Processing math: 54%
Research article Special Issues

On a two-dimensional nonlinear system of difference equations close to the bilinear system

  • Received: 27 April 2023 Revised: 06 June 2023 Accepted: 09 June 2023 Published: 26 June 2023
  • MSC : 39A20

  • We consider the two-dimensional nonlinear system of difference equations

    xn=xnkaynl+byn(k+l)cynl+dyn(k+l),yn=ynkαxnl+βxn(k+l)γxnl+δxn(k+l),

    for nN0, where the delays k and l are two natural numbers, and the initial values xj,yj, 1jk+l, and the parameters a,b,c,d,α,β,γ,δ are real numbers. We show that the system of difference equations is solvable by presenting a method for finding its general solution in detail. Bearing in mind that the system of equations is a natural generalization of the corresponding one-dimensional difference equation, whose special cases appear in the literature from time to time, our main result presented here also generalizes many results therein.

    Citation: Stevo Stević, Durhasan Turgut Tollu. On a two-dimensional nonlinear system of difference equations close to the bilinear system[J]. AIMS Mathematics, 2023, 8(9): 20561-20575. doi: 10.3934/math.20231048

    Related Papers:

    [1] Kandhasamy Tamilvanan, Jung Rye Lee, Choonkil Park . Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces. AIMS Mathematics, 2021, 6(1): 908-924. doi: 10.3934/math.2021054
    [2] Murali Ramdoss, Divyakumari Pachaiyappan, Inho Hwang, Choonkil Park . Stability of an n-variable mixed type functional equation in probabilistic modular spaces. AIMS Mathematics, 2020, 5(6): 5903-5915. doi: 10.3934/math.2020378
    [3] K. Tamilvanan, Jung Rye Lee, Choonkil Park . Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces. AIMS Mathematics, 2020, 5(6): 5993-6005. doi: 10.3934/math.2020383
    [4] Maysaa Al-Qurashi, Mohammed Shehu Shagari, Saima Rashid, Y. S. Hamed, Mohamed S. Mohamed . Stability of intuitionistic fuzzy set-valued maps and solutions of integral inclusions. AIMS Mathematics, 2022, 7(1): 315-333. doi: 10.3934/math.2022022
    [5] Lingxiao Lu, Jianrong Wu . Hyers-Ulam-Rassias stability of cubic functional equations in fuzzy normed spaces. AIMS Mathematics, 2022, 7(5): 8574-8587. doi: 10.3934/math.2022478
    [6] Nazek Alessa, K. Tamilvanan, G. Balasubramanian, K. Loganathan . Stability results of the functional equation deriving from quadratic function in random normed spaces. AIMS Mathematics, 2021, 6(3): 2385-2397. doi: 10.3934/math.2021145
    [7] Zhihua Wang . Approximate mixed type quadratic-cubic functional equation. AIMS Mathematics, 2021, 6(4): 3546-3561. doi: 10.3934/math.2021211
    [8] Nour Abed Alhaleem, Abd Ghafur Ahmad . Intuitionistic fuzzy normed prime and maximal ideals. AIMS Mathematics, 2021, 6(10): 10565-10580. doi: 10.3934/math.2021613
    [9] Sizhao Li, Xinyu Han, Dapeng Lang, Songsong Dai . On the stability of two functional equations for (S,N)-implications. AIMS Mathematics, 2021, 6(2): 1822-1832. doi: 10.3934/math.2021110
    [10] Zhihua Wang, Choonkil Park, Dong Yun Shin . Additive ρ-functional inequalities in non-Archimedean 2-normed spaces. AIMS Mathematics, 2021, 6(2): 1905-1919. doi: 10.3934/math.2021116
  • We consider the two-dimensional nonlinear system of difference equations

    xn=xnkaynl+byn(k+l)cynl+dyn(k+l),yn=ynkαxnl+βxn(k+l)γxnl+δxn(k+l),

    for nN0, where the delays k and l are two natural numbers, and the initial values xj,yj, 1jk+l, and the parameters a,b,c,d,α,β,γ,δ are real numbers. We show that the system of difference equations is solvable by presenting a method for finding its general solution in detail. Bearing in mind that the system of equations is a natural generalization of the corresponding one-dimensional difference equation, whose special cases appear in the literature from time to time, our main result presented here also generalizes many results therein.



    In 1940, Ulam [24] posed the stability problem concerning group homomorphisms. For Banach spaces, the problem was solved by Hyers [7] in the case of approximate additive mappings. And then Hyers' result was extended by Aoki [1] and Rassias [18] for additive mappings and linear mappings, respectively. In 1994, another further generalization, the so-called generalized Hyer-Ulam stability, was obtained by Gavruta [6]. Later, the stability of several functional equations has been extensively discussed by many mathematicians and there are many interesting results concerning this problem (see [2,8,9,10,19,20] and references therein); also, some stability results of different functional equations and inequalities were studied and generalized [5,11,12,15,16,17,26] in various matrix normed spaces like matrix fuzzy normed spaces, matrix paranormed spaces and matrix non-Archimedean random normed spaces.

    In 2017, Wang and Xu [25] introduced the following functional equation

    2k[f(x+ky)+f(kx+y)]=k(1s+k+ks+2k2)f(x+y)+k(1s3k+ks+2k2)f(xy)+2kf(kx)+2k(s+kks2k2)f(x)+2(1ks)f(ky)+2ksf(y) (1.1)

    where s is a parameter, k>1 and s12k. It is easy to verify that f(x)=ax+bx2(xR) satisfies the functional Eq (1.1), where a,b are arbitrary constants. They considered the general solution of the functional Eq (1.1), and then determined the generalized Hyers-Ulam stability of the functional Eq (1.1) in quasi-Banach spaces by applying the direct method.

    The main purpose of this paper is to employ the direct and fixed point methods to establish the Hyers-Ulam stability of the functional Eq (1.1) in matrix intuitionistic fuzzy normed spaces. The paper is organized as follows: In Sections 1 and 2, we present a brief introduction and introduce related basic definitions and preliminary results, respectively. In Section 3, we prove the Hyers-Ulam stability of the functional Eq (1.1) in matrix intuitionistic fuzzy normed spaces by applying the direct method. In Section 4, we prove the Hyers-Ulam stability of the functional Eq (1.1) in matrix intuitionistic fuzzy normed spaces by applying the fixed point method. Our results may be viewed as a continuation of the previous contribution of the authors in the setting of fuzzy stability (see [14,17]).

    For the sake of completeness, in this section, we present some basic definitions and preliminary results, which will be useful to investigate the Hyers-Ulam stability results in matrix intuitionistic fuzzy normed spaces. The notions of continuous t-norm and continuous t-conorm can be found in [14,22]. Using these, an intuitionistic fuzzy normed space (for short, IFNS) is defined as follows:

    Definition 2.1. ([14,21]) The five-tuple (X,μ,ν,,) is said to be an IFNS if X is a vector space, is a continuous t-norm, is a continuous t-conorm, and μ,ν are fuzzy sets on X×(0,) satisfy the following conditions. For every x,yX and s,t>0,

    (i) μ(x,t)+ν(x,t)1;

    (ii) μ(x,t)>0, (iii) μ(x,t)=1 if and only if x=0;

    (iii) μ(αx,t)=μ(x,t|α|) for each α0, (v) μ(x,t)μ(y,s)μ(x+y,t+s);

    (iv) μ(x,):(0,)[0,1] is continuous;

    (v) limtμ(x,t)=1 and limt0μ(x,t)=0;

    (vi) ν(x,t)<1, (ix) ν(x,t)=0 if and only if x=0;

    (vii) ν(αx,t)=ν(x,t|α|) for each α0, (xi) ν(x,t)ν(y,s)ν(x+y,t+s);

    (xiii) ν(x,):(0,)[0,1] is continuous;

    (ix) limtν(x,t)=0 and limt0ν(x,t)=1.

    In this case, (μ,ν) is called an intuitionistic fuzzy norm.

    The following concepts of convergence and Cauchy sequences are considered in [14,21]:

    Let (X,μ,ν,,) be an IFNS. Then, a sequence {xk} is said to be intuitionistic fuzzy convergent to xX if for every ε>0 and t>0, there exists k0N such that

    μ(xkx,t)>1ε

    and

    ν(xkx,t)<ε

    for all kk0. In this case we write

    (μ,ν)limxk=x.

    The sequence {xk} is said to be an intuitionistic fuzzy Cauchy sequence if for every ε>0 and t>0, there exists k0N such that

    μ(xkx,t)>1ε

    and

    ν(xkx,t)<ε

    for all k,k0. (X,μ,ν,,) is said to be complete if every intuitionistic fuzzy Cauchy sequence in (X,μ,ν,,) is intuitionistic fuzzy convergent in (X,μ,ν,,).

    Following [11,12], we will also use the following notations: The set of all m×n-matrices in X will be denoted by Mm,n(X). When m=n, the matrix Mm,n(X) will be written as Mn(X). The symbols ejM1,n(C) will denote the row vector whose jth component is 1 and the other components are 0. Similarly, EijMn(C) will denote the n×n matrix whose (i,j)-component is 1 and the other components are 0. The n×n matrix whose (i,j)-component is x and the other components are 0 will be denoted by EijxMn(X).

    Let (X,) be a normed space. Note that (X,{n}) is a matrix normed space if and only if (Mn(X),n) is a normed space for each positive integer n and

    AxBkABxn

    holds for AMk,n, x=[xij]Mn(X) and BMn,k, and that (X,{n}) is a matrix Banach space if and only if X is a Banach space and (X,{n}) is a matrix normed space.

    Following [23], we introduce the concept of a matrix intuitionistic fuzzy normed space as follows:

    Definition 2.2. ([23]) Let (X,μ,ν,,) be an intuitionistic fuzzy normed space, and the symbol θ for a rectangular matrix of zero elements over X. Then:

    (1) (X,{μn},{νn},,) is called a matrix intuitionistic fuzzy normed space (briefly, MIFNS) if for each positive integer n, (Mn(X),μn,νn,,) is an intuitionistic fuzzy normed space, μn and νn satisfy the following conditions:

    (i) μn+m(θ+x,t)=μn(x,t),νn+m(θ+x,t)=νn(x,t) for all t>0, x=[xij]Mn(X), θMn(X);

    (ii) μk(AxB,t)μn(x,tAB), νk(AxB,t)νn(x,tAB) for all t>0, AMk,n(R), x=[xij]Mn(X) and BMn,k(R) with AB0.

    (2) (X,{μn},{νn},,) is called a matrix intuitionistic fuzzy Banach space if (X,μ,ν,,) is an intuitionistic fuzzy Banach space and (X,{μn},{νn},,) is a matrix intuitionistic fuzzy normed space.

    The following Lemma 2.3 was found in [23].

    Lemma 2.3. ([23]) Let (X,{μn},{νn},,) be a matrix intuitionistic fuzzy normed space. Then,

    (1) μn(Eklx,t)=μ(x,t), νn(Eklx,t)=ν(x,t) for all t>0 and xX.

    (2) For all [xij]Mn(X) and t=ni,j=1tij>0,

    μ(xkl,t)μn([xij],t)min{μ(xij,tij):i,j=1,2,,n},μ(xkl,t)μn([xij],t)min{μ(xij,tn2):i,j=1,2,,n},

    and

    ν(xkl,t)νn([xij],t)max{ν(xij,tij):i,j=1,2,,n},ν(xkl,t)νn([xij],t)max{ν(xij,tn2):i,j=1,2,,n}.

    (3) limmxm=x if and only if limmxijm=xij for xm=[xijm],x=[xij]Mn(X).

    For explicit later use, we also recall the following Lemma 2.4 is due to Diaz and Margolis [4], which will play an important role in proving our stability results in this paper.

    Lemma 2.4. (The fixed point alternative theorem [4]) Let (E,d) be a complete generalized metric space and J: EE be a strictly contractive mapping with Lipschitz constant L<1. Then for each fixed element xE, either

    d(Jnx,Jn+1x)=,n0,

    or

    d(Jnx,Jn+1x)<,nn0,

    for some natural number n0. Moreover, if the second alternative holds then:

    (i) The sequence {Jnx} is convergent to a fixed point y of J.

    (ii)y is the unique fixed point of J in the set E:={yEd(Jn0x,y)<+} and d(y,y)11Ld(y,Jy),x,yE.

    From now on, let (X,{μn},{νn},,) be a matrix intuitionistic fuzzy normed space and (Y,{μn},{νn},,) be a matrix intuitionistic fuzzy Banach space. In this section, we will prove the Hyers-Ulam stability of the functional Eq (1.1) in matrix intuitionistic fuzzy normed spaces by using the direct method. For the sake of convenience, given mapping f: XY, we define the difference operators Df: X2Y and Dfn: Mn(X2)Mn(Y) of the functional Eq (1.1) by

    Df(a,b):=2k[f(a+kb)+f(ka+b)]k(1s+k+ks+2k2)f(a+b)k(1s3k+ks+2k2)f(ab)2kf(ka)2k(s+kks2k2)f(a)2(1ks)f(kb)2ksf(b),Dfn([xij],[yij]):=2k[fn([xij]+k[yij])+fn(k[xij]+[yij])]k(1s+k+ks+2k2)fn([xij]+[yij])k(1s3k+ks+2k2)fn([xij][yij])2kfn(k[xij])2k(s+kks2k2)fn([xij])2(1ks)fn(k[yij])2ksfn([yij])

    for all a,bX and all x=[xij],y=[yij]Mn(X).

    We start with the following lemmas which will be used in this paper.

    Lemma 3.1. ([25]) Let V and W be real vector spaces. If an odd mapping f: VW satisfies the functional Eq (1.1), then f is additive.

    Lemma 3.2. ([25]) Let V and W be real vector spaces. If an even mapping f: VW satisfies the functional Eq (1.1), then f is quadratic.

    Theorem 3.3. Let φo: X2[0,) be a function such that for some real number α with 0<α<k,

    φo(ka,kb)=αφo(a,b) (3.1)

    for all a,bX. Suppose that an odd mapping f: XY satisfies the inequality

    {μn(Dfn([xij],[yij]),t)tt+ni,j=1φo(xij,yij),νn(Dfn([xij],[yij]),t)ni,j=1φo(xij,yij)t+ni,j=1φo(xij,yij) (3.2)

    for all x=[xij],y=[yij]Mn(X) and all t>0. Then there exists a unique additive mapping A: XY such that

    {μn(fn([xij])An([xij]),t)(kα)(2k+s1)t(kα)(2k+s1)t+n2ni,j=1φo(0,xij),νn(fn([xij])An([xij]),t)n2ni,j=1φo(0,xij)(kα)(2k+s1)t+n2ni,j=1φo(0,xij) (3.3)

    for all x=[xij]Mn(X) and all t>0.

    Proof. When n=1, (3.2) is equivalent to

    μ(Df(a,b),t)tt+φo(a,b)andν(Df(a,b),t)φo(a,b)t+φo(a,b) (3.4)

    for all a,bX and all t>0. Putting a=0 in (3.4), we have

    {μ(2(2k+s1)f(kb)2(2k+s1)kf(b),t)tt+φo(0,b),ν(2(2k+s1)f(kb)2(2k+s1)kf(b),t)φo(0,b)t+φo(0,b) (3.5)

    for all bX and all t>0. Replacing a by kpa in (3.5) and using (3.1), we get

    {μ(f(kp+1a)kp+1f(kpa)kp,t2k(2k+s1)kp)tt+αpφo(0,a),ν(f(kp+1a)kp+1f(kpa)kp,t2k(2k+s1)kp)αpφo(0,a)t+αpφo(0,a) (3.6)

    for all aX and all t>0. It follows from (3.6) that

    {μ(f(kp+1a)kp+1f(kpa)kp,αpt2k(2k+s1)kp)tt+φo(0,a),ν(f(kp+1a)kp+1f(kpa)kp,αpt2k(2k+s1)kp)φo(0,a)t+φo(0,a) (3.7)

    for all aX and all t>0. It follows from

    f(kpa)kpf(a)=p1=0(f(k+1a)k+1f(ka)k)

    and (3.7) that

    {μ(f(kpa)kpf(a),p1=0αt2k(2k+s1)k)p1=0μ(f(k+1a)k+1f(ka)k,αt2k(2k+s1)k)tt+φo(0,a),ν(f(kpa)kpf(a),p1=0αt2k(2k+s1)k)p1=0ν(f(k+1a)k+1f(ka)k,αt2k(2k+s1)k)φo(0,a)t+φo(0,a) (3.8)

    for all aX and all t>0, where

    pj=0aj=a1a2ap,   pj=0aj=a1a2ap.

    By replacing a with kqa in (3.8), we have

    {μ(f(kp+qa)kp+qf(kqa)kq,p1=0αt2k(2k+s1)k+q)tt+αqφo(0,a),ν(f(kp+qa)kp+qf(kqa)kq,p1=0αt2k(2k+s1)k+q)αqφo(0,a)t+αqφo(0,a) (3.9)

    for all aX, t>0, p>0 and q>0. Thus

    {μ(f(kp+qa)kp+qf(kqa)kq,p+q1=qαt2k(2k+s1)k)tt+φo(0,a),ν(f(kp+qa)kp+qf(kqa)kq,p+q1=qαt2k(2k+s1)k)φo(0,a)t+φo(0,a) (3.10)

    for all aX, t>0, p>0 and q>0. Hence

    {μ(f(kp+qa)kp+qf(kqa)kq,t)tt+p+q1=qα2k(2k+s1)kφo(0,a),ν(f(kp+qa)kp+qf(kqa)kq,t)p+q1=qα2k(2k+s1)kφo(0,a)t+p+q1=qα2k(2k+s1)kφo(0,a) (3.11)

    for all aX, t>0, p>0 and q>0. Since 0<α<k and

    =0α2k(2k+s1)k<,

    the Cauchy criterion for convergence in IFNS shows that {f(kpa)kp} is a Cauchy sequence in (Y,μ,ν,,). Since (Y,μ,ν,,) is an intuitionistic fuzzy Banach space, this sequence converges to some point A(a)Y. So one can define the mapping A: XY such that

    A(a):=(μ,ν)limpf(kpa)kp.

    Moreover, if we put q=0 in (3.11), we get

    {μ(f(kpa)kpf(a),t)tt+p1=0α2k(2k+s1)kφo(0,a),ν(f(kpa)kpf(a),t)p1=0α2k(2k+s1)kφo(0,a)t+p1=0α2k(2k+s1)kφo(0,a) (3.12)

    for all aX, t>0 and p>0. Thus, we obtain

    {μ(f(a)A(a),t)μ(f(a)f(kpa)kp,t2)μ(f(kpa)kpA(a),t2)tt+p1=0αk(2k+s1)kφo(0,a),ν(f(a)A(a),t)ν(f(a)f(kpa)kp,t2)ν(f(kpa)kpA(a),t2)p1=0αk(2k+s1)kφo(0,a)t+p1=0αk(2k+s1)kφo(0,a) (3.13)

    for every aX, t>0 and large p. Taking the limit as p and using the definition of IFNS, we get

    {μ(f(a)A(a),t)(kα)(2k+s1)t(kα)(2k+s1)t+φo(0,a),ν(f(a)A(a),t)φo(0,a)(kα)(2k+s1)t+φo(0,a). (3.14)

    Replacing a and b by kpa and kpb in (3.4), respectively, and using (3.1), we obtain

    μ(1kpDf(kpa,kpb),t)tt+(αk)pφo(a,b)andν(1kpDf(kpa,kpb),t)(αk)pφo(a,b)t+(αk)pφo(a,b) (3.15)

    for all a,bX and all t>0. Letting p in (3.15), we obtain

    μ(DA(a,b),t)=1andν(DA(a,b),t)=0 (3.16)

    for all a,bX and all t>0. This means that A satisfies the functional Eq (1.1). Since f: XY is an odd mapping, and using the definition A, we have A(a)=A(a) for all aX. Thus by Lemma 3.1, the mapping A: XY is additive. To prove the uniqueness of A, let A: XY be another additive mapping satisfying (3.14). Let n=1. Then we have

    {μ(A(a)A(a),t)=μ(A(kpa)kpA(kpa)kp,t)μ(A(kpa)kpf(kpa)kp,t2)μ(f(kpa)kpA(kpa)kp,t2)(kα)(2k+s1)t(kα)(2k+s1)t+2(αk)pφo(0,a),ν(A(a)A(a),t)=ν(A(kpa)kpA(kpa)kp,t)ν(A(kpa)kpf(kpa)kp,t2)ν(f(kpa)kpA(kpa)kp,t2)2(αk)pφo(0,a)(kα)(2k+s1)t+2(αk)pφo(0,a) (3.17)

    for all aX, t>0 and p>0. Letting p in (3.17), we get

    μ(A(a)A(a),t)=1andν(A(a)A(a),t)=0

    for all aX and t>0. Hence we get A(a)=A(a) for all aX. Thus the mapping A: XY is a unique additive mapping.

    By Lemma 2.3 and (3.14), we get

    {μn(fn([xij])An([xij]),t)min{μ(f(xij)A(xij),tn2):i,j=1,,n} (kα)(2k+s1)t(kα)(2k+s1)t+n2ni,j=1φo(0,xij),νn(fn([xij])An([xij]),t)max{ν(f(xij)A(xij),tn2):i,j=1,,n} n2ni,j=1φo(0,xij)(kα)(2k+s1)t+n2ni,j=1φo(0,xij)

    for all x=[xij]Mn(X) and all t>0. Thus A: XY is a unique additive mapping satisfying (3.3), as desired. This completes the proof of the theorem.

    Theorem 3.4. Let φe: X2[0,) be a function such that for some real number α with 0<α<k2,

    φe(ka,kb)=αφe(a,b) (3.18)

    for all a,bX. Suppose that an even mapping f: XY with f(0)=0 satisfies the inequality

    {μn(Dfn([xij],[yij]),t)tt+ni,j=1φe(xij,yij),νn(Dfn([xij],[yij]),t)ni,j=1φe(xij,yij)t+ni,j=1φe(xij,yij) (3.19)

    for all x=[xij], y=[yij]Mn(X) and all t>0. Then there exists a unique quadratic mapping Q: XY such that

    {μn(fn([xij])Qn([xij]),t)(k2α)(2k+s1)t(k2α)(2k+s1)t+n2ni,j=1φe(0,xij),νn(fn([xij])Qn([xij]),t)n2ni,j=1φe(0,xij)(k2α)(2k+s1)t+n2ni,j=1φe(0,xij) (3.20)

    for all x=[xij]Mn(X) and all t>0.

    Proof. When n=1, (3.19) is equivalent to

    μ(Df(a,b),t)tt+φe(a,b)andν(Df(a,b),t)φe(a,b)t+φe(a,b) (3.21)

    for all a,bX and all t>0. Letting a=0 in (3.21), we obtain

    {μ(2(2k+s1)f(kb)2(2k+s1)k2f(b),t)tt+φe(0,b),ν(2(2k+s1)f(kb)2(2k+s1)k2f(b),t)φe(0,b)t+φe(0,b) (3.22)

    for all bX and all t>0. Replacing a by kpa in (3.22) and using (3.18), we get

    {μ(f(kp+1a)k2(p+1)f(kpa)k2p,t2k2(2k+s1)k2p)tt+αpφe(0,a),ν(f(kp+1a)k2(p+1)f(kpa)k2p,t2k2(2k+s1)k2p)αpφe(0,a)t+αpφe(0,a) (3.23)

    for all aX and all t>0. It follows from (3.23) that

    {μ(f(kp+1a)k2(p+1)f(kpa)k2p,αpt2k2(2k+s1)k2p)tt+φe(0,a),ν(f(kp+1a)k2(p+1)f(kpa)k2p,αpt2k2(2k+s1)k2p)φe(0,a)t+φe(0,a) (3.24)

    for all aX and all t>0. It follows from

    f(kpa)k2pf(a)=p1=0(f(k+1a)k2(+1)f(ka)k2)

    and (3.24) that

    {μ(f(kpa)k2pf(a),p1=0αt2k2(2k+s1)k2)p1=0μ(f(k+1a)k2(+1)f(ka)k2,αt2k2(2k+s1)k2)tt+φe(0,a),ν(f(kpa)k2pf(a),p1=0αt2k2(2k+s1)k2)p1=0ν(f(k+1a)k2(+1)f(ka)k2,αt2k2(2k+s1)k2)φe(0,a)t+φe(0,a) (3.25)

    for all aX and all t>0, where

    pj=0aj=a1a2ap,   pj=0aj=a1a2ap.

    By replacing a with kqa in (3.25), we have

    {μ(f(kp+qa)k2(p+q)f(kqa)k2q,p1=0αt2k2(2k+s1)k2(+q))tt+αqφe(0,a),ν(f(kp+qa)k2(p+q)f(kqa)k2q,p1=0αt2k2(2k+s1)k2(+q))αqφe(0,a)t+αqφe(0,a) (3.26)

    for all aX, t>0, p>0 and q>0. Thus

    {μ(f(kp+qa)k2(p+q)f(kqa)k2q,p+q1=qαt2k2(2k+s1)k2)tt+φe(0,a),ν(f(kp+qa)k2(p+q)f(kqa)k2q,p+q1=qαt2k2(2k+s1)k2)φe(0,a)t+φe(0,a) (3.27)

    for all aX, t>0, p>0 and q>0. Hence

    {μ(f(kp+qa)k2(p+q)f(kqa)k2q,t)tt+p+q1=qα2k2(2k+s1)k2φe(0,a),ν(f(kp+qa)k2(p+q)f(kqa)k2q,t)p+q1=qα2k2(2k+s1)k2φe(0,a)t+p+q1=qα2k2(2k+s1)k2φe(0,a) (3.28)

    for all aX, t>0, p>0 and q>0. Since 0<α<k2 and

    =0α2k2(2k+s1)k2<,

    the Cauchy criterion for convergence in IFNS shows that {f(kpa)k2p} is a Cauchy sequence in (Y,μ,ν,,). Since (Y,μ,ν,,) is an intuitionistic fuzzy Banach space, this sequence converges to some point Q(a)Y. So one can define the mapping Q: XY such that

    Q(a):=(μ,ν)limpf(kpa)k2p.

    Moreover, if we put q=0 in (3.28), we get

    {μ(f(kpa)k2pf(a),t)tt+p1=0α2k2(2k+s1)k2φe(0,a),ν(f(kpa)k2pf(a),t)p1=0α2k2(2k+s1)k2φe(0,a)t+p1=0α2k2(2k+s1)k2φe(0,a) (3.29)

    for all aX, t>0 and p>0. Thus, we obtain

    {μ(f(a)Q(a),t)μ(f(a)f(kpa)k2p,t2)μ(f(kpa)k2pQ(a),t2)tt+p1=0αk2(2k+s1)k2φe(0,a),ν(f(a)Q(a),t)ν(f(a)f(kpa)k2p,t2)ν(f(kpa)k2pQ(a),t2)p1=0αk2(2k+s1)k2φe(0,a)t+p1=0αk2(2k+s1)k2φe(0,a) (3.30)

    for every a\in X , t > 0 and large p . Taking the limit as p\to\infty and using the definition of IFNS, we get

    \begin{eqnarray} \left\{ \begin{array}{l} \mu(f(a)-Q(a),t)\geq \frac{(k^{2}-\alpha)(2k+s-1)t}{(k^{2}-\alpha)(2k+s-1)t+\varphi_{e}(0,a)}, \\ \; \\ \nu(f(a)-Q(a),t)\leq \frac{\varphi_{e}(0,a)}{(k^{2}-\alpha)(2k+s-1)t+\varphi_{e}(0,a)}. \end{array} \right. \end{eqnarray} (3.31)

    Replacing a and b by k^{p}a and k^{p}b in (3.21), respectively, and using (3.18), we obtain

    \begin{eqnarray} \begin{array}{l} \mu(\frac{1}{k^{2p}}Df(k^{p}a,k^{p}b),t)\geq \frac{t}{t+(\frac{\alpha}{k^{2}})^{p}\varphi_{e}(a,b)}, \end{array} & \;\;\; \begin{array}{l} \nu(\frac{1}{k^{2p}}Df(k^{p}a,k^{p}b),t)\leq \frac{(\frac{\alpha}{k^{2}})^{p}\varphi_{e}(a,b)}{t+(\frac{\alpha}{k^{2}})^{p}\varphi_{e}(a,b)} \end{array} \end{eqnarray} (3.32)

    for all a, b\in X and all t > 0 . Letting p\to \infty in (3.32), we obtain

    \begin{eqnarray} \begin{array}{l} \mu(DQ(a,b),t) = 1 \end{array} & \mbox{and}\;\;\; \begin{array}{l} \nu(DQ(a,b),t) = 0 \end{array} \end{eqnarray} (3.33)

    for all a, b\in X and all t > 0 . This means that Q satisfies the functional Eq (1.1). Since f : X\to Y is an even mapping, and using the definition Q , we have Q(-a) = -Q(a) for all a\in X . Thus by Lemma 3.2, the mapping Q : X\to Y is quadratic. To prove the uniqueness of Q , let Q^{\prime} : X\to Y be another quadratic mapping satisfying (3.31). Let n = 1 . Then we have

    \begin{eqnarray} \left\{ \begin{array}{l} \mu(Q(a)-Q^{\prime}(a),t) = \mu(\frac{Q(k^{p}a)}{k^{2p}}-\frac{Q^{\prime}(k^{p}a)}{k^{2p}},t)\\ \quad\quad\quad\quad\quad\quad\quad\ \ \geq\mu(\frac{Q(k^{p}a)}{k^{2p}}-\frac{f(k^{p}a)}{k^{2p}},\frac{t}{2})\ast \mu(\frac{f(k^{p}a)}{k^{2p}}-\frac{Q^{\prime}(k^{p}a)}{k^{2p}},\frac{t}{2})\\ \quad\quad\quad\quad\quad\quad\quad\ \ \geq\frac{(k^{2}-\alpha)(2k+s-1)t}{(k^{2}-\alpha)(2k+s-1)t+2(\frac{\alpha}{k^{2}})^{p}\varphi_{e}(0,a)}, \\ \nu(Q(a)-Q^{\prime}(a),t) = \nu(\frac{Q(k^{p}a)}{k^{2p}}-\frac{Q^{\prime}(k^{p}a)}{k^{2p}},t) \\ \quad\quad\quad\quad\quad\quad\quad\ \ \leq\nu(\frac{Q(k^{p}a)}{k^{2p}}-\frac{f(k^{p}a)}{k^{2p}},\frac{t}{2})\diamond \nu(\frac{f(k^{p}a)}{k^{p}}-\frac{Q^{\prime}(k^{p}a)}{k^{2p}},\frac{t}{2})\\ \quad\quad\quad\quad\quad\quad\quad\ \ \leq\frac{2(\frac{\alpha}{k^{2}})^{p}\varphi_{e}(0,a)}{(k^{2}-\alpha)(2k+s-1)t+ 2(\frac{\alpha}{k^{2}})^{p}\varphi_{e}(0,a)} \end{array} \right. \end{eqnarray} (3.34)

    for all a\in X , t > 0 and p > 0 . Letting p\to \infty in (3.34), we get

    \begin{eqnarray*} \begin{array}{l} \mu(Q(a)-Q^{\prime}(a),t) = 1 \end{array} & \mbox{and}\;\;\; \begin{array}{l} \nu(Q(a)-Q^{\prime}(a),t) = 0 \end{array} \end{eqnarray*}

    for all a\in X and t > 0 . Hence we get Q(a) = Q^{\prime}(a) for all a\in X . Thus the mapping Q : X\to Y is a unique quadratic mapping.

    By Lemma 2.3 and (3.31), we get

    \begin{eqnarray*} \left\{ \begin{array}{l} \mu_{n}(f_{n}([x_{ij}])-Q_{n}([x_{ij}]),t)\geq \min\{\mu(f(x_{ij})-Q(x_{ij}), \frac{t}{n^{2}}):i,j = 1,\ldots,n\} \geq\frac{(k^{2}-\alpha)(2k+s-1)t}{(k^{2}-\alpha)(2k+s-1)t+n^{2}\sum^{n}_{i,j = 1}\varphi_{e}(0,x_{ij})}, \\ \; \\ \nu_{n}(f_{n}([x_{ij}])-Q_{n}([x_{ij}]),t)\leq \max\{\nu(f(x_{ij})-Q(x_{ij}), \frac{t}{n^{2}}):i,j = 1,\ldots,n\} \leq \frac{n^{2}\sum^{n}_{i,j = 1}\varphi_{e}(0,x_{ij})}{(k^{2}-\alpha)(2k+s-1)t+n^{2} \sum^{n}_{i,j = 1}\varphi_{e}(0,x_{ij})} \end{array} \right. \end{eqnarray*}

    for all x = [x_{ij}]\in M_{n}(X) and all t > 0 . Thus Q : X\to Y is a unique quadratic mapping satisfying (3.20), as desired. This completes the proof of the theorem.

    Theorem 3.5. Let \varphi : X^{2}\to [0, \infty) be a function such that for some real number \alpha with 0 < \alpha < k ,

    \begin{eqnarray} \varphi(ka,kb) = \alpha\varphi(a,b) \end{eqnarray} (3.35)

    for all a, b\in X . Suppose that a mapping f : X\to Y with f(0) = 0 satisfies the inequality

    \begin{eqnarray} \left\{ \begin{array}{l} \mu_{n}(Df_{n}([x_{ij}],[y_{ij}]),t)\geq \frac{t}{t+\sum^{n}_{i,j = 1}\varphi(x_{ij},y_{ij})}, \\ \; \\ \nu_{n}(Df_{n}([x_{ij}],[y_{ij}]),t)\leq \frac{\sum^{n}_{i,j = 1}\varphi(x_{ij},y_{ij})}{t+\sum^{n}_{i,j = 1}\varphi(x_{ij},y_{ij})} \end{array} \right. \end{eqnarray} (3.36)

    for all x = [x_{ij}], y = [y_{ij}]\in M_{n}(X) and all t > 0 . Then there exist a unique quadratic mapping Q : X\to Y and a unique additive mapping A : X\to Y such that

    \begin{eqnarray} \left\{ \begin{array}{l} \mu_{n}(f_{n}([x_{ij}])-Q_{n}([x_{ij}])-A_{n}([x_{ij}]),t)\geq \frac{(k-\alpha)(2k+s-1)t}{(k-\alpha)(2k+s-1)t+2n^{2}\sum^{n}_{i,j = 1}\widetilde{\varphi}(0,x_{ij})}, \\ \; \\ \nu_{n}(f_{n}([x_{ij}])-Q_{n}([x_{ij}])-A_{n}([x_{ij}]),t)\leq \frac{2n^{2}\sum^{n}_{i,j = 1}\widetilde{\varphi}(0,x_{ij})}{(k-\alpha)(2k+s-1)t+2n^{2} \sum^{n}_{i,j = 1}\widetilde{\varphi}(0,x_{ij})} \end{array} \right. \end{eqnarray} (3.37)

    for all x = [x_{ij}]\in M_{n}(X) and all t > 0 , \widetilde{\varphi}(a, b) = \varphi(a, b)+\varphi(-a, -b) for all a, b\in X .

    Proof. When n = 1 , (3.36) is equivalent to

    \begin{eqnarray} \begin{array}{l} \mu(Df(a,b),t)\geq \frac{t}{t+\varphi(a,b)} \end{array} & \mbox{and}\;\;\; \begin{array}{l} \nu(Df(a,b),t)\leq \frac{\varphi(a,b)}{t+\varphi(a,b)} \end{array} \end{eqnarray} (3.38)

    for all a, b\in X and all t > 0 . Let

    f_{e}(a) = \frac{f(a)+f(-a)}{2}

    for all all a\in X . Then f_{e}(0) = 0, f_{e}(-a) = f_{e}(a) . And we have

    \begin{eqnarray} \left\{ \begin{array}{l} \mu(Df_{e}(a,b),t) = \mu(\frac{1}{2}Df(a,b)+\frac{1}{2}Df(-a,-b),t)\\ = \mu(Df(a,b)+Df(-a,-b),2t)\geq \mu(Df(a,b),t)\ast \mu(Df(-a,-b),t)\\ \geq \min\{\mu(Df(a,b),t),\mu(Df(-a,-b),t)\}\geq \frac{t}{t+\widetilde{\varphi}(a,b)}, \\ \nu(Df_{e}(a,b),t) = \nu(\frac{1}{2}Df(a,b)+\frac{1}{2}Df(-a,-b),t)\\ = \nu(Df(a,b)+Df(-a,-b),2t)\leq \nu(Df(a,b),t)\diamond \nu(Df(-a,-b),t)\\ \leq \max\{\nu(Df(a,b),t),\nu(Df(-a,-b),t)\}\leq \frac{\widetilde{\varphi}(a,b)}{t+\widetilde{\varphi}(a,b)} \end{array} \right. \end{eqnarray} (3.39)

    for all a\in X and all t > 0 . Let

    f_{o}(a) = \frac{f(a)-f(-a)}{2}

    for all all a\in X . Then f_{0}(0) = 0, f_{o}(-a) = -f_{o}(a) . And we obtain

    \begin{eqnarray} \left\{ \begin{array}{l} \mu(Df_{o}(a,b),t) = \mu(\frac{1}{2}Df(a,b)-\frac{1}{2}Df(-a,-b),t)\\ = \mu(Df(a,b)-Df(-a,-b),2t)\geq \mu(Df(a,b),t)\ast \mu(Df(-a,-b),t)\\ = \min\{\mu(Df(a,b),t),\mu(Df(-a,-b),t)\}\geq \frac{t}{t+\widetilde{\varphi}(a,b)}, \\ \nu(Df_{o}(a,b),t) = \nu(\frac{1}{2}Df(a,b)-\frac{1}{2}Df(-a,-b),t)\\ = \nu(Df(a,b)-Df(-a,-b),2t)\leq \nu(Df(a,b),t)\diamond \nu(Df(-a,-b),t)\\ = \max\{\nu(Df(a,b),t),\nu(Df(-a,-b),t)\}\leq \frac{\widetilde{\varphi}(a,b)}{t+\widetilde{\varphi}(a,b)} \end{array} \right. \end{eqnarray} (3.40)

    for all a\in X and all t > 0 . It follows that the definition of \widetilde{\varphi} that \widetilde{\varphi}(ka, kb) = \alpha\widetilde{\varphi}(a, b) for all a, b\in X . It is easy to check that the condition of Theorems 3.3 and 3.4 are satisfying. Then applying the proofs of Theorems 3.3 and 3.4, we know that there exists a unique quadratic mapping Q : X\to Y and a unique additive mapping A : X\to Y satisfying

    \begin{eqnarray} \left\{ \begin{array}{l} \mu(f_{e}(a)-Q(a),t)\geq \frac{(k^{2}-\alpha)(2k+s-1)t}{(k^{2}-\alpha)(2k+s-1)t+\widetilde{\varphi}(0,a)}, \\ \nu(f_{e}(a)-Q(a),t)\leq \frac{\widetilde{\varphi}(0,a)}{(k^{2}-\alpha)(2k+s-1)t+\widetilde{\varphi}(0,a)} \end{array} \right. \end{eqnarray} (3.41)

    and

    \begin{eqnarray} \left\{ \begin{array}{l} \mu(f_{o}(a)-A(a),t)\geq \frac{(k-\alpha)(2k+s-1)t}{(k-\alpha)(2k+s-1)t+\widetilde{\varphi}(0,a)}, \\ \nu(f_{o}(a)-A(a),t)\leq \frac{\widetilde{\varphi}(0,a)}{(k-\alpha)(2k+s-1)t+\widetilde{\varphi}(0,a)} \end{array} \right. \end{eqnarray} (3.42)

    for all a\in X and all t > 0 . Therefore

    \begin{eqnarray} \left\{ \begin{array}{l} \mu(f(a)-Q(a)-A(a),t) = \mu(f_{e}(a)-Q(a)+f_{o}(a)-A(a),t)\\ \geq\mu(f_{e}(a)-Q(a),\frac{t}{2})\ast \mu(f_{o}(a)-A(a),\frac{t}{2})\\ = \min\{\mu(f_{e}(a)-Q(a),\frac{t}{2}),\mu(f_{o}(a)-A(a),\frac{t}{2})\}\\ \geq \min\{\frac{(k^{2}-\alpha)(2k+s-1)t}{(k^{2}-\alpha)(2k+s-1)t+2\widetilde{\varphi}(0,a)}, \frac{(k-\alpha)(2k+s-1)t}{(k-\alpha)(2k+s-1)t+2\widetilde{\varphi}(0,a)}\}\\ = \frac{(k-\alpha)(2k+s-1)t}{(k-\alpha)(2k+s-1)t+2\widetilde{\varphi}(0,a)}, \\ \nu(f(a)-Q(a)-A(a),t) = \nu(f_{e}(a)-Q(a)+f_{o}(a)-A(a),t)\\ \leq\nu(f_{e}(a)-Q(a),\frac{t}{2})\diamond \nu(f_{o}(a)-A(a),\frac{t}{2})\\ = \max\{\nu(f_{e}(a)-Q(a),\frac{t}{2}),\nu(f_{o}(a)-A(a),\frac{t}{2})\}\\ \leq \max\{\frac{2\widetilde{\varphi}(0,a)}{(k^{2}-\alpha)(2k+s-1)t+2\widetilde{\varphi}(0,a)}, \frac{2\widetilde{\varphi}(0,a)}{(k-\alpha)(2k+s-1)t+2\widetilde{\varphi}(0,a)}\}\\ = \frac{2\widetilde{\varphi}(0,a)}{(k-\alpha)(2k+s-1)t+2\widetilde{\varphi}(0,a)}. \end{array} \right. \end{eqnarray} (3.43)

    By Lemma 2.3 and (3.43), we have

    \begin{eqnarray*} \left\{ \begin{array}{l} \mu_{n}(f_{n}([x_{ij}])-Q_{n}([x_{ij}])-A_{n}([x_{ij}]),t)\\ \qquad\qquad\;\;\; \geq \min\{\mu(f(x_{ij})-Q(x_{ij})-A(x_{ij}), \frac{t}{n^{2}}):i,j = 1,\ldots,n\} \\ \qquad\qquad\;\;\; \geq\frac{(k-\alpha)(2k+s-1)t}{(k-\alpha)(2k+s-1)t+2n^{2}\sum^{n}_{i,j = 1}\widetilde{\varphi}(0,x_{ij})}, \\ \nu_{n}(f_{n}([x_{ij}])-Q_{n}([x_{ij}])-A_{n}([x_{ij}]),t)\\ \qquad\qquad\;\; \leq \max\{\nu(f(x_{ij})-Q(x_{ij})-A(x_{ij}), \frac{t}{n^{2}}):i,j = 1,\ldots,n\} \\ \qquad\qquad\;\; \leq \frac{2n^{2}\sum^{n}_{i,j = 1}\widetilde{\varphi}(0,x_{ij})}{(k-\alpha)(2k+s-1)t+2n^{2} \sum^{n}_{i,j = 1}\widetilde{\varphi}(0,x_{ij})} \end{array} \right. \end{eqnarray*}

    for all x = [x_{ij}]\in M_{n}(X) and all t > 0 . Thus Q : X\to Y is a unique quadratic mapping and a unique additive mapping A : X\to Y satisfying (3.37), as desired. This completes the proof of the theorem.

    Corollary 3.6. Let r, \theta be positive real numbers with r < 1 . Suppose that a mapping f : X\to Y with f(0) = 0 satisfies the inequality

    \begin{eqnarray} \left\{ \begin{array}{l} \mu_{n}(Df_{n}([x_{ij}],[y_{ij}]),t)\geq \frac{t}{t+\sum^{n}_{i,j = 1}\theta(\|x_{ij}\|^{r}+\|y_{ij}\|^{r})}, \\ \; \\ \nu_{n}(Df_{n}([x_{ij}],[y_{ij}]),t)\leq \frac{\sum^{n}_{i,j = 1}\theta(\|x_{ij}\|^{r}+\|y_{ij}\|^{r})} {t+\sum^{n}_{i,j = 1}\theta(\|x_{ij}\|^{r}+\|y_{ij}\|^{r})} \end{array} \right. \end{eqnarray} (3.44)

    for all x = [x_{ij}], y = [y_{ij}]\in M_{n}(X) and all t > 0 . Then there exist a unique quadratic mapping Q : X\to Y and a unique additive mapping A : X\to Y such that

    \begin{eqnarray} \left\{ \begin{array}{l} \mu_{n}(f_{n}([x_{ij}])-Q_{n}([x_{ij}])-A_{n}([x_{ij}]),t)\geq \frac{(k-k^{r})(2k+s-1)t}{(k-k^{r})(2k+s-1)t+4n^{2}\sum^{n}_{i,j = 1}\theta\|x_{ij}\|^{r}}, \\ \; \\ \nu_{n}(f_{n}([x_{ij}])-Q_{n}([x_{ij}])-A_{n}([x_{ij}]),t)\leq \frac{4n^{2}\sum^{n}_{i,j = 1}\theta\|x_{ij}\|^{r}}{(k-k^{r})(2k+s-1)t+4n^{2} \sum^{n}_{i,j = 1}\theta\|x_{ij}\|^{r}} \end{array} \right. \end{eqnarray} (3.45)

    for all x = [x_{ij}]\in M_{n}(X) and all t > 0 .

    Proof. The proof follows from Theorem 3.5 by taking \varphi(a, b) = \theta(\|a\|^{r}+\|b\|^{r}) for all a, b\in X , we obtain the desired result.

    In this section, we will prove the Hyers-Ulam stability of the functional Eq (1.1) in matrix intuitionistic fuzzy normed spaces by applying the fixed point method.

    Theorem 4.1. Let \varphi_{o} : X^{2}\to [0, \infty) be a function such that for some real number \rho with 0 < \rho < 1 and

    \begin{eqnarray} \varphi_{o}(a,b) = \frac{\rho}{k}\varphi_{o}(ka,kb) \end{eqnarray} (4.1)

    for all a, b\in X . Suppose that an odd mapping f : X\to Y satisfies the inequality

    \begin{eqnarray} \left\{ \begin{array}{l} \mu_{n}(Df_{n}([x_{ij}],[y_{ij}]),t)\geq \frac{t}{t+\sum^{n}_{i,j = 1}\varphi_{o}(x_{ij},y_{ij})}, \\ \; \\ \nu_{n}(Df_{n}([x_{ij}],[y_{ij}]),t)\leq \frac{\sum^{n}_{i,j = 1}\varphi_{o}(x_{ij},y_{ij})}{t+\sum^{n}_{i,j = 1}\varphi_{o}(x_{ij},y_{ij})} \end{array} \right. \end{eqnarray} (4.2)

    for all x = [x_{ij}], y = [y_{ij}]\in M_{n}(X) and all t > 0 . Then there exists a unique additive mapping A : X\to Y such that

    \begin{eqnarray} \left\{ \begin{array}{l} \mu_{n}(f_{n}([x_{ij}])-A_{n}([x_{ij}]),t)\geq \frac{2k(2k+s-1)(1-\rho)t}{2k(2k+s-1)(1-\rho)t+\rho n^{2}\sum^{n}_{i,j = 1}\varphi_{o}(0,x_{ij})}, \\ \; \\ \nu_{n}(f_{n}([x_{ij}])-A_{n}([x_{ij}]),t)\leq \frac{\rho n^{2}\sum^{n}_{i,j = 1}\varphi_{o}(0,x_{ij})}{ 2k(2k+s-1)(1-\rho)t+\rho n^{2} \sum^{n}_{i,j = 1}\varphi_{o}(0,x_{ij})} \end{array} \right. \end{eqnarray} (4.3)

    for all x = [x_{ij}]\in M_{n}(X) and all t > 0 .

    Proof. When n = 1 , similar to the proof of Theorem 3.3, we have

    \begin{eqnarray} \left\{ \begin{array}{l} \mu(2(2k+s-1)f(ka)-2(2k+s-1)kf(a),t)\geq \frac{t}{t+\varphi_{o}(0,a)}, \\ \; \\ \nu(2(2k+s-1)f(ka)-2(2k+s-1)kf(a),t)\leq \frac{\varphi_{o}(0,a)}{t+\varphi_{o}(0,a)} \end{array} \right. \end{eqnarray} (4.4)

    for all a\in X and all t > 0 .

    Let S_{1} = \left\{g_{1}:X\to Y\right\} , and introduce a generalized metric d_{1} on S_{1} as follows:

    \begin{eqnarray*} d_{1}(g_{1},h_{1}): = \inf\left\{\lambda\in {\mathbb{R_{+}}}{\bigg |} \left\{ \begin{array}{l} \mu(g_{1}(a)-h_{1}(a),\lambda t)\geq\frac{t}{t+\varphi_{o}(0,a)}, \\ \; \\ \nu(g_{1}(a)-h_{1}(a),\lambda t)\leq\frac{\varphi_{o}(0,a)}{t+\varphi_{o}(0,a)}, \end{array} \right. \;\forall a\in X, \forall t > 0 \right\}. \end{eqnarray*}

    It is easy to prove that (S_{1}, d_{1}) is a complete generalized metric space ([3,13]). Now, we define the mapping {\mathcal {J}}_{1} : S_{1}\to S_{1} by

    \begin{eqnarray} {\mathcal {J}}_{1}g_{1}(a): = kg_{1}(\frac{a}{k}),\; & \mbox{for all} \; g_{1}\in S_{1} \; \mbox{and}\; a\in X. \end{eqnarray} (4.5)

    Let g_{1}, h_{1}\in S_{1} and let \lambda\in {\mathbb{R_{+}}} be an arbitrary constant with d_{1}(g_{1}, h_{1})\leq \lambda . From the definition of d_{1} , we get

    \begin{eqnarray*} \left\{ \begin{array}{l} \mu(g_{1}(a)-h_{1}(a),\lambda t)\geq\frac{t}{t+\varphi_{o}(0,a)}, \\ \; \\ \nu(g_{1}(a)-h_{1}(a),\lambda t)\leq\frac{\varphi_{o}(0,a)}{t+\varphi_{o}(0,a)} \end{array} \right. \end{eqnarray*}

    for all a\in X and t > 0 . Therefore, using (4.1), we get

    \begin{eqnarray} \left\{ \begin{array}{l} \mu({\mathcal {J}}_{1}g_{1}(a)-{\mathcal {J}}_{1}h_{1}(a),\lambda \rho t) = \mu(kg_{1}(\frac{a}{k})-kh_{1}(\frac{a}{k}),\lambda \rho t)\\ = \mu(g_{1}(\frac{a}{k})-h_{1}(\frac{a}{k}),\frac{\lambda \rho t}{k}) \geq \frac{\frac{\rho}{k}t}{\frac{\rho}{k}t+\frac{\rho}{k}\varphi_{o}(0,a)} = \frac{t}{t+\varphi_{o}(0,a)}, \\ \; \\ \nu({\mathcal {J}}_{1}g_{1}(a)-{\mathcal {J}}_{1}h_{1}(a),\lambda \rho t) = \nu(kg_{1}(\frac{a}{k})-kh_{1}(\frac{a}{k}),\lambda \rho t)\\ = \nu(g_{1}(\frac{a}{k})-h_{1}(\frac{a}{k}),\frac{\lambda \rho t}{k}) \leq \frac{\frac{\rho}{k}\varphi_{o}(0,a)}{\frac{\rho}{k}t+\frac{\rho}{k}\varphi_{o}(0,a)} = \frac{\varphi_{o}(0,a)}{t+\varphi_{o}(0,a)} \end{array} \right. \end{eqnarray} (4.6)

    for some \rho < 1 , all a\in X and all t > 0 . Hence, it holds that d_{1}({\mathcal {J}}_{1}g_{1}, {\mathcal {J}}_{1}h_{1})\leq \lambda \rho , that is, d_{1}({\mathcal {J}}_{1}g_{1}, {\mathcal {J}}_{1}h_{1})\leq \rho d_{1}(g_{1}, h_{1}) for all g_{1}, h_{1}\in S_{1} .

    Furthermore, by (4.1) and (4.4), we obtain the inequality

    \begin{eqnarray*} d(f,{\mathcal {J}}_{1}f)\leq\frac{\rho}{2k(2k+s-1)}. \end{eqnarray*}

    It follows from Lemma 2.4 that the sequence {\mathcal {J}}^{p}_{1}f converges to a fixed point A of {\mathcal {J}}_{1} , that is, for all a\in X and all t > 0 ,

    \begin{eqnarray} A:X\to Y,\;\;\; A(a): = (\mu,\nu)-\lim\limits_{p\to\infty}k^{p}f(\frac{a}{k^{p}}) \end{eqnarray} (4.7)

    and

    \begin{eqnarray} A(ka) = kA(a). \end{eqnarray} (4.8)

    Meanwhile, A is the unique fixed point of {\mathcal {J}}_{1} in the set

    S^{\ast}_{1} = \{g_{1}\in S_{1}: d_{1}(f,g_{1}) < \infty\}.

    Thus, there exists a \lambda\in \mathfrak{}{\mathbb{R_{+}}} such that

    \begin{eqnarray*} \left\{ \begin{array}{l} \mu(f(a)-A(a),\lambda t)\geq\frac{t}{t+\varphi_{o}(0,a)}, \\ \; \\ \nu(f(a)-A(a),\lambda t)\leq\frac{\varphi_{o}(0,a)}{t+\varphi_{o}(0,a)} \end{array} \right. \end{eqnarray*}

    for all a\in X and all t > 0 . Also,

    \begin{eqnarray*} d_{1}(f,A)\leq \frac{1}{1-\rho}d(f,{\mathcal {J}}_{1}f)\leq \frac{\rho}{2k(1-\rho)(2k+s-1)}. \end{eqnarray*}

    This means that the following inequality

    \begin{eqnarray} \left\{ \begin{array}{l} \mu(f(a)-A(a),t)\geq\frac{2k(2k+s-1)(1-\rho)t}{2k(2k+s-1)(1-\rho)t+\rho\varphi_{o}(0,a)}, \\ \; \\ \nu(f(a)-A(a),t)\leq\frac{\rho\varphi_{o}(0,a)}{2k(2k+s-1)(1-\rho)t+\rho\varphi_{o}(0,a)} \end{array} \right. \end{eqnarray} (4.9)

    holds for all a\in X and all t > 0 . It follows from (3.4) and (4.1) that

    \begin{eqnarray} \begin{array}{l} \mu(k^{p}Df(\frac{a}{k^{p}},\frac{b}{k^{p}}),t)\geq \frac{t}{t+\rho^{p}\varphi_{o}(a,b)}, \end{array} & \begin{array}{l} \nu(k^{p}Df(\frac{a}{k^{p}},\frac{b}{k^{p}}),t)\leq \frac{\rho^{p}\varphi_{o}(a,b)}{t+\rho^{p}\varphi_{o}(a,b)} \end{array} \end{eqnarray} (4.10)

    for all a, b\in X and all t > 0 . Letting p\to \infty in (4.10), we obtain

    \begin{eqnarray} \begin{array}{l} \mu(DA(a,b),t) = 1 \end{array} & \mbox{and}\;\; \begin{array}{l} \nu(DA(a,b),t) = 0 \end{array} \end{eqnarray} (4.11)

    for all a, b\in X and all t > 0 . This means that A satisfies the functional Eq (1.1). Since f : X\to Y is an odd mapping, and using the definition A , we have A(-a) = -A(a) for all a\in X . Thus by Lemma 3.1, the mapping A : X\to Y is additive.

    By Lemma 2.3 and (4.9), we get

    \begin{eqnarray*} \left\{ \begin{array}{l} \mu_{n}(f_{n}([x_{ij}])-A_{n}([x_{ij}]),t)\geq \min\{\mu(f(x_{ij})-A(x_{ij}), \frac{t}{n^{2}}):i,j = 1,\cdots,n\} \\ \qquad\qquad\qquad\qquad\quad\;\;\;\; \geq\frac{2k(2k+s-1)(1-\rho)t}{2k(2k+s-1)(1-\rho)t+\rho n^{2}\sum^{n}_{i,j = 1}\varphi_{o}(0,x_{ij})}, \\ \; \\ \nu_{n}(f_{n}([x_{ij}])-A_{n}([x_{ij}]),t)\leq \max\{\nu(f(x_{ij})-A(x_{ij}), \frac{t}{n^{2}}):i,j = 1,\ldots,n\} \\ \qquad\qquad\qquad\quad\;\;\;\;\;\;\;\;\;\;\; \leq \frac{\rho n^{2}\sum^{n}_{i,j = 1}\varphi_{o}(0,x_{ij})}{2k(2k+s-1)(1-\rho)t+\rho n^{2} \sum^{n}_{i,j = 1}\varphi_{o}(0,x_{ij})} \end{array} \right. \end{eqnarray*}

    for all x = [x_{ij}]\in M_{n}(X) and all t > 0 . Thus A : X\to Y is a unique additive mapping satisfying (4.3), as desired. This completes the proof of the theorem.

    Theorem 4.2. Let \varphi_{e} : X^{2}\to [0, \infty) be a function such that for some real number \rho with 0 < \rho < 1 and

    \begin{eqnarray} \varphi_{e}(a,b) = \frac{\rho}{k^{2}}\varphi_{e}(ka,kb) \end{eqnarray} (4.12)

    for all a, b\in X . Suppose that an even mapping f : X\to Y satisfies the inequality

    \begin{eqnarray} \left\{ \begin{array}{l} \mu_{n}(Df_{n}([x_{ij}],[y_{ij}]),t)\geq \frac{t}{t+\sum^{n}_{i,j = 1}\varphi_{e}(x_{ij},y_{ij})}, \\ \; \\ \nu_{n}(Df_{n}([x_{ij}],[y_{ij}]),t)\leq \frac{\sum^{n}_{i,j = 1}\varphi_{e}(x_{ij},y_{ij})}{t+\sum^{n}_{i,j = 1}\varphi_{e}(x_{ij},y_{ij})} \end{array} \right. \end{eqnarray} (4.13)

    for all x = [x_{ij}], y = [y_{ij}]\in M_{n}(X) and all t > 0 . Then there exists a unique quadratic mapping Q : X\to Y such that

    \begin{eqnarray} \left\{ \begin{array}{l} \mu_{n}(f_{n}([x_{ij}])-Q_{n}([x_{ij}]),t)\geq \frac{2k^{2}(2k+s-1)(1-\rho)t}{2k^{2}(2k+s-1)(1-\rho)t+\rho n^{2}\sum^{n}_{i,j = 1}\varphi_{e}(0,x_{ij})}, \\ \; \\ \nu_{n}(f_{n}([x_{ij}])-Q_{n}([x_{ij}]),t)\leq \frac{\rho n^{2}\sum^{n}_{i,j = 1}\varphi_{e}(0,x_{ij})}{ 2k^{2}(2k+s-1)(1-\rho)t+\rho n^{2} \sum^{n}_{i,j = 1}\varphi_{e}(0,x_{ij})} \end{array} \right. \end{eqnarray} (4.14)

    for all x = [x_{ij}]\in M_{n}(X) and all t > 0 .

    Proof. When n = 1 , similar to the proof of Theorem 3.4, we obtain

    \begin{eqnarray} \left\{ \begin{array}{l} \mu(2(2k+s-1)f(ka)-2(2k+s-1)k^{2}f(a),t)\geq \frac{t}{t+\varphi_{e}(0,a)}, \\ \; \\ \nu(2(2k+s-1)f(ka)-2(2k+s-1)k^{2}f(a),t)\leq \frac{\varphi_{e}(0,a)}{t+\varphi_{e}(0,a)} \end{array} \right. \end{eqnarray} (4.15)

    for all a\in X and all t > 0 .

    Let S_{2}: = \left\{g_{2}:X\to Y\right\} , and introduce a generalized metric d_{2} on S_{2} as follows:

    \begin{eqnarray*} d_{2}(g_{2},h_{2}): = \inf\left\{\lambda\in {\mathbb{R_{+}}}{\bigg |} \left\{ \begin{array}{l} \mu(g_{2}(a)-h_{2}(a),\lambda t)\geq\frac{t}{t+\varphi_{e}(0,a)}, \\ \; \\ \nu(g_{2}(a)-h_{2}(a),\lambda t)\leq\frac{\varphi_{e}(0,a)}{t+\varphi_{e}(0,a)}, \end{array} \right. \;\forall a\in X, \forall t > 0 \right\}. \end{eqnarray*}

    It is easy to prove that (S_{2}, d_{2}) is a complete generalized metric space ([3,13]). Now, we define the mapping {\mathcal {J}}_{2} : S_{2}\to S_{2} by

    \begin{eqnarray} {\mathcal {J}}_{2}g_{2}(a): = k^{2}g_{2}(\frac{a}{k}),\; & \mbox{for all} \; \; g_{2}\in S_{2} \; \mbox{and} \; a\in X. \end{eqnarray} (4.16)

    Let g_{2}, h_{2}\in S_{2} and let \lambda\in {\mathbb{R_{+}}} be an arbitrary constant with d_{2}(g_{2}, h_{2})\leq \lambda . From the definition of d_{2} , we get

    \begin{eqnarray*} \left\{ \begin{array}{l} \mu(g_{2}(a)-h_{2}(a),\lambda t)\geq\frac{t}{t+\varphi_{e}(0,a)}, \\ \; \\ \nu(g_{2}(a)-h_{2}(a),\lambda t)\leq\frac{\varphi_{e}(0,a)}{t+\varphi_{e}(0,a)} \end{array} \right. \end{eqnarray*}

    for all a\in X and t > 0 . Therefore, using (4.12), we get

    \begin{eqnarray} \left\{ \begin{array}{l} \mu({\mathcal {J}}_{2}g_{2}(a)-{\mathcal {J}}_{2}h_{2}(a),\lambda \rho t) = \mu(k^{2}g_{2}(\frac{a}{k})-k^{2}h_{2}(\frac{a}{k}),\lambda \rho t)\\ = \mu(g_{2}(\frac{a}{k})-h_{2}(\frac{a}{k}),\frac{\lambda \rho t}{k^{2}}) \geq \frac{\frac{\rho}{k^{2}}t}{\frac{\rho}{k^{2}}t+\frac{\rho}{k^{2}}\varphi_{e}(0,a)} = \frac{t}{t+\varphi_{e}(0,a)}, \\ \; \\ \nu({\mathcal {J}}_{2}g_{2}(a)-{\mathcal {J}}_{2}h_{2}(a),\lambda \rho t) = \nu(k^{2}g_{2}(\frac{a}{k})-k^{2}h_{2}(\frac{a}{k}),\lambda \rho t)\\ = \nu(g_{2}(\frac{a}{k})-h_{2}(\frac{a}{k}),\frac{\lambda \rho t}{k^{2}}) \leq \frac{\frac{\rho}{k^{2}}\varphi_{e}(0,a)}{\frac{\rho}{k^{2}}t+\frac{\rho}{k^{2}}\varphi_{e}(0,a)} = \frac{\varphi_{e}(0,a)}{t+\varphi_{e}(0,a)} \end{array} \right. \end{eqnarray} (4.17)

    for some \rho < 1 , all a\in X and all t > 0 . Hence, it holds that d_{2}({\mathcal {J}}_{2}g_{2}, {\mathcal {J}}_{2}h_{2})\leq \lambda \rho , that is, d_{2}({\mathcal {J}}_{2}g_{2}, {\mathcal {J}}_{2}h_{2})\leq \rho d_{2}(g_{2}, h_{2}) for all g_{2}, h_{2}\in S_{2} .

    Furthermore, by (4.12) and (4.15), we obtain the inequality

    \begin{eqnarray*} d(f,{\mathcal {J}}_{2}f)\leq\frac{\rho}{2k^{2}(2k+s-1)}. \end{eqnarray*}

    It follows from Lemma 2.4 that the sequence {\mathcal {J}}^{p}_{2}f converges to a fixed point Q of {\mathcal {J}}_{2} , that is, for all a\in X and all t > 0 ,

    \begin{eqnarray} Q:X\to Y,\;\;\; Q(a): = (\mu,\nu)-\lim\limits_{p\to\infty}k^{2p}f(\frac{a}{k^{p}}) \end{eqnarray} (4.18)

    and

    \begin{eqnarray} Q(ka) = k^{2}Q(a). \end{eqnarray} (4.19)

    Meanwhile, Q is the unique fixed point of {\mathcal {J}}_{2} in the set

    S^{\ast}_{2} = \{g_{2}\in S_{2}: d_{2}(f,g_{2}) < \infty\}.

    Thus there exists a \lambda\in \mathfrak{}{\mathbb{R_{+}}} such that

    \begin{eqnarray*} \left\{ \begin{array}{l} \mu(f(a)-Q(a),\lambda t)\geq\frac{t}{t+\varphi_{e}(0,a)}, \\ \; \\ \nu(f(a)-Q(a),\lambda t)\leq\frac{\varphi_{e}(0,a)}{t+\varphi_{e}(0,a)} \end{array} \right. \end{eqnarray*}

    for all a\in X and all t > 0 . Also,

    \begin{eqnarray*} d_{2}(f,Q)\leq \frac{1}{1-\rho}d(f,{\mathcal {J}}_{2}f)\leq \frac{\rho}{2k^{2}(1-\rho)(2k+s-1)}. \end{eqnarray*}

    This means that the following inequality

    \begin{eqnarray} \left\{ \begin{array}{l} \mu(f(a)-Q(a),t)\geq\frac{2k^{2}(2k+s-1)(1-\rho)t}{2k^{2}(2k+s-1)(1-\rho)t+\rho\varphi_{e}(0,a)}, \\ \; \\ \nu(f(a)-Q(a),t)\leq\frac{\rho\varphi_{e}(0,a)}{2k^{2}(2k+s-1)(1-\rho)t+\rho\varphi_{e}(0,a)} \end{array} \right. \end{eqnarray} (4.20)

    holds for all a\in X and all t > 0 . The rest of the proof is similar to the proof of Theorem 4.1. This completes the proof of the theorem.

    Theorem 4.3. Let \varphi : X^{2}\to [0, \infty) be a function such that for some real number \rho with 0 < \rho < k ,

    \begin{eqnarray} \varphi(a,b) = \frac{\rho}{k^{2}}\varphi(ka,kb) \end{eqnarray} (4.21)

    for all a, b\in X . Suppose that a mapping f : X\to Y with f(0) = 0 satisfies the inequality

    \begin{eqnarray} \left\{ \begin{array}{l} \mu_{n}(Df_{n}([x_{ij}],[y_{ij}]),t)\geq \frac{t}{t+\sum^{n}_{i,j = 1}\varphi(x_{ij},y_{ij})}, \\ \; \\ \nu_{n}(Df_{n}([x_{ij}],[y_{ij}]),t)\leq \frac{\sum^{n}_{i,j = 1}\varphi(x_{ij},y_{ij})}{t+\sum^{n}_{i,j = 1}\varphi(x_{ij},y_{ij})} \end{array} \right. \end{eqnarray} (4.22)

    for all x = [x_{ij}], y = [y_{ij}]\in M_{n}(X) and all t > 0 . Then there exist a unique quadratic mapping Q : X\to Y and a unique additive mapping A : X\to Y such that

    \begin{eqnarray} \left\{ \begin{array}{l} \mu_{n}(f_{n}([x_{ij}])-Q_{n}([x_{ij}])-A_{n}([x_{ij}]),t)\geq \frac{k(2k+s-1)(1-\rho)t}{k(2k+s-1)(1-\rho)t+\rho n^{2}\sum^{n}_{i,j = 1}\widetilde{\varphi}(0,x_{ij})}, \\ \; \\ \nu_{n}(f_{n}([x_{ij}])-Q_{n}([x_{ij}])-A_{n}([x_{ij}]),t)\leq \frac{\rho n^{2}\sum^{n}_{i,j = 1}\widetilde{\varphi}(0,x_{ij})}{k(2k+s-1)(1-\rho)t+\rho n^{2} \sum^{n}_{i,j = 1}\widetilde{\varphi}(0,x_{ij})} \end{array} \right. \end{eqnarray} (4.23)

    for all x = [x_{ij}]\in M_{n}(X) and all t > 0 , \widetilde{\varphi}(a, b) = \varphi(a, b)+\varphi(-a, -b) for all a, b\in X .

    Proof. The proof follows from Theorems 4.1 and 4.2, and a method similar to Theorem 3.5. This completes the proof of the theorem.

    Corollary 4.4. Let r, \theta be positive real numbers with r > 2 . Suppose that a mapping f : X\to Y with f(0) = 0 satisfies the inequality

    \begin{eqnarray} \left\{ \begin{array}{l} \mu_{n}(Df_{n}([x_{ij}],[y_{ij}]),t)\geq \frac{t}{t+\sum^{n}_{i,j = 1}\theta(\|x_{ij}\|^{r}+\|y_{ij}\|^{r})}, \\ \; \\ \nu_{n}(Df_{n}([x_{ij}],[y_{ij}]),t)\leq \frac{\sum^{n}_{i,j = 1}\theta(\|x_{ij}\|^{r}+\|y_{ij}\|^{r})} {t+\sum^{n}_{i,j = 1}\theta(\|x_{ij}\|^{r}+\|y_{ij}\|^{r})} \end{array} \right. \end{eqnarray} (4.24)

    for all x = [x_{ij}], y = [y_{ij}]\in M_{n}(X) and all t > 0 . Then there exist a unique quadratic mapping Q : X\to Y and a unique additive mapping A : X\to Y such that

    \begin{eqnarray} \left\{ \begin{array}{l} \mu_{n}(f_{n}([x_{ij}])-Q_{n}([x_{ij}])-A_{n}([x_{ij}]),t)\geq \frac{(2k+s-1)(k^{r}-k^{2})t}{(2k+s-1)(k^{r}-k^{2})t+2kn^{2}\sum^{n}_{i,j = 1}\theta\|x_{ij}\|^{r}}, \\ \; \\ \nu_{n}(f_{n}([x_{ij}])-Q_{n}([x_{ij}])-A_{n}([x_{ij}]),t)\leq \frac{2kn^{2}\sum^{n}_{i,j = 1}\theta\|x_{ij}\|^{r}}{(2k+s-1)(k^{r}-k^{2})t+2kn^{2} \sum^{n}_{i,j = 1}\theta\|x_{ij}\|^{r}} \end{array} \right. \end{eqnarray} (4.25)

    for all x = [x_{ij}]\in M_{n}(X) and all t > 0 .

    Proof. Taking \varphi(a, b) = \theta(\|a\|^{r}+\|b\|^{r}) for all a, b\in X and \rho = k^{2-r} in Theorem 4.3, we get the desired result.

    We use the direct and fixed point methods to investigate the Hyers-Ulam stability of the functional Eq (1.1) in the framework of matrix intuitionistic fuzzy normed spaces. We therefore provide a link two various discipline: matrix intuitionistic fuzzy normed spaces and functional equations. We generalized the Hyers-Ulam stability results of the functional Eq (1.1) from quasi-Banach spaces to matrix intuitionistic fuzzy normed spaces. These circumstances can be applied to other significant functional equations.

    The author declare he has not used Artificial Intelligence (AI) tools in the creation of this article.

    The author is grateful to the referees for their helpful comments and suggestions that help to improve the quality of the manuscript.

    The author declares no conflict of interest in this paper.



    [1] D. Adamović, Solution to problem 194, Mat. Vesnik, 23 (1971), 236–242.
    [2] M. Bataille, Problem 11559, Amer. Math. Monthly, 118 (2011), 275.
    [3] K. S. Berenhaut, S. Stević, The behaviour of the positive solutions of the difference equation x_n = A+(x_{n-2}/x_{n-1})^p, J. Differ. Equ. Appl., 12 (2006), 909–918. https://doi.org/10.1080/10236190600836377 doi: 10.1080/10236190600836377
    [4] L. Berg, S. Stević, On the asymptotics of the difference equation y_n(1+y_{n-1}\cdots y_{n-k+1}) = y_{n-k}, J. Differ. Equ. Appl., 17 (2011), 577–586. https://doi.org/10.1080/10236190903203820 doi: 10.1080/10236190903203820
    [5] D. Bernoulli, Observationes de seriebus quae formantur ex additione vel substractione quacunque terminorum se mutuo consequentium, ubi praesertim earundem insignis usus pro inveniendis radicum omnium aequationum algebraicarum ostenditur (in Latin), Commentarii Acad. Petropol. Ⅲ, 1728 (1732), 85–100.
    [6] G. Boole, A treatise on the calculus of finite differences, 3 Eds., Macmillan and Co., London, 1880.
    [7] L. Brand, A sequence defined by a difference equation, Am. Math. Mon., 62 (1955), 489–492. https://doi.org/10.2307/2307362 doi: 10.2307/2307362
    [8] A. de Moivre, Miscellanea analytica de seriebus et quadraturis (in Latin), J. Tonson & J. Watts, Londini, 1730.
    [9] L. Euler, Introductio in analysin infinitorum, tomus primus (in Latin), Lausannae, 1748.
    [10] C. Jordan, Calculus of finite differences, New York: Chelsea Publishing Company, 1965.
    [11] B. Iričanin, S. Stević, On some rational difference equations, Ars Comb., 92 (2009), 67–72.
    [12] M. Kara, Y. Yazlik, D. T. Tollu, Solvability of a system of higher order nonlinear difference equations, Hacet. J. Math. Stat., 49 (2020), 1566–1593. https://doi.org/10.15672/hujms.474649 doi: 10.15672/hujms.474649
    [13] G. Karakostas, Asymptotic 2-periodic difference equations with diagonally self-invertible responces, J. Differ. Equ. Appl., 6 (2000), 329–335. https://doi.org/10.1080/10236190008808232 doi: 10.1080/10236190008808232
    [14] G. L. Karakostas, Asymptotic behavior of the solutions of the difference equation x_{n+1} = x_n^2f(x_{n-1}), J. Differ. Equ. Appl., 9 (2003), 599–602. https://doi.org/10.1080/1023619021000056329 doi: 10.1080/1023619021000056329
    [15] S. F. Lacroix, Traité des differénces et des séries (in French), J. B. M. Duprat, Paris, 1800.
    [16] V. A. Krechmar, A problem book in algebra, Mir Publishers, Moscow, 1974.
    [17] J. L. Lagrange, Sur l'intégration d'une équation différentielle à différences finies, qui contient la théorie des suites récurrentes (in French), Miscellanea Taurinensia, 1759, 33–42.
    [18] P. S. Laplace, Recherches sur l'intégration des équations différentielles aux différences finies et sur leur usage dans la théorie des hasards (in French), Mém. Acad. R. Sci. Paris, VII (1776).
    [19] H. Levy, F. Lessman, Finite difference equations, New York: Macmillan, 1961.
    [20] A. A. Markoff, Differenzenrechnung (in German), Teubner, Leipzig, 1896.
    [21] G. Papaschinopoulos, C. J. Schinas, On a system of two nonlinear difference equations, J. Math. Anal. Appl., 219 (1998), 415–426. https://doi.org/10.1006/jmaa.1997.5829 doi: 10.1006/jmaa.1997.5829
    [22] G. Papaschinopoulos, C. J. Schinas, Invariants for systems of two nonlinear difference equations, Differ. Equ. Dyn. Syst., 7 (1999), 181–196.
    [23] G. Papaschinopoulos, C. J. Schinas, Stability of a class of nonlinear difference equations, J. Math. Anal. Appl., 230 (1999), 211–222. https://doi.org/10.1006/jmaa.1998.6194 doi: 10.1006/jmaa.1998.6194
    [24] G. Papaschinopoulos, C. J. Schinas, Invariants and oscillation for systems of two nonlinear difference equations, Nonlinear Anal.: Theory Methods Appl., 7 (2001), 967–978.
    [25] G. Papaschinopoulos, C. J. Schinas, Oscillation and asymptotic stability of two systems of difference equations of rational form, J. Differ. Equ. Appl., 7 (2001), 601–617. https://doi.org/10.1080/10236190108808290 doi: 10.1080/10236190108808290
    [26] G. Papaschinopoulos, C. J. Schinas, On the system of two difference equations x_{n+1} = \sum_{i = 0}^{k} A_i/y_{n-i}^{p_i}, y_{n+1} = \sum_{i = 0}^{k} B_i/x_{n-i}^{q_i}, J. Math. Anal. Appl., 273 (2002), 294–309. https://doi.org/10.1016/S0022-247X(02)00223-8 doi: 10.1016/S0022-247X(02)00223-8
    [27] G. Papaschinopoulos, C. J. Schinas, G. Stefanidou, On a k-order system of Lyness-type difference equations, Adv. Differ. Equ., 2007 (2007), 1–13.
    [28] G. Papaschinopoulos, G. Stefanidou, Asymptotic behavior of the solutions of a class of rational difference equations, Int. J. Differ. Equ., 5 (2010), 233–249.
    [29] Y. N. Raffoul, Qualitative theory of Volterra difference equations, Springer, 2018.
    [30] J. Riordan, Combinatorial identities, John Wiley & Sons Inc., New York-London-Sydney, 1968.
    [31] C. J. Schinas, Invariants for difference equations and systems of difference equations of rational form, J. Math. Anal. Appl., 216 (1997), 164–179. https://doi.org/10.1006/jmaa.1997.5667 doi: 10.1006/jmaa.1997.5667
    [32] C. J. Schinas, Invariants for some difference equations, J. Math. Anal. Appl., 212 (1997), 281–291. https://doi.org/10.1006/jmaa.1997.5499 doi: 10.1006/jmaa.1997.5499
    [33] S. Stević, A global convergence results with applications to periodic solutions, Indian J. Pure Appl. Math., 33 (2002), 45–53.
    [34] S. Stević, On the recursive sequence x_{n+1} = A/\prod_{i = 0}^k x_{n-i}+1/\prod_{j = k+2}^{2(k+1)}x_{n-j}, Taiwan. J. Math., 7 (2003), 249–259.
    [35] S. Stević, On the recursive sequence x_{n+1} = {\alpha}_n+(x_{n-1}/x_n) Ⅱ, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 911–916.
    [36] S. Stević, Boundedness character of a class of difference equations, Nonlinear Anal.: Theory Methods Appl., 70 (2009), 839–848. https://doi.org/10.1016/j.na.2008.01.014 doi: 10.1016/j.na.2008.01.014
    [37] S. Stević, Global stability of a difference equation with maximum, Appl. Math. Comput., 210 (2009), 525–529. https://doi.org/10.1016/j.amc.2009.01.050 doi: 10.1016/j.amc.2009.01.050
    [38] S. Stević, On some periodic systems of max-type difference equations, Appl. Math. Comput., 218 (2012), 11483–11487. https://doi.org/10.1016/j.amc.2012.04.077 doi: 10.1016/j.amc.2012.04.077
    [39] S. Stević, Solutions of a max-type system of difference equations, Appl. Math. Comput., 218 (2012), 9825–9830. https://doi.org/10.1016/j.amc.2012.03.057 doi: 10.1016/j.amc.2012.03.057
    [40] S. Stević, On the system of difference equations x_n = c_ny_{n-3}/(a_n+b_ny_{n-1}x_{n-2}y_{n-3}), y_n = {\gamma}_n x_{n-3}/({\alpha}_n+{\beta}_n x_{n-1}y_{n-2}x_{n-3}), Appl. Math. Comput., 219 (2013), 4755–4764. https://doi.org/10.1016/j.amc.2012.10.092 doi: 10.1016/j.amc.2012.10.092
    [41] S. Stević, Representations of solutions to linear and bilinear difference equations and systems of bilinear difference equations, Adv. Differ. Equ., 2018 (2018), 1–21. https://doi.org/10.1186/s13662-018-1930-2 doi: 10.1186/s13662-018-1930-2
    [42] S. Stević, J. Diblik, B. Iričanin, Z. Šmarda, On a solvable system of rational difference equations, J. Differ. Equ. Appl., 20 (2014), 811–825. https://doi.org/10.1080/10236198.2013.817573 doi: 10.1080/10236198.2013.817573
    [43] S. Stević, J. Diblik, B. Iričanin, Z. Šmarda, Solvability of nonlinear difference equations of fourth order, Electron. J. Differ. Equ., 2014 (2014), 1–14.
    [44] S. Stević, B. Iričanin, W. Kosmala, Z. Šmarda, Note on the bilinear difference equation with a delay, Math. Methods Appl. Sci., 41 (2018), 9349–9360. https://doi.org/10.1002/mma.5293 doi: 10.1002/mma.5293
    [45] S. Stević, B. Iričanin, W. Kosmala, Z. Šmarda, On a solvable class of nonlinear difference equations of fourth order, Electron. J. Qual. Theory Differ. Equ., 2022 (2022), 1–17.
    [46] S. Stević, B. Iričanin, Z. Šmarda, On a product-type system of difference equations of second order solvable in closed form, J. Inequal. Appl., 2015 (2015), 1–15. https://doi.org/10.1186/s13660-015-0835-9 doi: 10.1186/s13660-015-0835-9
    [47] S. Stević, B. Iričanin, Z. Šmarda, On a symmetric bilinear system of difference equations, Appl. Math. Lett., 89 (2019), 15–21. https://doi.org/10.1016/j.aml.2018.09.006 doi: 10.1016/j.aml.2018.09.006
    [48] N. Taskara, D. T. Tollu, N. Touafek, Y. Yazlik, A solvable system of difference equations, Commun. Korean Math. Soc., 35 (2020), 301–319.
    [49] D. T. Tollu, Y. Yazlik, N. Taskara, On a solvable nonlinear difference equation of higher order, Turk. J. Math., 42 (2018), 1765–1778. https://doi.org/10.3906/mat-1705-33 doi: 10.3906/mat-1705-33
    [50] Western Maryland College Problems Group, Problem 1572, Math. Mag., 72 (1999), 149. https://doi.org/10.2307/2690603 doi: 10.2307/2690603
    [51] Y. Yazlik, D. T. Tollu, N. Taskara, On the solutions of a three-dimensional system of difference equations, Kuwait J. Sci., 43 (2016), 95–111.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1578) PDF downloads(98) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog