖2L∞(Rn)‖u(t)‖2+‖u(t)‖2(p+1)L2(p+1)(Rn))≤c6(‖u(t)‖2+‖u(t)‖2(p+1)H2(Rn)), |
which along with (3.56) to obtain (3.58).
By (3.54)–(3.58), we can get
utt belongs to L2(τ,τ+T;H−2(Rn)), | (3.59) |
where H−2(Rn) is the dual space of H2(Rn).
Next, we prove (u,ut,ηt) satisfy the initial conditions (3.2)2.
By (3.26), we get that for any v∈C∞0(Rn) and ψ∈C2([τ,τ+T]),
∫τ+Tτ(uk(t),v)ψ″(t)dt+(∂tuk(τ+T),v)ψ(τ+T)−(uk(τ+T),v)ψ′(τ+T)+(u0,v)ψ′(τ)−(u1,0,v)ψ(τ)+α∫τ+Tτ(∂tuk(t),v)ψ(t)dt+∫τ+Tτ(Δuk(t),Δv)ψ(t)dt+∫τ+Tτ∫∞0μ(s)(Δ2ηtk(s),v)ψ(t)dsdt+ν∫τ+Tτ(uk(t),v)ψ(t)dt+∫τ+Tτ∫Rnfk(x,uk(t,x))v(x)ψ(t)dxdt=∫τ+Tτ(g(t),v)ψ(t)dt+∫τ+Tτ∫Rnhk(t,x,uk(t,x))ζδ(θtω)v(x)ψ(t)dxdt. | (3.60) |
Letting k→∞ in (3.60), by (3.41)-(3.43), (3.46)-(3.47) and (3.52)-(3.53) we obtain, for any v∈C∞0(Rn) and ψ∈C2([τ,τ+T]),
∫τ+Tτ(u(t),v)ψ″(t)dt+(vτ+T1,v)ψ(τ+T)−(vτ+T,v)ψ′(τ+T)+(u0,v)ψ′(τ)−(u1,0,v)ψ(τ)+α∫τ+Tτ(∂tu(t),v)ψ(t)dt+∫τ+Tτ(Δu(t),Δv)ψ(t)dt+∫τ+Tτ∫∞0μ(s)(Δ2ηt(s),v)ψ(t)dsdt+ν∫τ+Tτ(u(t),v)ψ(t)dt+∫τ+Tτ∫Rnf(x,u(t,x))v(x)ψ(t)dxdt=∫τ+Tτ(g(t),v)ψ(t)dt+∫τ+Tτ∫Rnh(t,x,u(t,x))ζδ(θtω)v(x)ψ(t)dxdt. | (3.61) |
By (3.55) we get that for any v∈C∞0(Rn),
ddt(ut,v)+α(ut,v)+(Δu,Δv)+∫∞0μ(s)(Δ2ηt(s),v)ds+ν(u,v)+∫Rnf(x,u(t,x))v(x)dx=(g(t),v)+∫Rnh(t,x,u(t,x))ζδ(θtω)v(x)dx. | (3.62) |
By (3.62) we find that for any v∈C∞0(Rn) and ψ∈C2([τ,τ+T]),
∫τ+Tτ(u(t),v)ψ″(t)dt+(∂tu(τ+T),v)ψ(τ+T)−(u(τ+T),v)ψ′(τ+T)+(u(τ),v)ψ′(τ)−(∂tu(τ),v)ψ(τ)+α∫τ+Tτ(∂tu(t),v)ψ(t)dt+∫τ+Tτ(Δu(t),Δv)ψ(t)dt+∫τ+Tτ∫∞0μ(s)(Δ2ηt(s),v)ψ(t)dsdt+ν∫τ+Tτ(u(t),v)ψ(t)dt+∫τ+Tτ∫Rnf(x,u(t,x))v(x)ψ(t)dxdt=∫τ+Tτ(g(t,⋅),v)ψ(t)dt+∫τ+Tτ∫Rnh(t,x,u(t,x))ζδ(θtω)v(x)ψ(t)dxdt, | (3.63) |
together with (3.61) to obtain, for v∈C∞0(Rn) and ψ∈C2([τ,τ+T]),
(vτ+T1,v)ψ(τ+T)−(vτ+T,v)ψ′(τ+T)+(u0,v)ψ′(τ)−(u1,0,v)ψ(τ)=(∂tu(τ+T),v)ψ(τ+T)−(u(τ+T),v)ψ′(τ+T)+(u(τ),v)ψ′(τ)−(∂tu(τ),v)ψ(τ). | (3.64) |
Let ψ∈C2([τ,τ+T]) such that ψ(τ+T)=ψ′(τ+T)=ψ′(τ)=0 and ψ(τ)=1, by (3.64), we have
(∂tu(τ),v)=(u1,0,v), ∀ v∈C∞0(Rn). | (3.65) |
Let ψ∈C2([τ,τ+T]) such that ψ(τ+T)=ψ′(τ+T)=ψ(τ)=0 and ψ′(τ)=1, by (3.64), we have
(u(τ),v)=(u0,v), ∀ v∈C∞0(Rn), | (3.66) |
which together with (3.65) that (u,ut,ηt) satisfies the initial conditions (3.2)2.
Through choosing proper ψ∈C2([τ,τ+T]), we can also obtain from (3.64) that
u(τ+T)=vτ+T, and ∂tu(τ+T)=vτ+T1, |
which along with (3.46)-(3.47) implies that
uk(τ+T)→u(τ+T) weakly in H2(Rn), | (3.67) |
∂tuk(τ+T)→∂tu(τ+T) weakly in L2(Rn), | (3.68) |
thereby,
ηtk(τ+T)→ηt(τ+T) weakly in Rμ,2. | (3.69) |
Similar to (3.67)-(3.69), one can verify that for any t∈[τ,τ+T],
uk(t)→u(t) weakly in H2(Rn), | (3.70) |
∂tuk(t)→∂tu(t) weakly in L2(Rn), | (3.71) |
ηtk→ηt weakly in Rμ,2. | (3.72) |
By (3.70)–(3.72), we get the that (u,ut,ηt) is a solution of (3.2) in the sense of Definition 3.1.
Step (iv): Uniqueness of solutions.
Let (u1,(u1)t,ηt1) and (u2,(u2)t,ηt2) be solutions to (3.2), denote v=u1−u2,ˉηt=ηt1−ηt2. Then we have
{vtt+αvt+Δ2v+∫∞0μ(s)Δ2ˉηt(s)ds+νv =f(⋅,u2)−f(⋅,u1)+(h(t,⋅,u1)−h(t,⋅,u2))ζδ(θtω),v(τ)=0,vt(τ)=0. | (3.73) |
by (3.10), we get
ddt(‖vt‖2+‖Δv‖2+‖ˉηt(s)‖2μ,2+ν‖v‖2)=−2α‖vt‖2+2(f(⋅,u2)−f(⋅,u1),vt)+2(h(t,⋅,u1)−h(t,⋅,u2),vt)ζδ(θtω). | (3.74) |
Since H2(Rn)↪L2(p+1)(Rn) for 0<p≤4n−4, by (3.5), we get
‖f(⋅,u2)−f(⋅,u1)‖≤α1‖φ‖L∞(Rn)‖v‖+α1(‖u1‖pH2(Rn)+‖u2‖pH2(Rn))‖v‖H2(Rn) |
and hence
2(f(⋅,u2)−f(⋅,u1),vt)≤2‖f(⋅,u2)−f(⋅,u1)‖‖vt‖≤α1(‖φ‖L∞(Rn)+‖u1‖pH2(Rn)+‖u2‖pH2(Rn))(‖v‖2H2(Rn)+‖vt‖2). | (3.75) |
By (3.8) we get
2(h(t,⋅,u1)−h(t,⋅,u2),vt)ζδ(θtω)≤‖h(t,⋅,u1)−h(t,⋅,u2)‖‖vt‖|ζδ(θtω)|≤2α3‖v‖‖vt‖|ζδ(θtω)|≤α3(‖v‖2+‖vt‖2)|ζδ(θtω)|. | (3.76) |
It follows from (3.74)–(3.76) that
ddt(‖vt‖2+‖Δv‖2+‖ˉηt(s)‖2μ,2+ν‖v‖2)≤c7(1+‖u1‖pH2(Rn)+‖u2‖pH2(Rn))(‖vt‖2+‖Δv‖2+‖ˉη(s)‖2μ,2+ν‖v‖2), | (3.77) |
where c7>0 depends on τ and T. Since u1,u2∈L∞(τ,τ+T;H2(Rn)), then applying the Gronwall's lemma on [τ,τ+T], we can obtain that the uniqueness of solution as well as the continuous dependence property of solution with initial data.
We now define a mapping Φ:R+×R×Ω×H2(Rn)×L2(Rn)×Rμ,2→H2(Rn)×L2(Rn)×Rμ,2 such that for all t∈R+,τ∈R,ω∈Ω and (u0,u1,0,η0)∈H2(Rn)×L2(Rn)×Rμ,2,
Φ(t,τ,ω,(u0,u1,0,η0))=(u(t+τ,τ,θ−τω,u0),ut(t+τ,τ,θ−τω,u1,0),ηt(t+τ,τ,θ−τω,η0,s)), | (3.78) |
where (u,ut,ηt) is the solution of (3.2). Then Φ is a continuous cocycle on H2(Rn)×L2(Rn)×Rμ,2 over (Ω,F,P,{θt}t∈R).
In this section, we derive necessary estimates of solutions of (3.2) under stronger conditions than (3.4)-(3.8) on the nonlinear functions f and h. These estimates are useful for proving the asymptotic compactness of the solutions and the existence of pullback random attractors.
From now on, we assume f satisfies: for all x∈Rn and s∈R,
f(x,s)s−γF(x,s)≥φ3(x), | (4.1) |
F(x,s)+φ1(x)≥α4|s|p+2, | (4.2) |
|∂sf(x,s)|≤ι|s|p+ς, |∂xf(x,s)|≤φ4(x), | (4.3) |
where p>0 for 1≤n≤4 and 0<p≤4n−4 for n≥5, γ∈(0,1], α4,ς are positive constants, φ3∈L1(Rn), and φ4∈L2(Rn)∩L∞(Rn),ι>0 will be denoted later.
By (3.5) and (4.1) we get that for all x∈Rn and s∈R,
γF(x,s)≤α1s2φ(x)+α1|s|p+2−φ3(x). | (4.4) |
Assume the nonlinearity h satisfies: for all x∈Rn and t,s∈R,
|h(t,x,s)|≤φ5(x)|s|+φ6(x), | (4.5) |
|∂xh(t,x,s)|+|∂sh(t,x,s)|≤φ7(x), | (4.6) |
where φ5∈L∞(Rn)∩L2+4p(Rn), φ6∈L2(Rn), and φ7∈L2(Rn)∩L∞(Rn).
Let D be the set of all tempered families of nonempty bounded subsets of H2(Rn)×L2(Rn)×Rμ,2. D={D(τ,Ω):τ∈R,ω∈Ω} is called tempered if for any c>0,
limt→+∞e−ct‖D(τ−t,θ−tω)‖H2(Rn)×L2(Rn)×Rμ,2=0, |
where ‖D‖H2(Rn)×L2(Rn)×Rμ,2=supξ∈D‖ξ‖H2(Rn)×L2(Rn)×Rμ,2.
Under α>0,ν>0,ϱ>0,ϖ>0 and γ∈(0,1], we can choose a sufficiently small positive constant ε such that
ε<min{1,ν,2α5,32ϱ,3ϱγ}, 12α−2ε−18εγ>0, ν−12νγ−εα+18ε2γ>0,ν−ε−εα+12ε2>0, 1−γ2−2ϖεϱ>0. | (4.7) |
We also assume
\begin{align*} &\int^\tau_{-\infty}e^{\frac{1}{4}\varepsilon\gamma s}\|g(s)\|^2_1ds < \infty,\ \ \forall\ \tau\in\mathbb{R}, \end{align*} | (4.8) |
\begin{align*} &\lim\limits_{t\rightarrow +\infty}e^{-ct}\int^0_{-\infty}e^{\frac{1}{4}\varepsilon\gamma s}\|g(s-t)\|^2_1ds = 0, \ \ \text{for}\ \forall\ c > 0. \end{align*} | (4.9) |
Lemma 4.1. Let (3.3)–(3.5), (3.8), (4.1)-(4.2) and (4.5)–(4.8) hold. Then for any \tau\in\mathbb{R}, \omega\in\Omega and D\in\mathcal{D} , there exists T = T(\tau, \omega, D) > 0 such that for all t\geq T , the solution of (3.2) satisfies
\begin{align*} &\|u_t(\tau,\tau-t,\theta_{-\tau}\omega,u_{1,0})\|^2+\|u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2_{H^{2}(\mathbb{R}^n)} +\|\eta^t(\tau,\tau-t,\theta_{-\tau}\omega,\eta^0,s)\|^2_{\mu,2}\\ +&\int^\tau_{\tau-t}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)}(\|u_t(s,\tau-t,\theta_{-\tau}\omega,u_{1,0})\|^2+\|u(s,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2_{H^{2}(\mathbb{R}^n)} \\ +& \|\eta^t(s,\tau-t,\theta_{-\tau}\omega,\eta^0,s)\|^2_{\mu,2})ds\\ \leq&M_1+M_1\int^0_{-\infty}e^{\frac{1}{4}\varepsilon\gamma s}(1+\|g(s+\tau)\|^2+|\zeta_\delta(\theta_s\omega)|^{2+\frac{4}{p}})ds, \end{align*} |
where (u_0, u_{1, 0}, \eta^0) \in D(\tau-t, \theta_{-t}\omega) and M_1 is a positive constant independent of \tau, \omega and D .
Proof. By (3.11), (3.13), (4.1) and (4.10) we obtain, for almost all t\in[\tau, \tau+T] ,
\begin{align*} &\frac{d}{dt}\bigg(\|u_t\|^2+\nu \|u\|^2+\|\Delta u\|^2+\|\eta^t\|^2_{\mu,2}+2\int_{\mathbb{R}^n}F(x,u(t,x))dx+\varepsilon(u,u_t)\bigg)\\ &+(2\alpha-\varepsilon)\|u_t\|^2+\varepsilon\alpha(u,u_t)+\varepsilon\|\Delta u\|^2+\varepsilon(\eta^t(s),u(t))_{\mu,2}\\ &-\int^\infty_0\mu'(s)\|\Delta\eta^t\|^2ds+\varepsilon\nu \|u\|^2+\varepsilon\gamma\int_{\mathbb{R}}F(x,u(t,x))dx\\ \leq&\varepsilon\|\varphi_3\|_{L^1(\mathbb{R}^n)}+(g(t)+h(t,\cdot,u(t))\zeta_\delta(\theta_t\omega),\varepsilon u+2u_t). \end{align*} | (4.10) |
By (3.3), (4.2) and (4.5) we have
\begin{align*} &\varepsilon(\eta^t(s),u(t))_{\mu,2} \geq -\frac{\varrho}{4}\|\eta^t\|^2_{\mu,2}-\frac{\varpi\varepsilon^2}{\varrho}\|\Delta u\|^2, \end{align*} | (4.11) |
\begin{align*} &-\int^\infty_0\mu'(s)\|\Delta\eta^t\|^2ds \geq \varrho\|\eta^t\|^2_{\mu,2}, \end{align*} | (4.12) |
![]() |
(4.13) |
where c_4 > 0 depends on \alpha, \nu, \gamma, \varepsilon .
It follows from (4.10)-(4.13) and rewrite the result obtained, we have
![]() |
(4.14) |
where c_5 > 0 depends on \alpha, \nu, \gamma, \varepsilon .
For the second term on the right-hand side of (4.14) we get
\begin{align*} &-\varepsilon(\alpha-\frac{1}{4}\varepsilon\gamma)(u,u_t))\\ \leq&\varepsilon(\alpha-\frac{1}{4}\varepsilon\gamma)\|u\|\|u_t\|\\ \leq&\frac{1}{2}\varepsilon^2(\alpha-\frac{1}{4}\varepsilon\gamma)\|u\|^2+\frac{1}{2}(\alpha-\frac{1}{4}\varepsilon\gamma)\|u_t\|^2. \end{align*} | (4.15) |
By (4.14)-(4.15) we get
\begin{align*} &\frac{d}{dt}(\|u_t\|^2+\nu \|u\|^2+\|\Delta u\|^2+\|\eta^t\|^2_{\mu,2}+2\int_{\mathbb{R}^n}F(x,u(t,x))dx+\varepsilon(u,u_t))\\ &+\frac{1}{4}\varepsilon\gamma(\|u_t\|^2+\nu \|u\|^2+\|\Delta u\|^2+2\int_{\mathbb{R}^n}F(x,u(t,x))dx+\varepsilon(u,u_t))+(\frac{1}{2}\alpha-\varepsilon-\frac{1}{8}\varepsilon\gamma)\|u_t\|^2\\ &+\varepsilon(1-\frac{1}{4}\gamma-\frac{\varpi\varepsilon}{\varrho})\|\Delta u\|^2+\frac{1}{4}(3\varrho-\varepsilon\gamma)\|\eta^t\|^2_{\mu,2}+\frac{1}{2}\varepsilon(\nu-\frac{1}{2}\nu\gamma-\varepsilon\alpha+\frac{1}{4}\varepsilon^2\gamma)\|u\|^2\\ \leq& c_5(1+\|g(t)\|^2+|\zeta_\delta(\theta_t\omega)|^{2+\frac{4}{p}}). \end{align*} | (4.16) |
Multiplying (4.14) by e^{\frac{1}{4}\varepsilon\gamma t} , and then integrating the inequality [\tau-t, \tau] , after replacing \omega by \theta_{-\tau}\omega , we get
\begin{align*} &\|u_t(\tau,\tau-t,\theta_{-\tau}\omega,u_{1,0})\|^2+\nu \|u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2+\|\Delta u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2\\ &+\|\eta^t(\tau,\tau-t,\theta_{-\tau}\omega,\eta^0,s)\|^2_{\mu,2}+2\int_{\mathbb{R}^n}F(x,u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0}))dx\\ &+\varepsilon(u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0}),u_t(\tau,\tau-t,\theta_{-\tau}\omega,u_{1,0}))\\ &+(\frac{1}{2}\alpha-\varepsilon-\frac{1}{8}\varepsilon\gamma)\int^\tau_{\tau-t}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)}\|u_t(s,\tau-t,\theta_{-\tau}\omega,u_{1,0})\|^2ds\\ &+\varepsilon(1-\frac{1}{4}\gamma-\frac{\varpi\varepsilon}{\varrho})\int^\tau_{\tau-t}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)}\|\Delta u(s,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2ds\\ &+\frac{1}{4}(3\varrho-\varepsilon\gamma)\int^\tau_{\tau-t}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)}\|\eta^t(\tau,\tau-t,\theta_{-\tau}\omega,\eta^0,s)\|^2_{\mu,2}ds\\ &+\frac{1}{2}\varepsilon(\nu-\frac{1}{2}\nu\gamma-\varepsilon\alpha+\frac{1}{4}\varepsilon^2\gamma)\int^\tau_{\tau-t}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)}\|u(s,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2ds\\ \leq& e^{-\frac{1}{4}\varepsilon\gamma t}\bigg(\|u_{1,0}\|^2+\nu \|u_0\|^2+\|\Delta u_{0}\|^2+\|\eta^0\|^2_{\mu,2}+2\int_{\mathbb{R}^n}F(x,u_{0})dx+\varepsilon(u_{0},u_{1,0})\bigg)\\ &+c_5\int^\tau_{\tau-t}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)}\bigg(1+\|g(s)\|^2+|\zeta_\delta(\theta_{s-\tau}\omega)|^{2+\frac{4}{p}}\bigg)ds. \end{align*} | (4.17) |
For the first term on the right-hand side of (4.17), by (4.4) we get
\begin{align*} &e^{-\frac{1}{4}\varepsilon\gamma t}\bigg(\|u_{1,0}\|^2+\nu \|u_0\|^2+\|\Delta u_{0}\|^2+\|\eta^0\|^2_{\mu,2}+2\int_{\mathbb{R}^n}F(x,u_{0})dx+\varepsilon(u_{0},u_{1,0})\bigg)\\ \leq&c_6e^{-\frac{1}{4}\varepsilon\gamma t}\bigg(1+\|u_{1,0}\|^2+\|u_0\|^2_{H^2(\mathbb{R}^n}+\|u_0\|^{p+2}_{H^2(\mathbb{R}^n)}+\|\eta^0\|^2_{\mu,2}\bigg)\\ \leq&c_7e^{-\frac{1}{4}\varepsilon\gamma t} (1+\|D(\tau-t,\theta_{-t}\omega)\|^{p+2})\rightarrow0, \ \ \ \text{as} \ \ t\rightarrow \infty. \end{align*} | (4.18) |
By (4.7) we get
\begin{align*} &|\varepsilon(u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0}),u_t(\tau,\tau-t,\theta_{-\tau}\omega,u_{1,0}))|\\ \leq&\frac{1}{2}\varepsilon\|u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2+ \frac{1}{2}\varepsilon\|u_t(\tau,\tau-t,\theta_{-\tau}\omega,u_{1,0})\|^2\\ \leq&\frac{1}{2}\nu\|u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2+ \frac{1}{2}\|u_t(\tau,\tau-t,\theta_{-\tau}\omega,u_{1,0})\|^2, \end{align*} |
which along with (4.2) and (4.18) that for all t\geq T ,
\begin{align*} &\frac{1}{2}\|u_t(\tau,\tau-t,\theta_{-\tau}\omega,u_{1,0})\|^2+\frac{1}{2}\nu \|u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2+\|\Delta u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2\\ &+\|\eta^t(\tau,\tau-t,\theta_{-\tau}\omega,\eta^0,s)\|^2_{\mu,2} +(\frac{1}{2}\alpha-\varepsilon-\frac{1}{8}\varepsilon\gamma)\int^\tau_{\tau-t}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)}\|u_t(s,\tau-t,\theta_{-\tau}\omega,u_{1,0})\|^2ds\\ &+\varepsilon(1-\frac{1}{4}\gamma-\frac{\varpi\varepsilon}{\varrho})\int^\tau_{\tau-t}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)}\|\Delta u(s,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2ds\\ &+\frac{1}{4}(3\varrho-\varepsilon\gamma)\int^\tau_{\tau-t}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)}\|\eta^t(s,\tau-t,\theta_{-\tau}\omega,\eta^0,s)\|^2_{\mu,2}ds\\ &+\frac{1}{2}\varepsilon(\nu-\frac{1}{2}\nu\gamma-\varepsilon\alpha+\frac{1}{4}\varepsilon^2\gamma)\int^\tau_{\tau-t}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)}\|u(s,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2ds\\ \leq& 1+2\|\varphi_1\|_{L^1(\mathbb{R}^n)}+c_5\int^0_{-\infty}e^{\frac{1}{4}\varepsilon\gamma s}\bigg(1+\|g(s+\tau)\|^2+|\zeta_\delta(\theta_{s}\omega)|^{2+\frac{4}{p}}\bigg)ds. \end{align*} |
Then the proof is completed.
Based on Lemma 4.1, we can easily obtain the following Lemma that implies the existence of tempered random absorbing sets of \Phi .
Lemma 4.2. If (3.3)-(3.5), (3.8), (4.1)-(4.2) and (4.5)-(4.9) hold, then the cocycle \Phi possesses a closed measurable \mathcal{D} -pullback absorbing set B = \{B(\tau, \omega):\tau\in\mathbb{R}, \omega\in\Omega\}\in\mathcal{D} , which is given by
\begin{align} B(\tau,\omega) = \{(u_0,u_{1,0},\eta^0)\in H^2(\mathbb{R}^n)\times L^2(\mathbb{R}^n)\times \\ \mathfrak{R}_{\mu,2}:\|u_0\|^2_{H^2(\mathbb{R}^n)}+\|u_{1,0}\|^2+\|\eta^0\|^2_{\mu,2}\leq L(\tau,\omega)\}, \end{align} | (4.19) |
where
L(\tau,\omega) = M_1+M_1\int^0_{-\infty}e^{\frac{1}{4}\varepsilon\gamma s}\bigg(1+\|g(s+\tau)\|^2+|\zeta_\delta(\theta_{s}\omega)|^{2+\frac{4}{p}}\bigg)ds. |
In order to derive the uniform tail-estimates of the solutions of (3.2) for large space variables when times is large enough, we need to derive the regularity of the solutions in a space higher than H^2(\mathbb{R}^n) .
Lemma 4.3. Let (3.3)–(3.5), (3.8), (4.1)-(4.2) and (4.5)–(4.8) hold. Then for any \tau\in\mathbb{R}, \omega\in\Omega and D\in\mathcal{D} , there exists T = T(\tau, \omega, D) > 0 such that for all t\geq T , the solution of (3.2) satisfies
\begin{align*} &\|A^{\frac{1}{4}}u_t(\tau,\tau-t,\theta_{-\tau}\omega,u_{1,0})\|^2+\|A^{\frac{3}{4}}u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2 +\|A^{\frac{1}{4}}\eta^t(\tau,\tau-t,\theta_{-\tau}\omega,\eta^0,s)\|^2_{\mu,2}\\ +&\int^\tau_{\tau-t}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)}(\|A^{\frac{1}{4}}u_t(s,\tau-t,\theta_{-\tau}\omega,u_{1,0})\|^2+\|A^{\frac{3}{4}}u(s,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2)ds\\ &+\int^\tau_{\tau-t}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)}(\|A^{\frac{1}{4}}\eta^t(s,\tau-t,\theta_{-\tau}\omega,\eta^0,s)\|^2_{\mu,2}\\ \leq&M_2+M_2\int^0_{-\infty}e^{\frac{1}{4}\varepsilon\gamma s}(1+\|g(s+\tau)\|^2_1+|\zeta_\delta(\theta_s\omega)|^{2})ds, \end{align*} |
where (u_0, u_{1, 0}, \eta^0) \in D(\tau-t, \theta_{-\tau}\omega) and M_2 is a positive number independent of \tau, \omega and D .
Proof. Taking the inner product of (3.2)_1 with A^{\frac{1}{2}} u in L^2(\mathbb{R}^n) , we have
\begin{align*} &\frac{d}{dt}(A^{\frac{1}{4}}u_t,A^{\frac{1}{4}}u)+\alpha(A^{\frac{1}{4}}u_t,A^{\frac{1}{4}}u) +\|A^{\frac{3}{4}}u\|^2+(\int_0^\infty\mu(s)\Delta^2\eta(s)ds,A^{\frac{1}{2}}u)+\nu\|A^{\frac{1}{4}}u\|^2\\+&(f(x,u),A^{\frac{1}{2}}u) = \|A^{\frac{1}{4}}u_t\|^2+(g(t)+h(t,\cdot,u)\zeta_\delta(\theta_t\omega),A^{\frac{1}{2}} u) \end{align*} | (4.20) |
Taking the inner product of (1.1)_1 with A^{\frac{1}{2}} u_t in L^2(\mathbb{R}^n) , we find that
\begin{align*} &\frac{d}{dt}(\|A^{\frac{1}{4}}u_t\|^2+\nu \|A^{\frac{1}{4}}u\|^2+\|A^{\frac{3}{4}} u\|^2+\|A^{\frac{1}{4}}\eta^t\|^2_{\mu,2})\\ = & \int^\infty_0\mu'(s)\|A^{\frac{3}{4}}\eta^t\|^2ds-2\alpha\|A^{\frac{1}{4}}u_t\|^2-2(f(x,u),A^{\frac{1}{2}} u_t)+2(g(t)+h(t,\cdot,u)\zeta_\delta(\theta_t\omega),A^{\frac{1}{2}} u_t) \end{align*} | (4.21) |
By (4.20) and (4.21), we get
\begin{align*} &\frac{d}{dt}\bigg(\|A^{\frac{1}{4}}u_t\|^2+\nu \|A^{\frac{1}{4}}u\|^2+\|A^{\frac{3}{4}} u\|^2+\|A^{\frac{1}{4}}\eta^t\|^2_{\mu,2}+\varepsilon(A^{\frac{1}{4}}u_t,A^{\frac{1}{4}}u)\bigg)+(2\alpha-\varepsilon)\|A^{\frac{1}{4}}u_t\|^2 \\ &+\varepsilon\alpha(A^{\frac{1}{4}}u_t,A^{\frac{1}{4}}u)+\varepsilon\|A^{\frac{3}{4}}u\|^2+\varepsilon(\int_0^\infty\mu(s)\Delta^2\eta(s)ds,A^{\frac{1}{2}}u) -\int^\infty_0\mu'(s)\|A^{\frac{3}{4}}\eta^t\|^2ds\\ &+\varepsilon\nu\|A^{\frac{1}{4}}u\|^2+\varepsilon(f(x,u),A^{\frac{1}{2}} u)+2(f(x,u),A^{\frac{1}{2}} u_t)\\ = &(g(t)+h(t,\cdot,u)\zeta_\delta(\theta_t\omega),\varepsilon A^{\frac{1}{2}} u+2A^{\frac{1}{2}} u_t). \end{align*} | (4.22) |
By (3.3), (4.5), (4.6) and Lemma 4.1, we have
\begin{align*} &\varepsilon(\int_0^\infty\mu(s)\Delta^2\eta(s)ds,A^{\frac{1}{2}}u)\geq -\frac{\varrho}{4}\|A^{\frac{1}{4}}\eta^t\|^2_{\mu,2}-\frac{\varpi\varepsilon^2}{\varrho}\|A^{\frac{3}{4}} u\|^2, \end{align*} | (4.23) |
\begin{align*} &-\int^\infty_0\mu'(s)\|A^{\frac{3}{4}}\eta^t\|^2ds\geq\varrho\|A^{\frac{1}{4}}\eta^t\|^2_{\mu,2}, \end{align*} | (4.24) |
\begin{align*} &(g(t)+h(t,\cdot,u(t))\zeta_\delta(\theta_t\omega),\varepsilon A^{\frac{1}{2}}u+2A^{\frac{1}{2}}u_t)\\ \leq&(\|g(t)\|_1+\|h(t,\cdot,u(t))\zeta_\delta(\theta_t\omega)\|_1)(\varepsilon\| A^{\frac{1}{4}} u\|+2\|A^{\frac{1}{2}}u_t\|)\\ \leq&\frac{1}{2}\varepsilon\nu\|A^{\frac{1}{4}}u\|^2+\alpha\|A^{\frac{1}{2}}u_t\|^2+(\alpha^{-1}+\frac{1}{2}\varepsilon\nu^{-1}) (\|g(t)\|_1+\|h(t,\cdot,u(t))\zeta_\delta(\theta_t\omega)\|_1)^2\\ \leq&\frac{1}{2}\varepsilon\nu\|A^{\frac{1}{4}}u\|^2+\alpha\|A^{\frac{1}{4}}u_t\|^2+(2\alpha^{-1} +\varepsilon\nu^{-1})\|g(t)\|^2_1+(2\alpha^{-1}+\varepsilon\nu^{-1})\|h(t,\cdot,u(t))\zeta_\delta(\theta_t\omega)\|^2_1\\ \leq&\frac{1}{2}\varepsilon\nu\|A^{\frac{1}{4}}u\|^2+\alpha\|A^{\frac{1}{4}}u_t\|^2+(2\alpha^{-1} +\varepsilon\nu^{-1})\|g(t)\|^2_1+c_8|\zeta_\delta(\theta_t\omega)|^2. \end{align*} | (4.25) |
From (4.3) and Lemma 4.1 yields
\begin{align*} &|\varepsilon(f(x,u),A^{\frac{1}{2}} u)+2(f(x,u),A^{\frac{1}{2}} u_t)|\\ \leq&2\int_{\mathbb{R}^n}|\frac{\partial f}{\partial u}(x,u)\cdot A^{\frac{1}{4}} u\cdot A^{\frac{1}{4}} u_t+\frac{\partial f}{\partial x}(x,u)\cdot A^{\frac{1}{4}} u_t|dx\\ &+\varepsilon\int_{\mathbb{R}^n}|\frac{\partial f}{\partial u}(x,u)\cdot A^{\frac{1}{4}} u\cdot A^{\frac{1}{4}} u+\frac{\partial f}{\partial x}(x,u)\cdot A^{\frac{1}{4}} u|dx\\ \leq&2\iota\int_{\mathbb{R}^n}|u|^p\cdot |A^{\frac{1}{4}} u|\cdot |A^{\frac{1}{4}} u_t|dx+2\varsigma\int_{\mathbb{R}^n}|A^{\frac{1}{4}} u|\cdot |A^{\frac{1}{4}} u_t|dx+2\int_{\mathbb{R}^n}|\varphi_4|\cdot|A^{\frac{1}{4}} u_t|dx\\ &+\varepsilon\iota\int_{\mathbb{R}^n}|u|^p\cdot |A^{\frac{1}{4}} u|\cdot |A^{\frac{1}{4}} u|dx+\varepsilon\varsigma\int_{\mathbb{R}^n}|A^{\frac{1}{4}} u|\cdot |A^{\frac{1}{4}} u|dx+\varepsilon\int_{\mathbb{R}^n}|\varphi_4|\cdot|A^{\frac{1}{4}} u|dx\\ \leq&2\iota\|u\|^p_{L^{\frac{10p}{4}}}\cdot\|A^{\frac{1}{4}} u\|_{L^{10}}\cdot\|A^{\frac{1}{4}} u_t\| +2\varsigma\|A^{\frac{1}{4}} u\|\cdot\|A^{\frac{1}{4}} u_t\|+\frac{\varepsilon}{4}\|A^{\frac{1}{4}} u_t\|^2+ \frac{4}{\varepsilon}\|\varphi_4\|^2\\ &+\varepsilon\iota\|u\|^p\cdot\|A^{\frac{1}{4}} u\|^2 +\varepsilon\varsigma\|A^{\frac{1}{4}} u\|^2+\frac{\varepsilon}{2}\|A^{\frac{1}{4}} u\|^2+ \frac{\varepsilon}{2}\|\varphi_4\|^2\\ \leq&\varepsilon\|A^{\frac{1}{4}} u_t\|^2+\frac{2C^{p+1}\iota^2}{\varepsilon}L^p\|A^{\frac{3}{4}} u\|^2+c_9, \end{align*} |
where the definition of L see Lemma 4.2, and C is the positive constant satisfying
C\|\Delta u\|^2\geq\bigg(\int_{\mathbb{R}^n}|u|^{10}dx\bigg)^{\frac{1}{5}},\ \ \ C\|u\|^2_2\geq\bigg(\int_{\mathbb{R}^n}|u|^{\frac{10p}{4}}dx\bigg)^{\frac{2}{10p}}. |
Choosing
0 < \iota^2\leq\frac{\varepsilon^2}{4L^pC^{p+1}}, |
thus, we get
\begin{align} |\varepsilon(f(x,u),A^{\frac{1}{2}} u)+2(f(x,u),A^{\frac{1}{2}} u_t)|\leq\varepsilon\|A^{\frac{1}{4}} u_t\|^2+\frac{\varepsilon}{2}\|A^{\frac{3}{4}} u\|^2+c_9. \end{align} | (4.26) |
By (4.22)–(4.26), we get
\begin{align*} &\frac{d}{dt}\bigg(\|A^{\frac{1}{4}}u_t\|^2+\nu \|A^{\frac{1}{4}}u\|^2+\|A^{\frac{3}{4}} u\|^2+\|A^{\frac{1}{4}}\eta^t\|^2_{\mu,2}+\varepsilon(A^{\frac{1}{4}}u_t,A^{\frac{1}{4}}u)\bigg)+(\alpha-2\varepsilon)\|A^{\frac{1}{4}}u_t\|^2 \\ &+\varepsilon\alpha(A^{\frac{1}{4}}u_t,A^{\frac{1}{4}}u)+ \varepsilon(\frac{1}{2}-\frac{\varpi\varepsilon}{\varrho})\|A^{\frac{3}{4}}u\|^2+\frac{3}{4}\varrho\|A^{\frac{1}{4}}\eta^t\|^2_{\mu,2}+\frac{\varepsilon}{2}\nu\|A^{\frac{1}{4}}u\|^2\\ \leq&c_{10}(1+\|g(t)\|^2_1+|\zeta_\delta(\theta_t\omega)|^2), \end{align*} |
which can be rewritten as
\begin{align*} &\frac{d}{dt}\bigg(\|A^{\frac{1}{4}}u_t\|^2+\nu \|A^{\frac{1}{4}}u\|^2+\|A^{\frac{3}{4}} u\|^2+\|A^{\frac{1}{4}}\eta^t\|^2_{\mu,2}+\varepsilon(A^{\frac{1}{4}}u_t,A^{\frac{1}{4}}u)\bigg)\\ &+\frac{1}{4}\varepsilon\gamma\bigg(\|A^{\frac{1}{4}}u_t\|^2+\nu \|A^{\frac{1}{4}}u\|^2+\|A^{\frac{3}{4}} u\|^2+\|A^{\frac{1}{4}}\eta^t\|^2_{\mu,2}+\varepsilon(A^{\frac{1}{4}}u_t,A^{\frac{1}{4}}u)\bigg)\\ &+(\alpha-2\varepsilon-\frac{1}{4}\varepsilon\gamma)\|A^{\frac{1}{4}}u_t\|^2 +\frac{\varepsilon}{2}(1-\frac{2\varpi\varepsilon}{\varrho}-\frac{\gamma}{2})\|A^{\frac{3}{4}}u\|^2 \\ +&\frac{3}{4}(\varrho-\frac{1}{3}\varepsilon\gamma)\|A^{\frac{1}{4}}\eta^t\|^2_{\mu,2}+\frac{\varepsilon}{2}\nu(1-\frac{\gamma}{2})\|A^{\frac{1}{4}}u\|^2\\ \leq&c_{10}(1+\|g(t)\|^2_1+|\zeta_\delta(\theta_t\omega)|^2) -\varepsilon(\alpha-\frac{1}{4}\varepsilon\gamma)(A^{\frac{1}{4}}u_t,A^{\frac{1}{4}}u). \end{align*} | (4.27) |
For the last term on the right-hand side of (4.27) we have
\begin{align*} &-\varepsilon(\alpha-\frac{1}{4}\varepsilon\gamma)(A^{\frac{1}{4}}u_t,A^{\frac{1}{4}}u)\\ \leq&\varepsilon(\alpha-\frac{1}{4}\varepsilon\gamma)\|A^{\frac{1}{4}}u\|\|A^{\frac{1}{4}}u_t\|\\ \leq&\frac{1}{2}\varepsilon^2(\alpha-\frac{1}{4}\varepsilon\gamma)\|A^{\frac{1}{4}}u\|^2+ \frac{1}{2}(\alpha-\frac{1}{4}\varepsilon\gamma)\|A^{\frac{1}{4}}u_t\|^2, \end{align*} |
which together with (4.27), we get
\begin{align*} &\frac{d}{dt}\bigg(\|A^{\frac{1}{4}}u_t\|^2+\nu \|A^{\frac{1}{4}}u\|^2+\|A^{\frac{3}{4}} u\|^2+\|A^{\frac{1}{4}}\eta^t\|^2_{\mu,2}+\varepsilon(A^{\frac{1}{4}}u_t,A^{\frac{1}{4}}u)\bigg)\\ &+\frac{1}{4}\varepsilon\gamma\bigg(\|A^{\frac{1}{4}}u_t\|^2+\nu \|A^{\frac{1}{4}}u\|^2+\|A^{\frac{3}{4}} u\|^2+\|A^{\frac{1}{4}}\eta^t\|^2_{\mu,2}+\varepsilon(A^{\frac{1}{4}}u_t,A^{\frac{1}{4}}u)\bigg)\\ &+(\frac{\alpha}{2}-2\varepsilon-\frac{1}{8}\varepsilon\gamma)\|A^{\frac{1}{4}}u_t\|^2 +\frac{\varepsilon}{2}(1-\frac{2\varpi\varepsilon}{\varrho}-\frac{\gamma}{2})\|A^{\frac{3}{4}}u\|^2 +\frac{3}{4}(\varrho-\frac{1}{3}\varepsilon\gamma)\|A^{\frac{1}{4}}\eta^t\|^2_{\mu,2}\\ &+\frac{\varepsilon}{2}(\nu-\frac{\nu}{2}\gamma-\frac{\varepsilon}{2}\alpha+\frac{1}{8}\varepsilon^2\gamma)\|A^{\frac{1}{4}}u\|^2\\ \leq&c_{10}(1+\|g(t)\|^2_1+|\zeta_\delta(\theta_t\omega)|^2). \end{align*} |
Similar to the remainder of Lemma 4.1, we can obtain the desired result.
Lemma 4.4. Let (3.3)–(3.5), (3.8), (4.1)-(4.2) and (4.5)–(4.8) hold. Then for every \eta > 0, \tau\in\mathbb{R}, \omega\in\Omega and D\in\mathcal{D} , there exists T_0 = T_0(\eta, \tau, \omega, D) > 0 and m_0 = m_0(\eta, \tau, \omega)\geq1 such that for all t\geq T_0 , m\geq m_0 and (u_0, u_{1, 0}, \eta^0) \in D(\tau-t, \theta_{-\tau}\omega) , the solution of (3.2) satisfies
\begin{align*} &\int_{|x|\geq m}(|u_t(\tau,\tau-t,\theta_{-\tau}\omega,u_{1,0})|^2+|u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})|^2\\ & + |\Delta u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})|^2 +|\eta^t(\tau,\tau-t,\theta_{-\tau}\omega,\eta^{0},s)|^2_{\mu,2})dx < \eta. \end{align*} |
Proof. Let \rho:\mathbb{R}^n\rightarrow \mathbb{R} be a smooth function such that 0\leq\rho(x)\leq1 for all x\in\mathbb{R}^n , and
\rho(x) = 0 \ \ \text{for}\ \ \ |x|\leq\frac{1}{2};\ \ \ \text{and}\ \ \ \rho(x) = 1 \ \ \text{for}\ \ \ |x|\geq1. |
For every m\in\mathbb{N} , let
\rho_m(x) = \rho(x/m),\ \ x\in\mathbb{R}^n. |
Then there exist positive constants c_{11} and c_{12} independent of m such that |\nabla\rho_m(x)|\leq\frac{1}{m}c_{11} , |\Delta\rho_m(x)|\leq\frac{1}{m}c_{12} for all x\in\mathbb{R}^n and m\in\mathbb{N} .
Similar to the energy equation (3.11), we have
\begin{align*} &\frac{d}{dt}\int_{\mathbb{R}^n}\rho_m(x)\big(|u_t(t,x)|^2+\nu |u(t,x)|^2+|\Delta u(t,x)|^2+|\eta^t(s)|^2_{\mu,2}+2F(x,u(t,x))\big)dx\\ &+2\alpha\int_{\mathbb{R}^n}\rho_m(x)|u_t(t,x)|^2dx-\int_{\mathbb{R}^n}\rho_m(x)\int^\infty_0\mu'(s)|\Delta\eta^t(s)|^2dsdx\\ = &-4\int_{\mathbb{R}^n}\nabla\rho_m(x)\cdot\Delta u(t,x)\cdot\nabla u_t(t,x)dx-2\int_{\mathbb{R}^n}\Delta\rho_m(x)\cdot\Delta u(t,x)\cdot u_t(t,x)dx\\ &-4\int_{\mathbb{R}^n}\nabla\rho_m(x)\int^\infty_0\mu(s)\Delta\eta^t(s)\nabla u_t(t,x)dsdx- 2\int_{\mathbb{R}^n}\Delta\rho_m(x)\int^\infty_0\mu(s)\Delta\eta^t(s) u_t(t,x)dsdx\\ &+2\int_{\mathbb{R}^n}\rho_m(x) g(t,x) u_t(t,x)dx +2\zeta_\delta(\theta_t\omega)\int_{\mathbb{R}^n}\rho_m(x)h(t,x,u(t,x))u_t(t,x)dx. \end{align*} | (4.28) |
Taking the inner product of (3.2)_1 with \rho_m(x)u in L^2(\mathbb{R}^n) , we have
![]() |
(4.29) |
By (4.28)-(4.29) and (4.1), we get
![]() |
(4.30) |
Similar to the arguments of (4.11)-(4.13), we have the following estimates:
\begin{align*} &\varepsilon\int_{\mathbb{R}^n}\rho_m(x)\int^\infty_0\mu(s)\Delta\eta^t(s) \Delta u(t,x)dsdx \geq-\frac{\varrho}{4}\int_{\mathbb{R}^n}\rho_m(x) |\eta^t |^2_{\mu,2}dx-\frac{\varpi\varepsilon^2}{\varrho}\int_{\mathbb{R}^n}\rho_m(x) |\Delta u |^2dx, \end{align*} | (4.31) |
\begin{align*} &-\int_{\mathbb{R}^n}\rho_m(x)\int^\infty_0\mu'(s)|\Delta\eta^t(s)|^2dsdx \geq \varrho\int_{\mathbb{R}^n}\rho_m(x)|\eta^t |^2_{\mu,2}dx, \end{align*} | (4.32) |
\begin{align*} &|\int_{\mathbb{R}^n}\rho_m(x)(g(t,x)+h(t,x,u(t,x))\zeta_\delta(\theta_t\omega))(\varepsilon u(t,x)+2u_t(t,x))dx|\\ \leq&\frac{1}{2}\varepsilon\nu\int_{\mathbb{R}^n}\rho_m(x)|u(t,x)|^2dx +\alpha\int_{\mathbb{R}^n}\rho_m(x)|u_t(t,x)|^2dx+\frac{1}{2}\varepsilon\gamma\int_{\mathbb{R}^n}\rho_m(x)F(x,u(t,x))dx\\ &+c_{13}\int_{\mathbb{R}^n}\rho_m(x)\bigg(|g(t,x)|^2+|\varphi_1(x)|+|\zeta_\delta(\theta_t\omega)\varphi_6(x)|^2 +|\zeta_\delta(\theta_t\omega)\varphi_5(x)|^{2+\frac{4}{p}}\bigg)dx, \end{align*} | (4.33) |
where c_{13} depends only on \alpha, \nu, \gamma and \varepsilon .
By (4.30)–(4.33) we get
![]() |
(4.34) |
where c_{14} > 0 depends only on \alpha, \nu, \gamma and \varepsilon , but not on m .
By (4.34) we get
![]() |
(4.35) |
By Young's inequality we get
\begin{align*} &\bigg|\varepsilon(\alpha-\frac{1}{4}\gamma)\int_{\mathbb{R}^n}\rho_m(x)u(t,x)u_t(t,x)dx\bigg|\\ \leq&\frac{1}{2}\varepsilon^2(\alpha-\frac{1}{4}\varepsilon\gamma)\int_{\mathbb{R}^n}\rho_m(x)|u(t,x)|^2dx+ \frac{1}{2}(\alpha-\frac{1}{4}\varepsilon\gamma)\int_{\mathbb{R}^n}\rho_m(x)|u_t(t,x)|^2dx. \end{align*} | (4.36) |
By (4.35)-(4.36) we get
![]() |
(4.37) |
By (4.7) and (4.37) we have
![]() |
(4.38) |
Multiplying (4.38) by e^{\frac{1}{4}\varepsilon\gamma t} , and then integrating the inequality [\tau-t, \tau] , after replacing \omega by \theta_{-\tau}\omega , we get
\begin{align*} &\int_{\mathbb{R}^n}\rho_m(x)\bigg(|u_t(\tau,\tau-t,\theta_{-\tau}\omega,u_{1,0})|^2+\nu |u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})|^2+|\Delta u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})|^2\\ &+|\eta^t(\tau,\tau-t,\theta_{-\tau}\omega,\eta^{0},s)|^2_{\mu,2}+2F(x,u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0}))+\varepsilon u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})u_t(\tau,\tau-t,\theta_{-\tau}\omega,u_{1,0}) \bigg)dx\\ \leq&e^{-\frac{1}{4}\varepsilon\gamma t}\int_{\mathbb{R}^n}\rho_m(x)(|u_{1,0}|^2+\nu|u_0|^2+|\Delta u_0|^2+|\eta^0|^2_{\mu,2}+2F(x,u_0(x))+\varepsilon u_0(x)u_{1,0}(x))dx\\ &+c_{14}\int^{\tau}_{\tau-t}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)} \int_{\mathbb{R}^n}\rho_m(x) (|g(s,x)|^2+|\varphi_1(x)|+|\varphi_3(x)|)dxds\\ &+c_{14}\int^{\tau}_{\tau-t}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)} \int_{\mathbb{R}^n}\rho_m(x)(|\zeta_\delta(\theta_{s-\tau}\omega)\varphi_6(x)|^2 +|\zeta_\delta(\theta_{s-\tau}\omega)\varphi_5(x)|^{2+\frac{4}{p}})dxds\\ &+\frac{2c_{14}}{m}\int^{\tau}_{\tau-t}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)}(\|u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2_{H^2(\mathbb{R}^n)} +\|u_t(\tau,\tau-t,\theta_{-\tau}\omega,u_{1,0})\|^2_{H^1(\mathbb{R}^n)}\\ &+\|\eta^t(\tau,\tau-t,\theta_{-\tau}\omega,\eta^{0},s)\|^2_{\mu,2})ds. \end{align*} | (4.39) |
Next, we estimate the right-hand side of (4.39). By (4.18), we know that there exists T_1(\eta, \tau, \omega, D) > 0 such that for all t\geq T_1 ,
\begin{align} e^{-\frac{1}{4}\varepsilon\gamma t}\int_{\mathbb{R}^n}\rho_m(x)(|u_{1,0}|^2+\nu|u_0|^2+|\Delta u_0|^2+|\eta^0|^2_{\mu,2}+2F(x,u_0(x))+\varepsilon u_0(x)u_{1,0}(x))dx < \eta. \end{align} | (4.40) |
For the second and the third terms on the right-hand side of (4.39) we get
\begin{align*} &c_{14}\int^{\tau}_{\tau-t}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)} \int_{\mathbb{R}^n}\rho_m(x)(|g(s,x)|^2+|\varphi_1(x)|+|\varphi_3(x)|)dxds\\ &+c_{14}\int^{\tau}_{\tau-t}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)} \int_{\mathbb{R}^n}(\rho_m(x)|\zeta_\delta(\theta_{s-\tau}\omega)\varphi_6(x)|^2 +|\zeta_\delta(\theta_{s-\tau}\omega)\varphi_5(x)|^{2+\frac{4}{p}} )dxds\\ \leq&c_{14}\int^{\tau}_{-\infty}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)} \int_{|x|\geq\frac{1}{2}m}(|g(s,x)|^2+|\varphi_1(x)|+|\varphi_3(x)|)dxds\\ &+c_{14}\int^{\tau}_{-\infty}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)} \int_{|x|\geq\frac{1}{2}m}(|\zeta_\delta(\theta_{s-\tau}\omega)\varphi_6(x)|^2 +|\zeta_\delta(\theta_{s-\tau}\omega)\varphi_5(x)|^{2+\frac{4}{p}})dxds\\ \leq&c_{14}\int^{\tau}_{-\infty}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)} \int_{|x|\geq\frac{1}{2}m}(|g(s,x)|^2+|\varphi_1(x)|+|\varphi_3(x)|)dxds\\ &+c_{14}\int^{0}_{-\infty}e^{\frac{1}{4}\varepsilon\gamma s }|\zeta_\delta(\theta_{s}\omega)|^2ds\int_{|x|\geq\frac{1}{2}m}|\varphi_6(x)|^2dx\\ &+c_{14}\int^{0}_{-\infty}e^{\frac{1}{4}\varepsilon\gamma s }|\zeta_\delta(\theta_{s}\omega)|^{2+\frac{4}{p}}ds\int_{|x|\geq\frac{1}{2}m}|\varphi_5(x)|^{2+\frac{4}{p}}dx. \end{align*} | (4.41) |
By (4.8) and the conditions of \varphi_i(x)(i = 1, 3, 5, 6) satisfy, we know that there exists m_1 = m_1(\eta, \tau, \omega)\geq1 such that for all m\geq m_1 , the right-hand of side of (4.39) is bounded by \eta , i.e.,
\begin{align*} &c_{14}\int^{\tau}_{\tau-t}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)} \int_{\mathbb{R}^n}\rho_m(x)(|g(s,x)|^2+|\varphi_1(x)|+|\varphi_3(x)|)dxds\\ &+c_{14}\int^{\tau}_{\tau-t}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)} \int_{\mathbb{R}^n}(\rho_m(x)|\zeta_\delta(\theta_{s-\tau}\omega)\varphi_6(x)|^2 +|\zeta_\delta(\theta_{s-\tau}\omega)\varphi_5(x)|^{2+\frac{4}{p}} )dxds\\ < &\eta. \end{align*} | (4.42) |
For the last term in (4.39), by Lemma 4.1 and Lemma 4.3, we know that there exists T_2(\eta, \tau, \omega, D)\geq T_1 such that for all t\geq T_2 ,
\begin{align*} &\frac{2c_{14}}{m}\int^{\tau}_{\tau-t}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)}(\|u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2_{H^2(\mathbb{R}^n)} +\|u_t(\tau,\tau-t,\theta_{-\tau}\omega,u_{1,0})\|^2_{H^1(\mathbb{R}^n)}\\ &+\|\eta^t(\tau,\tau-t,\theta_{-\tau}\omega,\eta^{0},s)\|^2_{\mu,2})ds\\ \leq&\frac{c_{15}}{m}, \end{align*} |
where c_{15} > 0 depends only on \alpha, \nu, \gamma, \varepsilon, \tau and \omega , but not on m . Thus, there exists m_2 = m_2(\eta, \tau, \omega)\geq m_1 such that for all m\geq m_2 and t\geq T_2 ,
\begin{align*} &\frac{2c_{14}}{m}\int^{\tau}_{\tau-t}e^{\frac{1}{4}\varepsilon\gamma (s-\tau)}(\|u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2_{H^2(\mathbb{R}^n)} +\|u_t(\tau,\tau-t,\theta_{-\tau}\omega,u_{1,0})\|^2_{H^1(\mathbb{R}^n)}\\ &+\|\eta^t(\tau,\tau-t,\theta_{-\tau}\omega,\eta^{0},s)\|^2_{\mu,2})ds\\ \leq&\eta, \end{align*} | (4.43) |
By (4.39), (4.40), (4.42) and (4.43) we see that for all m\geq m_2 and t\geq T_2 ,
\begin{align*} &\int_{\mathbb{R}^n}\rho_m(x)\bigg(|u_t(\tau,\tau-t,\theta_{-\tau}\omega,u_{1,0})|^2+\nu |u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})|^2+|\Delta u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})|^2\\ &+ |\eta^t(\tau,\tau-t,\theta_{-\tau}\omega,\eta^{0},s) |^2_{\mu,2}+2F(x,u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0}))+\varepsilon u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})u_t(\tau,\tau-t,\theta_{-\tau}\omega,u_{1,0}) \bigg)dx\\ < &3\eta. \end{align*} | (4.44) |
By (4.7) we have
\begin{align*} &\varepsilon\int_{\mathbb{R}^n}\rho_m(x)u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})u_t(\tau,\tau-t,\theta_{-\tau}\omega,u_{1,0})dx\\ \leq&\frac{1}{2}\nu\int_{\mathbb{R}^n}\rho_m(x)|u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})|^2dx+ \frac{1}{2}\int_{\mathbb{R}^n}\rho_m(x)|u_t(\tau,\tau-t,\theta_{-\tau}\omega,u_{1,0})|^2dx, \end{align*} |
which together with (4.2) and (4.44) yields that for all m\geq m_2 and t\geq T_2 ,
\begin{align*} &\int_{\mathbb{R}^n}\rho_m(x)\bigg(\frac{1}{2}|u_t(\tau,\tau-t,\theta_{-\tau}\omega,u_{1,0})|^2+\frac{1}{2}\nu |u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})|^2+|\Delta u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})|^2 \\ &+ |\eta^t(\tau,\tau-t,\theta_{-\tau}\omega,\eta^{0},s) |^2_{\mu,2})dx\\ \leq&3\eta+2\int_{\mathbb{R}^n}\rho_m(x)\varphi_1(x)dx. \end{align*} | (4.45) |
Since \varphi_1\in L^1(\mathbb{R}^n) , there exists m_3 = m_3(\eta, \tau, \omega)\geq m_2 such that for all m\geq m_3 ,
\begin{align} 2\int_{\mathbb{R}^n}\rho_m(x)\varphi_1(x)dx = 2\int_{|x|\geq\frac{1}{2}m}\rho_m(x)\varphi_1(x)dx\leq2\int_{|x|\geq\frac{1}{2}m}|\varphi_1(x)|dx < \eta. \end{align} | (4.46) |
From (4.45)-(4.46) we obtain, for all m\geq m_3 and t\geq T_2 ,
\begin{align*} &\int_{|x|\geq m}\rho_m(x)\bigg(\frac{1}{2}|u_t(\tau,\tau-t,\theta_{-\tau}\omega,u_{1,0})|^2+\frac{1}{2}\nu |u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})|^2+|\Delta u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})|^2\\ &+|\eta^t(\tau,\tau-t,\theta_{-\tau}\omega,\eta^{0},s)\|^2_{\mu,2}|)dx\\ \leq&\int_{\mathbb{R}^n}\rho_m(x)\bigg(\frac{1}{2}|u_t(\tau,\tau-t,\theta_{-\tau}\omega,u_{1,0})|^2+\frac{1}{2}\nu |u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})|^2+|\Delta u(\tau,\tau-t,\theta_{-\tau}\omega,u_{0})|^2\\ &+|\eta^t(\tau,\tau-t,\theta_{-\tau}\omega,\eta^{0},s)\|^2_{\mu,2}|)dx\\ < &4\eta. \end{align*} |
In this section, we present the existence and uniqueness of \mathcal{D} -pullback random attractors of (3.2).
Let z = (u, u_t, \eta^t) be the solution of (3.2). Denote u = \tilde{v}+v, \eta^t = \tilde{\eta}^t+\eta where (\tilde{v}, \tilde{\eta}^t) and (v, \eta^t) are the solutions of the following equations, respectively,
\begin{align} \left\{\begin{array}{ll} \tilde{v}_{tt}+\alpha \tilde{v}_t+\Delta^{2}\tilde{v}+\int_0^\infty\mu(s)\Delta^2\tilde{\eta}^t(s)ds+\nu \tilde{v} = g(t), \ t > \tau, \\[1ex] \tilde{v}(\tau) = u_0,\; \; \tilde{v}_t(\tau) = u_{1,0},\; \; \tilde{\eta}^t(\tau) = \eta^0 \end{array}\right. \end{align} | (5.1) |
and
\begin{align} \left\{\begin{array}{ll} v_{tt}+\alpha v_t+\Delta^{2}v+\int_0^\infty\mu(s)\Delta^2\eta^t(s)ds+\nu v = -f(x,u)+h(t,x,u)\zeta_\delta(\theta_t\omega),\ t > \tau, \\[1ex] v(\tau) = 0,\; \; v_t(\tau) = 0,\; \; \eta^t(\tau) = 0. \end{array}\right. \end{align} | (5.2) |
Lemma 5.1. Suppose (3.3), (4.7)-(4.8) hold. Then for every \tau\in\mathbb{R}, \omega\in\Omega and D\in\mathcal{D} , there exists T = T(\tau, \omega, D) > 0 such that for all t\geq T and r\in[-t, 0] , the solution \tilde{v} of (5.1) satisfies
\begin{align*} &\|\tilde{v}(\tau+r,\tau-t,\theta_{-\tau}\omega,u_0)\|^2_{H^2(\mathbb{R}^n)}+ \|\tilde{v}_r(\tau+r,\tau-t,\theta_{-\tau}\omega,u_{1,0})\|^2 +\|\tilde{\eta}^t(\tau+r,\tau-t,\theta_{-\tau}\omega,\eta^0,s)\|^2_{\mu,2}\\ \leq&e^{-\frac{1}{2}\varepsilon r}M_2\bigg(1+\int^0_\infty e^{\frac{1}{2}\varepsilon s}\|g(s+\tau)\|^2ds\bigg), \end{align*} |
where (u_0, u_{1, 0})\in D(\tau-t, \theta_{-t}\omega) and M_2 is a positive number independent of \tau, \omega and D .
Proof. From (3.10)-(3.11) and (5.1) we see that
\begin{align*} &\frac{d}{dt}(\|\tilde{v}_t\|^2+\|\Delta \tilde{v}\|^2+\|\tilde{\eta}^t\|^2_{\mu,2}+\nu \|\tilde{v}\|^2+\varepsilon (\tilde{v}(t),\tilde{v}_t(t)))+(2\alpha-\varepsilon)\|\tilde{v}_t\|^2 \\ &+\varepsilon\|\Delta \tilde{v}\|^2+ \varepsilon\nu \|\tilde{v}\|^2+\varepsilon\alpha(\tilde{v}(t),\tilde{v}_t(t)) +\varepsilon(\tilde{\eta}^t(s),\tilde{v}(t))_{\mu,2} -\int^\infty_0\mu'(s)\|\Delta\tilde{\eta}^t\|^2ds\\ = &(g(t),\varepsilon\tilde{v}(t)+2\tilde{v}_t(t))\\ \leq&\varepsilon\|g(t)\|\|\tilde{v}(t)\|+2\|g(t)\|\|\tilde{v}_t(t)\|\\ \leq&\frac{1}{2}\varepsilon^2\|\tilde{v}(t)\|^2+\alpha\|\tilde{v}_t(t)\|^2+(\frac{1}{2}+\alpha^{-1})\|g(t)\|^2. \end{align*} | (5.3) |
In addition, we get
\begin{align} |(\alpha-\frac{1}{2}\varepsilon)\varepsilon(\tilde{v}(t),\tilde{v}_t(t))| \leq\frac{1}{2}(\alpha-\frac{1}{2}\varepsilon)(\varepsilon^2\|\tilde{v}(t)\|^2+\|\tilde{v}_t(t)\|^2). \end{align} | (5.4) |
By (4.11)-(4.12) and (5.3)-(5.4) we have
\begin{align*} &\frac{d}{dt}(\|\tilde{v}_t\|^2+\|\Delta \tilde{v}\|^2+\|\tilde{\eta}^t\|^2_{\mu,2}+\nu \|\tilde{v}\|^2+\varepsilon (\tilde{v}(t),\tilde{v}_t(t)))+(\frac{1}{2}\alpha-\frac{3}{4}\varepsilon)\|\tilde{v}_t\|^2 \\ &+\varepsilon(1-\frac{\varpi\varepsilon}{\varrho})\|\Delta \tilde{v}\|^2+\frac{3\varrho}{4}\|\tilde{\eta}^t\|^2_{\mu,2}+ \varepsilon(\nu-\frac{1}{2}\varepsilon-\frac{1}{2}\varepsilon\alpha+\frac{1}{4} \varepsilon^2) \|\tilde{v}\|^2+\frac{1}{2}\varepsilon^2(\tilde{v}(t),\tilde{v}_t(t))\\ \leq&(\frac{1}{2}+\alpha^{-1})\|g(t)\|^2, \end{align*} |
which can be rewritten as
\begin{align*} &\frac{d}{dt}(\|\tilde{v}_t\|^2+\|\Delta \tilde{v}\|^2+\|\tilde{\eta}^t\|^2_{\mu,2}+\nu \|\tilde{v}\|^2+\varepsilon (\tilde{v}(t),\tilde{v}_t(t)))\\ &+\frac{1}{2}\varepsilon(\|\tilde{v}_t\|^2+\|\Delta \tilde{v}\|^2+\|\tilde{\eta}^t\|^2_{\mu,2}+\nu \|\tilde{v}\|^2+\varepsilon (\tilde{v}(t),\tilde{v}_t(t)))\\ &+(\frac{1}{2}\alpha-\frac{5}{4}\varepsilon)\|\tilde{v}_t\|^2+\frac{1}{2}\varepsilon(1-\frac{2\varpi\varepsilon}{\varrho})\|\Delta \tilde{v}\|^2+\frac{3}{4}(\varrho-\frac{2}{3}\varepsilon)\|\tilde{\eta}^t\|^2_{\mu,2}+\frac{1}{2}\varepsilon(\nu- \varepsilon- \varepsilon\alpha+\frac{1}{2} \varepsilon^2) \|\tilde{v}\|^2\\ \leq&(\frac{1}{2}+\alpha^{-1})\|g(t)\|^2. \end{align*} | (5.5) |
It follows from (4.7) and (5.5) that
\begin{align*} &\frac{d}{dt}(\|\tilde{v}_t\|^2+\|\Delta \tilde{v}\|^2+\|\tilde{\eta}^t\|^2_{\mu,2}+\nu \|\tilde{v}\|^2+\varepsilon (\tilde{v}(t),\tilde{v}_t(t)))\\ &+\frac{1}{2}\varepsilon(\|\tilde{v}_t\|^2+\|\Delta \tilde{v}\|^2+\|\tilde{\eta}^t\|^2_{\mu,2}+\nu \|\tilde{v}\|^2+\varepsilon (\tilde{v}(t),\tilde{v}_t(t)))\\ \leq&(\frac{1}{2}+\alpha^{-1})\|g(t)\|^2. \end{align*} | (5.6) |
Applying Gronwall's lemma to (5.6), we get for all \tau\in\mathbb{R}, t\geq0, r\in[-t, 0] and \omega\in\Omega ,
\begin{align*} &\|\tilde{v}_r(\tau+r,\tau-t,\theta_{-\tau}\omega,u_{1,0})\|^2+\|\Delta \tilde{v}(\tau+r,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2+\|\tilde{\eta}^t(\tau+r,\tau-t,\theta_{-\tau}\omega,\eta^0,s)\|^2_{\mu,2}\\ &+\nu \|\tilde{v}(\tau+r,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2+\varepsilon (\tilde{v}(\tau+r,\tau-t,\theta_{-\tau}\omega,u_{0}),\tilde{v}_r(\tau+r,\tau-t,\theta_{-\tau}\omega,u_{1,0}))\\ \leq&e^{-\frac{1}{2}\varepsilon r}e^{-\frac{1}{2}\varepsilon t}\big(\|u_{1,0}\|^2+\nu \|u_0\|^2+\|\Delta u_{0}\|^2+ \varepsilon(u_{0},u_{1,0})\big)\\ &+(\frac{1}{2}+\alpha^{-1})e^{-\frac{1}{2}\varepsilon r}\int^{\tau+r}_{\tau-t}e^{\frac{1}{2}\varepsilon (s-\tau)}\|g(s)\|^2ds. \end{align*} | (5.7) |
By (4.7) we have
\begin{align*} &\varepsilon (\tilde{v}(\tau+r,\tau-t,\theta_{-\tau}\omega,u_{0}),\tilde{v}_r(\tau+r,\tau-t,\theta_{-\tau}\omega,u_{1,0}))\\ \leq&\frac{1}{2}\varepsilon\|\tilde{v}(\tau+r,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2+ \frac{1}{2}\varepsilon\|\tilde{v}_r(\tau+r,\tau-t,\theta_{-\tau}\omega,u_{1,0})\|^2\\ \leq&\frac{1}{2}\nu\|\tilde{v}(\tau+r,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2+ \frac{1}{2}\|\tilde{v}_r(\tau+r,\tau-t,\theta_{-\tau}\omega,u_{1,0})\|^2. \end{align*} | (5.8) |
By (5.7)-(5.8) we see that for all \tau\in\mathbb{R}, t\geq0, r\in[-t, 0] and \omega\in\Omega ,
\begin{align*} &\frac{1}{2}\|\tilde{v}_r(\tau+r,\tau-t,\theta_{-\tau}\omega,u_{1,0})\|^2+\|\Delta \tilde{v}(\tau+r,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2+\|\tilde{\eta}^t(\tau+r,\tau-t,\theta_{-\tau}\omega,\eta^0,s)\|^2_{\mu,2}\\ &+\frac{1}{2}\nu \|\tilde{v}(\tau+r,\tau-t,\theta_{-\tau}\omega,u_{0})\|^2\\ \leq&e^{-\frac{1}{2}\varepsilon r}e^{-\frac{1}{2}\varepsilon t}\big(\|u_{1,0}\|^2+\nu \|u_0\|^2+\|\Delta u_{0}\|^2+\|\eta^0\|^2_{\mu,2}+ \varepsilon(u_{0},u_{1,0})\big)\\ &+(\frac{1}{2}+\alpha^{-1})e^{-\frac{1}{2}\varepsilon r}\int^{\tau+r}_{\tau-t}e^{\frac{1}{2}\varepsilon (s-\tau)}\|g(s)\|^2ds. \end{align*} | (5.9) |
Similar to (4.16), one can verify that
e^{-\frac{1}{2}\varepsilon t}\big(\|u_{1,0}\|^2+\nu \|u_0\|^2+\|\Delta u_{0}\|^2+\|\eta^0\|^2_{\mu,2}+ \varepsilon(u_{0},u_{1,0})\big)\rightarrow0,\ \ \text{as}\ \ t\rightarrow \infty, |
which along with (5.9) yields the desire result.
Based on Lemma 5.1, we infer that system (5.1) has a tempered pullback random absorbing set.
Lemma 5.2. Suppose (3.3), (4.8)-(4.9) hold, then (5.1) possesses a closed measurable \mathcal{D} -pullback absorbing set B_1 = \{B_1(\tau, \omega):\tau\in\mathbb{R}, \omega\in\Omega\}\in\mathcal{D} , which is given by
\begin{align} B_1(\tau,\omega) = \{(u_0,u_{1,0},\eta^0)\in H^2(\mathbb{R}^n)\times L^2(\mathbb{R}^n)\times\mathfrak{R}_{\mu,2}:\|u_0\|^2_{H^2(\mathbb{R}^n)}+\|u_{1,0}\|^2+\|\eta^0\|^2_{\mu,2}\leq L_1(\tau,\omega)\}, \end{align} | (5.10) |
where
L_1(\tau,\omega) = M_2+M_2\int^0_{-\infty}e^{\frac{1}{2}\varepsilon s} \|g(s+\tau)\|^2ds. |
Lemma 5.3. Suppose (4.8)-(4.9) hold, then the sequence of the solutions to (5.1)
\{\tilde{v}(\tau,\tau-t_n,\theta_{-\tau}\omega,u^{(n)}_0),\tilde{v}_t(\tau,\tau-t_n,\theta_{-\tau}\omega,u^{(n)}_{1,0}), \tilde{\eta}^t(\tau,\tau-t_n,\theta_{-\tau}\omega,\eta^{(0n)})\}^\infty_{n = 1} |
converges in H^2(\mathbb{R}^n)\times L^2(\mathbb{R}^n)\times\mathfrak{R}_{\mu, 2} for any \tau\in\mathbb{R}, \omega\in\Omega, D\in\mathcal{D}, t_n\rightarrow \infty monotonically, and (u^{(n)}_0, u^{(n)}_{1, 0}, \eta^{(0n)})\in D(\tau-t_n, \theta_{-t_n}\omega) .
Proof. Let m > n and
\begin{align*} &v_{n,m}(t,\tau-t_n,\theta_{-\tau}\omega)\\ = &\tilde{v}(t,\tau-t_n,\theta_{-\tau}\omega,u^{(n)}_0)-\tilde{v}(t,\tau-t_m,\theta_{-\tau}\omega,u^{(m)}_0)\\ = &\tilde{v}(t,\tau-t_n,\theta_{-\tau}\omega,u^{(n)}_0)-\tilde{v}(t,\tau-t_n,\theta_{-\tau}\omega,\tilde{v}(\tau-t_n,\tau-t_m,\theta_{-\tau}\omega,u^{(m)}_0)\\ &\eta^t_{n,m}(t,\tau-t_n,\theta_{-\tau}\omega,s)\\ = &\tilde{\eta}^t(t,\tau-t_n,\theta_{-\tau}\omega,\eta^{(0n)},s)-\tilde{\eta}^t(t,\tau-t_m,\theta_{-\tau}\omega,\eta^{(0m)},s)\\ = &\tilde{\eta}^t(t,\tau-t_n,\theta_{-\tau}\omega,\eta^{(0n)},s)-\tilde{\eta}^t(t,\tau-t_n,\theta_{-\tau}\omega,s,\tilde{\eta}^t(\tau-t_n,\tau-t_m,\theta_{-\tau}\omega,\eta^{(0m)},s). \end{align*} | (5.11) |
for t\geq\tau-t_n .
by (5.1) we get
\begin{align} \left\{\begin{array}{ll} \partial^2_{tt}v_{n,m}(t)+\alpha\partial_{t}v_{n,m}(t)+\Delta^{2}v_{n,m}(t)+\int^\infty_0\mu(s)\Delta^2\eta^t_{n,m}ds+\nu v_{n,m}(t) = 0, \ t > \tau-t_n, \\[1ex] v_{n,m}(\tau-t_n) = u^{(n)}_0-\tilde{v}(\tau-t_n,\tau-t_m,\theta_{-\tau}\omega,u^{(m)}_0),\; \; \partial_{t}v_{n,m}(\tau-t_n) = u^{(n)}_{1,0}-\tilde{v}_t, \\[1ex] \eta^\tau_{n,m}(\tau-t_n,s) = \eta^{(0n)}-\tilde{\eta}^t(\tau-t_n,\tau-t_m,\theta_{-\tau}\omega,\eta^{(0m)},s). \end{array}\right. \end{align} | (5.12) |
Similar to (5.9) with r = 0, t = t_n and g = 0 , we obtain
\begin{align*} &\frac{1}{2}\|\partial_{t}v_{n,m}(\tau,\tau-t_n,\theta_{-\tau}\omega)\|^2+\|\Delta v_{n,m}(\tau,\tau-t_n,\theta_{-\tau}\omega)\|^2+\|\eta^t_{n,m}(\tau,\tau-t_n,\theta_{-\tau}\omega,s)\|^2_{\mu,2}\\ &+\frac{1}{2}\nu v_{n,m}(\tau,\tau-t_n,\theta_{-\tau}\omega)\|^2\\ \leq&e^{-\frac{1}{2}\varepsilon t_n}(\|\partial_{t}v_{n,m}(\tau-t_n)\|^2+\|v_{n,m}(\tau-t_n)\|^2+\|\Delta v_{n,m}(\tau-t_n)\|^2+\|\eta^\tau_{n,m}(\tau-t_n,s)\|^2_{\mu,2}), \end{align*} | (5.13) |
which together with (5.12)_2 , we get
\begin{align*} &\|\partial_{t}v_{n,m}(\tau,\tau-t_n,\theta_{-\tau}\omega)\|^2+2\|\Delta v_{n,m}(\tau,\tau-t_n,\theta_{-\tau}\omega)\|^2+\|\eta^t_{n,m}(\tau,\tau-t_n,\theta_{-\tau}\omega,s)\|^2_{\mu,2}\\ &+ \nu v_{n,m}(\tau,\tau-t_n,\theta_{-\tau}\omega)\|^2\\ \leq&2e^{-\frac{1}{2}\varepsilon t_n}(\|\tilde{v}_t(\tau-t_n,\tau-t_m,\theta_{-\tau}\omega,u^{(m)}_{1,0}\|^2+ \|\tilde{v}(\tau-t_n,\tau-t_m,\theta_{-\tau}\omega,u^{(m)}_{0}\|^2_{H^2})\\ &+\|\tilde{\eta}^t(\tau-t_n,\tau-t_m,\theta_{-\tau}\omega,\eta^{(0m)},s)\|^2_{\mu,2})\\ &+2e^{-\frac{1}{2}\varepsilon t_n}(\|u^{(n)}_{1,0}\|^2+\|u^{(n)}_{0}\|^2+\|\Delta u^{(n)}_{0}\|^2+\|\eta^{(0n)} \|^2_{\mu,2}). \end{align*} | (5.14) |
By (5.9) with r = -t_n , and t = t_m , we obtain
\begin{align*} &\|\tilde{v}_t(\tau-t_n,\tau-t_m,\theta_{-\tau}\omega,u^{(m)}_{1,0})\|^2+2\|\Delta \tilde{v}(\tau-t_n,\tau-t_m,\theta_{-\tau}\omega,u^{(m)}_{0})\|^2 \\ &+\|\tilde{\eta}^t(\tau-t_n,\tau-t_m,\theta_{-\tau}\omega,\eta^{(0m)})\|^2_{\mu,2}+\nu \|\tilde{v}(\tau-t_n,\tau-t_m,\theta_{-\tau}\omega,u^{(m)}_{0})\|^2\\ \leq&2e^{\frac{1}{2}\varepsilon t_n}e^{-\frac{1}{2}\varepsilon t_m}\big(\|u^{(n)}_{1,0}\|^2+\nu \|u^{(n)}_0\|^2+\|\Delta u^{(n)}_{0}\|^2+\|\eta^{(0n)} \|^2_{\mu,2}+ \varepsilon(u^{(n)}_{0},u^{(n)}_{1,0})\big)\\ &+(1+2\alpha^{-1})e^{\frac{1}{2}\varepsilon t_n}\int^{\tau-t_n}_{\tau-t_m}e^{\frac{1}{2}\varepsilon (s-\tau)}\|g(s)\|^2ds. \end{align*} | (5.15) |
It follows from (5.14)-(5.15) that for m > n\rightarrow \infty ,
\|\partial_{t}v_{n,m}(\tau,\tau-t_n,\theta_{-\tau}\omega)\|^2+\| v_{n,m}(\tau,\tau-t_n,\theta_{-\tau}\omega)\|^2_{H^2(\mathbb{R}^n)}+\|\eta^t_{n,m}(\tau,\tau-t_n,\theta_{-\tau}\omega,s)\|^2_{\mu,2}\rightarrow0, |
together with (5.11) implies \{\tilde{v}(\tau, \tau-t_n, \theta_{-\tau}\omega, u^{(n)}_0), \tilde{v}_t(\tau, \tau-t_n, \theta_{-\tau}\omega, u^{(n)}_{1, 0}), \tilde{\eta}^t(\tau, \tau-t_n, \theta_{-\tau}\omega, \eta^{(0n)})\}^\infty_{n = 1} is a Cauchy sequence in H^2(\mathbb{R}^n)\times L^2(\mathbb{R}^n)\times\mathfrak{R}_{\mu, 2} . This complete the proof.
Lemma 5.4. Suppose (3.3), (4.8)-(4.9) hold, then (5.1) has a unique \mathcal{D} -pullback random attractor \mathcal{A}_1 = \{\mathcal{A}_1(\tau, \omega):\tau\in\mathbb{R}, \omega\in\Omega\}\in\mathcal{D} in H^2(\mathbb{R}^n)\times L^2(\mathbb{R}^n)\times\mathfrak{R}_{\mu, 2} , which is actually a singleton; that is, \mathcal{A}_1(\tau, \omega) consisting of a single point for all \tau\in\mathbb{R}, \omega\in\Omega .
Proof. From Lemmas 5.2 and 5.3 by applying the abstract results in [29], we can get the existence and uniqueness of the \mathcal{D} -pullback random attractor \mathcal{A}_1\in\mathcal{D} of (5.1) in H^2(\mathbb{R}^n)\times L^2(\mathbb{R}^n)\times\mathfrak{R}_{\mu, 2} immediately.
Next, we prove \mathcal{A}_1 is a singleton. Suppose \{t_n\}^\infty_{ n = 1} 1 be a sequence of numbers such that t_n\rightarrow \infty as n\rightarrow \infty . Given \tau\in\mathbb{R}, \omega\in\Omega , let (z^{(n)}_0, z^{(n)}_{1, 0}, \eta^{(0n)}), (y^{(n)}_0, y^{(n)}_{1, 0}, y^{(0n)})\in\mathcal{A}_1(\tau-t_n, \theta_{-t_n}\omega) .
Similar to (5.13) we have
\begin{align*} &\|\tilde{v}_t (\tau,\tau-t_n,\theta_{-\tau}\omega,z^{(n)}_{1,0})-\tilde{v}_t (\tau,\tau-t_n,\theta_{-\tau}\omega,y^{(n)}_{1,0})\|^2\\ &+2\|\Delta\tilde{v}(\tau,\tau-t_n,\theta_{-\tau}\omega,z^{(n)}_0)- \Delta\tilde{v}(\tau,\tau-t_n,\theta_{-\tau}\omega,y^{(n)}_0)\|^2\\ &+\|\tilde{\eta}^t (\tau,\tau-t_n,\theta_{-\tau}\omega,\eta^{(0n)})-\tilde{\eta}^t (\tau,\tau-t_n,\theta_{-\tau}\omega,y^{(0n)})\|^2_{\mu,2}\\ &+ \nu \|\tilde{v}(\tau,\tau-t_n,\theta_{-\tau}\omega,z^{(n)}_0)- \tilde{v}(\tau,\tau-t_n,\theta_{-\tau}\omega,y^{(n)}_0)\|^2\\ \leq&e^{-\frac{1}{2}\varepsilon t_n}(\|z^{(n)}_{1,0}-y^{(n)}_{1,0}\|^2+\|z^{(n)}_{0}-y^{(n)}_{0}\|^2+\|\Delta z^{(n)}_{0}-\Delta y^{(n)}_{0}\|^2+\|\eta^{(0n)}-y^{(0n)}\|^2_{\mu,2})\\ \leq&2e^{-\frac{1}{2}\varepsilon t_n}(\|z^{(n)}_{1,0}\|^2+\|z^{(n)}_{0}\|^2_{H^2(\mathbb{R}^n)}+\|y^{(n)}_{1,0}\|^2 +\|y^{(n)}_{1,0}\|^2_{H^2(\mathbb{R}^n)}+\|\eta^{(0n)}\|^2_{\mu,2}+\|y^{(0n)}\|^2_{\mu,2})\\ \leq&4e^{-\frac{1}{2}\varepsilon t_n}\|\mathcal{A}_1(\tau-t_n,\theta_{-t_n}\omega)\|^2_{H^2(\mathbb{R}^n)\times L^2(\mathbb{R}^n)\times\mathfrak{R}_{\mu,2}}. \end{align*} | (5.16) |
Due to \mathcal{A}_1\in\mathcal{D} , we see that the right-hand side of (5.16) tends to zero as n\rightarrow \infty , and thus we get
\begin{align*} &\lim\limits_{n\rightarrow \infty}(\tilde{v}_t (\tau,\tau-t_n,\theta_{-\tau}\omega,z^{(n)}_{1,0})-\tilde{v}_t (\tau,\tau-t_n,\theta_{-\tau}\omega,y^{(n)}_{1,0})) = 0 \ \ \ \text{in} \ \ L^2(\mathbb{R}^n),\\ &\lim\limits_{n\rightarrow \infty}(\tilde{v} (\tau,\tau-t_n,\theta_{-\tau}\omega,z^{(n)}_{0})-\tilde{v} (\tau,\tau-t_n,\theta_{-\tau}\omega,y^{(n)}_{0})) = 0 \ \ \ \text{in} \ \ H^2(\mathbb{R}^n),\\ &\lim\limits_{n\rightarrow \infty}( \tilde{\eta}^t (\tau,\tau-t_n,\theta_{-\tau}\omega,\eta^{(0n)})-\tilde{\eta}^t (\tau,\tau-t_n,\theta_{-\tau}\omega,y^{(0n)})) = 0 \ \ \ \text{in} \ \ \mathfrak{R}_{\mu,2}. \end{align*} |
which together with the invariance of \mathcal{A}_1 , we know that the \mathcal{D} -pullback random attractor \mathcal{A}_1 is a singleton. This complete the proof.
To obtain the asymptotic compactness of the solutions of (5.2), we need the following Lemma.
Lemma 5.5. Let u_0\in H^2(\mathbb{R}^n) , u_{1, 0}\in L^2(\mathbb{R}^n), \eta^0\in\mathfrak{R}_{\mu, 2}, \tau\in\mathbb{R}, \omega\in\Omega and T > 0 . If (3.3)-(3.5), (3.8), (4.1)-(4.2) and (4.5)-(4.8) hold, then the solution of (5.2) satisfies, for all t\in[\tau, \tau+T] ,
\|A^{\frac{3}{4}}v(t,\tau,\omega)\|+\|A^{\frac{1}{4}}v_t(t,\tau,\omega)\|+\|A^{\frac{1}{4}}\eta^t(t,\tau,\omega,s)\|_{\mu,2}\leq C, |
where C is a positive number depending on \tau, \omega, T and R when \|(u_0, u_{1, 0}, \eta^0)\|_{H^2(\mathbb{R}^n)\times L^2(\mathbb{R}^n)\times\mathfrak{R}_{\mu, 2}}\leq R .
Proof. This is an immediate consequence of Lemma 4.3.
Lemma 5.6. Let (3.3)–(3.5), (3.6), (4.1)–(4.3) and (4.5)–(4.9) hold. Then the cocycle \Phi is \mathcal{D} -pullback asymptotically compact in H^2(\mathbb{R}^n)\times L^2(\mathbb{R}^n)\times\mathfrak{R}_{\mu, 2} ; that is, the sequence \{\Phi(t_n, \tau-t_n, \theta_{-t_n}\omega, (u^{(n)}_0, u^{(n)}_{1, 0}), \eta^{(0n)}\}^\infty_{n = 1} has a convergent subsequence in H^2(\mathbb{R}^n)\times L^2(\mathbb{R}^n)\times\mathfrak{R}_{\mu, 2} for any \tau\in\mathbb{R}, \omega\in\Omega, D\in\mathcal{D}, t_n\rightarrow \infty and (u^{(n)}_0, u^{(n)}_{1, 0}, \eta^{(0n)})\in D(\tau-t_n, \theta_{-t_n}\omega) .
Proof. Given t\in\mathbb{R}^+, \tau\in\mathbb{R}, \omega\in\Omega and (u_0, u_{1, 0}, \eta^0)\in H^2(\mathbb{R}^n)\times L^2(\mathbb{R}^n)\times\mathfrak{R}_{\mu, 2} , define
\begin{align*} &\Phi_1(t,\tau,\omega,(u_0,u_{1,0},\eta^0)) = (\tilde{v}(t+\tau,\tau,\theta_{-\tau}\omega,u_0),\tilde{v}_t(t+\tau,\tau,\theta_{-\tau}\omega,u_{1,0}),\tilde{\eta}^t(t+\tau,\tau,\theta_{-\tau}\omega,\eta^{0},s)),\\ &\Phi_2(t,\tau,\omega,(u_0,u_{1,0},\eta^0)) = (v(t+\tau,\tau,\theta_{-\tau}\omega,u_0),v_t(t+\tau,\tau,\theta_{-\tau}\omega,u_{1,0}),\eta^t(t+\tau,\tau,\theta_{-\tau}\omega,\eta^{0},s)), \end{align*} |
where (\tilde{v}, \tilde{\eta}^t) and (v, \eta^t) are the solutions of (5.1) and (5.2), respectively.
By(3.78) we have
\begin{align} \Phi(t,\tau,\omega,(u_0,u_{1,0},\eta^0)) = \Phi_1(t,\tau,\omega,(u_0,u_{1,0},\eta^0))+\Phi_2(t,\tau,\omega,(u_0,u_{1,0},\eta^0)). \end{align} | (5.17) |
Let B\in\mathcal{D} be the \in\mathcal{D} -pullback absorbing set of \Phi given by (4.19). From Lemmas 4.2, 4.4 and 5.4 we see that for every \delta > 0 there exists t_0 = t_0(\delta, \tau, \omega, B) > 0 and k_0 = k_0(\delta, \tau, \omega)\geq1 such that for all (u_0, u_{1, 0}, \eta^0)\in B(\tau-t_0, \theta_{-t_0}\omega) ,
\begin{align} \|\Phi(t_0,\tau-t_0,\theta_{-t_0}\omega,(u_0,u_{1,0},\eta^0))| _{\tilde{\mathcal{O}}_{k_0}}\|_{H^2(\tilde{\mathcal{O}}_{k_0})\times L^2(\tilde{\mathcal{O}}_{k_0})\times\mathfrak{R}_{\mu,2}} < \delta, \end{align} | (5.18) |
with \tilde{\mathcal{O}}_{k_0} = \{x\in\mathbb{R}^n:|x| > k_0\} , and
\begin{align} \Phi_1(t_0,\tau-t_0,\theta_{-t_0}\omega,B(\tau-t_0,\theta_{-t_0}\omega))\ \ \text{ is covered by a ball of radius}\ \ \ \delta \end{align} | (5.19) |
in H^2(\mathbb{R}^n)\times L^2(\mathbb{R}^n)\times\mathfrak{R}_{\mu, 2} .
In addition, by Lemma 5.5 we know that for every t\in\mathbb{R}^+, \tau\in\mathbb{R}, \omega\in\Omega and k\in\mathbb{N} ,
\Phi_2(t,\tau-t,\theta_{-t}\omega,B(\tau-t,\theta_{-t}\omega))\ \ \text{ is bounded in}\ \ \ H^{3}(\mathbb{R}^n)\times H^{1}(\mathbb{R}^n)\times\mathfrak{R}_{\mu,3}, |
and thus for each k\in\mathbb{N} ,
\begin{align} \Phi_2(t,\tau-t,\theta_{-t}\omega,B(\tau-t,\theta_{-t}\omega))|_{\mathcal{O}_{k}} \ \ \ \text{is precompact} \ \ \ H^2(\mathcal{O}_{k})\times L^2(\mathcal{O}_{k})\times\mathfrak{R}_{\mu,2}, \end{align} | (5.20) |
with \mathcal{O}_{k} = \{x\in\mathbb{R}^n:|x| < k\} .
It follows from (5.17)–(5.20) we get that all conditions of Theorem 2.1 are satisfied, so \Phi is \mathcal{D} -pullback asymptotically compact in H^{2}(\mathbb{R}^n)\times L^{2}(\mathbb{R}^n)\times\mathfrak{R}_{\mu, 2} .
Since Lemma 4.2 implies a closed measurable \mathcal{D} -pullback absorbing set for \Phi , and \Phi is \mathcal{D} -pullback asymptotically compact in H^{2}(\mathbb{R}^n)\times L^{2}(\mathbb{R}^n)\times\mathfrak{R}_{\mu, 2} from Lemma 5.6, we immediately get the following existence theorem by Theorem 2.2.
Theorem 5.1. Let (3.3)–(3.5), (3.6), (4.1)–(4.3) and (4.5)–(4.9) hold. Then the cocycle \Phi has a unique \mathcal{D} -pullback random attractor in H^2(\mathbb{R}^n)\times L^2(\mathbb{R}^n)\times\mathfrak{R}_{\mu, 2} .
In this paper, we use the uniform estimates on the tails of solutions and the splitting technique to obtained the existence and uniqueness of \mathcal{D} -pullback attractor for the problem (1.1). The method used in this paper is proposed by P. W. Bates et al [3], they applied the method to deal with the asymptotic behavior of the non-automatous random system on unbounded domains. More precisely, one first need to show that the tails of the solutions of (1.1) are uniformly small outside a bounded domain for large time, and then derive the asymptotic compactness of solutions in bounded domains by splitting the solutions as two parts: one part has trivial dynamics in the sense that it possesses a unique tempered attracting random solution; and the other part has regularity higher than H^2(\mathbb{R}^n)\times L^2(\mathbb{R}^n)\times\mathfrak{R}_{\mu, 2} based on the estimates of solutions (see Lemma 4.3).
Using the uniform estimates on the tails of solutions and the splitting technique, we obtained the existence and uniqueness of \mathcal{D} -pullback attractor for the problem (1.1). It is well-known that the pullback random attractors are employed to describe long-time behavior for an non-autonomous dynamical system with random term, while the \mathcal{D} -pullback attractor that we obtained can characterize the asymptotic behavior of the equation like (1.1), which is featured with both stochastic term and non-autonomous term.
The author X. Yao was supported by the Natural Science Foundation of China (No. 12161071, 11961059).
The authors declare that there is no conflict of interests regarding the publication of this article.
[1] |
G. Hernandez-Duenas, A hybrid method to solve shallow water flows with horizontal density gradients, J. Sci. Comput., 73 (2017), 753–782. https://doi.org/10.1007/s10915-017-0553-1 doi: 10.1007/s10915-017-0553-1
![]() |
[2] |
V. A. Dorodnitsyn, E. I. Kaptsov, Discrete shallow water equations preserving symmetries and conservation laws, J. Math. Phys., 62 (2021), 083508. https://doi.org/10.1063/5.0031936 doi: 10.1063/5.0031936
![]() |
[3] |
V. A. Dorodnitsyn, E. I. Kaptsov, Shallow water equations in Lagrangian coordinates: symmetries, conservation laws and its preservation in difference models, Commun. Nonlinear Sci. Numer. Simul., 89 (2020), 105343. https://doi.org/10.1016/j.cnsns.2020.105343 doi: 10.1016/j.cnsns.2020.105343
![]() |
[4] | E. Godlewski, P. A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Springer, New York, 1996. https://doi.org/10.1007/978-1-4612-0713-9 |
[5] | L. C. Evans, Partial differential equations, American Mathematical Society, 1998. |
[6] | R. J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge University Press, 2002. https://doi.org/10.1017/CBO9780511791253 |
[7] |
M. A. E. Abdelrahman, On the shallow water equations, Z. Naturforschung A, 72 (2017), 873–879. https://doi.org/10.1515/zna-2017-0146 doi: 10.1515/zna-2017-0146
![]() |
[8] |
K. Mohamed, M. A. E. Abdelrahman, The modified Rusanov scheme for solving the ultra-relativistic Euler equations, Eur. J. Mech.-B/Fluids, 90 (2021), 89–98. https://doi.org/10.1016/j.euromechflu.2021.07.014 doi: 10.1016/j.euromechflu.2021.07.014
![]() |
[9] |
M. A. E. Abdelrahman, On the shallow water equations, Z. Naturforschung A, 72 (2017), 873–879. https://doi.org/10.1515/zna-2017-0146 doi: 10.1515/zna-2017-0146
![]() |
[10] | E. F. Toro, Riemann solvers and numerical methods for fluid dynamics, Springer Berlin, Heidelberg, 1999. https://doi.org/10.1007/b79761 |
[11] |
Z. Fu, Z. Tang, Q. Xi, Q. Liu, Y. Gu, F. Wang, Localized collocation schemes and their applications, Acta Mech. Sin., 38 (2022), 422167. https://doi.org/10.1007/s10409-022-22167-x doi: 10.1007/s10409-022-22167-x
![]() |
[12] |
Z. J. Fu, Z. Y. Xie, S. Y. Ji, C. C. Tsai, A. L. Li, Meshless generalized finite difference method for water wave interactions with multiple-bottom-seated-cylinder-array structures, Ocean Eng., 195 (2020), 106736. https://doi.org/10.1016/j.oceaneng.2019.106736 doi: 10.1016/j.oceaneng.2019.106736
![]() |
[13] |
A. R. Alharbi, M. B. Almatrafi, New exact and numerical solutions with their stability for Ito integro-differential equation via Riccati–Bernoulli sub-ODE method, J. Taibah Univ. Sci., 14 (2020), 1447–1456. https://doi.org/10.1080/16583655.2020.1827853 doi: 10.1080/16583655.2020.1827853
![]() |
[14] |
M. A. E. Abdelrahman, M. B. Almatrafi, A. Alharbi, Fundamental solutions for the coupled KdV system and its stability, Symmetry, 12 (2020), 429. https://doi.org/10.3390/sym12030429 doi: 10.3390/sym12030429
![]() |
[15] |
M. A. E. Abdelrahman, A. Alharbi, Analytical and numerical investigations of the modified Camassa-Holm equation, Pramana-J. Phys., 95 (2021), 117. https://doi.org/10.1007/s12043-021-02153-6 doi: 10.1007/s12043-021-02153-6
![]() |
[16] | K. Mohamed, Simulation numérique en volume finis, de problémes d'écoulements multidimensionnels raides, par un schéma de flux á deux pas, Doctoral dissertation, Université Paris-Nord-Paris XIII, 2005. |
[17] |
K. Mohamed, M. Seaid, M. Zahri, A finite volume method for scalar conservation laws with stochastic time-space dependent flux function, J. Comput. Appl. Math., 237 (2013), 614–632. https://doi.org/10.1016/j.cam.2012.07.014 doi: 10.1016/j.cam.2012.07.014
![]() |
[18] | F. Benkhaldoun, K. Mohamed, M. Seaid, A generalized Rusanov method for Saint-Venant equations with variable horizontal density, In: J. Foõt, J. Fürst, J. Halama, R. Herbin, F. Hubert, Finite volumes for complex applications VI problems & perspectives, Springer Proceedings in Mathematics, Springer, Berlin, Heidelberg, 4 (2011), 89–96. https://doi.org/10.1007/978-3-642-20671-9_10 |
[19] |
K. Mohamed, F. Benkhaldoun, A modified Rusanov scheme for shallow water equations with topography and two phase flows, Eur. Phys. J. Plus, 131 (2016), 207. https://doi.org/10.1140/epjp/i2016-16207-3 doi: 10.1140/epjp/i2016-16207-3
![]() |
[20] |
K. Mohamed, H. A. Alkhidhr, M. A. E. Abdelrahman, The NHRS scheme for the Chaplygin gas model in one and two dimensions, AIMS Math., 7 (2022), 17785–17801. https://doi.org/10.3934/math.2022979 doi: 10.3934/math.2022979
![]() |
[21] |
K. Mohamed, M. A. E. Abdelrahman, The NHRS scheme for the two models of traffic flow, Comp. Appl. Math., 42 (2023), 53. https://doi.org/10.1007/s40314-022-02172-y doi: 10.1007/s40314-022-02172-y
![]() |
[22] |
K. Mohamed, S. Sahmim, M. A. E. Abdelrahman, A Predictor-corrector scheme for simulation of two-phase granular flows over a moved bed with a variable topography, Eur. J. Mech.-B/Fluids, 96 (2022), 39–50. https://doi.org/10.1016/j.euromechflu.2022.07.001 doi: 10.1016/j.euromechflu.2022.07.001
![]() |
[23] |
M. Dumbser, D. S. Balsara, A new efficient formulation of the HLLM Riemann solver for general conservative and non-conservative hyperbolic systems, J. Comput. Phys., 304 (2016), 275–319. https://doi.org/10.1016/j.jcp.2015.10.014 doi: 10.1016/j.jcp.2015.10.014
![]() |
[24] |
R. J. LeVeque, Balancing source terms and flux gradients in high-resolution godynov methods: the quasi-steady wave propagation algorithm, J. Comput. Phys., 146 (1998), 346–365. https://doi.org/10.1006/jcph.1998.6058 doi: 10.1006/jcph.1998.6058
![]() |
[25] |
L. Gosse, A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms, Math. Models Methods Appl. Sci., 11 (2001), 339–365. https://doi.org/10.1142/S021820250100088X doi: 10.1142/S021820250100088X
![]() |
[26] |
A. Bermudez, M. E. Vazquez, Upwind methods for hyperbolic conservation laws with source term, Comput. Fluids, 23 (1994), 1049–1071. https://doi.org/10.1016/0045-7930(94)90004-3 doi: 10.1016/0045-7930(94)90004-3
![]() |
1. | C. L. Frota, M. A. Jorge Silva, S. B. Pinheiro, A time-fractional superdiffusion wave-like equation with subdiffusion possibly damping term: well-posedness and Mittag-Leffler stability, 2024, 27, 1311-0454, 1236, 10.1007/s13540-024-00249-5 | |
2. | Jamilu Hashim Hassan, Nasser-eddine Tatar, Banan Al-Homidan, Mittag-Leffler stability and Lyapunov stability for a problem arising in porous media, 2024, 27, 1311-0454, 2397, 10.1007/s13540-024-00299-9 | |
3. | Mohammed D. Kassim, Mittag-Leffler stability for a one-dimensional fractional elastic-porous system: nonstandard frictional damping and nonstandard Kelvin-Voigt damping, 2025, 43, 0037-8712, 10.5269/bspm.75198 | |
4. | Adel M. Al‐Mahdi, Mohammad M. Al‐Gharabli, Mohammed D. Kassim, Nasser‐eddine Tatar, Mittag–Leffler stability for a fractional swelling soil problem, 2025, 1561-8625, 10.1002/asjc.3710 |