
This paper addresses a new spectral collocation method for solving nonlinear fractional quadratic integral equations. The main idea of this method is to construct the approximate solution based on fractional order Chelyshkov polynomials (FCHPs). To this end, first, we introduce these polynomials and express some of their properties. The operational matrices of fractional integral and product are derived. The spectral collocation method is utilized together with operational matrices to reduce the problem to a system of algebraic equations. Finally, by solving this system, the unknown coefficients are computed. Further, the convergence analysis and numerical stability of the method are investigated. The proposed method is computationally simple and easy to implement in computer programming. The accuracy and applicability of the method is presented by some numerical examples.
Citation: Younes Talaei, Sanda Micula, Hasan Hosseinzadeh, Samad Noeiaghdam. A novel algorithm to solve nonlinear fractional quadratic integral equations[J]. AIMS Mathematics, 2022, 7(7): 13237-13257. doi: 10.3934/math.2022730
[1] | Changdev P. Jadhav, Tanisha B. Dale, Vaijanath L. Chinchane, Asha B. Nale, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On solutions of fractional differential equations for the mechanical oscillations by using the Laplace transform. AIMS Mathematics, 2024, 9(11): 32629-32645. doi: 10.3934/math.20241562 |
[2] | Duoduo Zhao, Kai Zhou, Fengming Ye, Xin Xu . A class of time-varying differential equations for vibration research and application. AIMS Mathematics, 2024, 9(10): 28778-28791. doi: 10.3934/math.20241396 |
[3] | Takumi Washio, Akihiro Fujii, Toshiaki Hisada . On random force correction for large time steps in semi-implicitly discretized overdamped Langevin equations. AIMS Mathematics, 2024, 9(8): 20793-20810. doi: 10.3934/math.20241011 |
[4] | Omar Bazighifan, Areej A. Al-moneef, Ali Hasan Ali, Thangaraj Raja, Kamsing Nonlaopon, Taher A. Nofal . New oscillation solutions of impulsive conformable partial differential equations. AIMS Mathematics, 2022, 7(9): 16328-16348. doi: 10.3934/math.2022892 |
[5] | Amjid Ali, Teruya Minamoto, Rasool Shah, Kamsing Nonlaopon . A novel numerical method for solution of fractional partial differential equations involving the ψ-Caputo fractional derivative. AIMS Mathematics, 2023, 8(1): 2137-2153. doi: 10.3934/math.2023110 |
[6] | Ahmad Qazza, Rania Saadeh, Emad Salah . Solving fractional partial differential equations via a new scheme. AIMS Mathematics, 2023, 8(3): 5318-5337. doi: 10.3934/math.2023267 |
[7] | Aslı Alkan, Halil Anaç . The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method. AIMS Mathematics, 2024, 9(9): 25333-25359. doi: 10.3934/math.20241237 |
[8] | Shaomin Wang, Cunji Yang, Guozhi Cha . On the variational principle and applications for a class of damped vibration systems with a small forcing term. AIMS Mathematics, 2023, 8(9): 22162-22177. doi: 10.3934/math.20231129 |
[9] | Armin Hadjian, Juan J. Nieto . Existence of solutions of Dirichlet problems for one dimensional fractional equations. AIMS Mathematics, 2022, 7(4): 6034-6049. doi: 10.3934/math.2022336 |
[10] | Paul Bosch, José M. Rodríguez, José M. Sigarreta . Oscillation results for a nonlinear fractional differential equation. AIMS Mathematics, 2023, 8(5): 12486-12505. doi: 10.3934/math.2023627 |
This paper addresses a new spectral collocation method for solving nonlinear fractional quadratic integral equations. The main idea of this method is to construct the approximate solution based on fractional order Chelyshkov polynomials (FCHPs). To this end, first, we introduce these polynomials and express some of their properties. The operational matrices of fractional integral and product are derived. The spectral collocation method is utilized together with operational matrices to reduce the problem to a system of algebraic equations. Finally, by solving this system, the unknown coefficients are computed. Further, the convergence analysis and numerical stability of the method are investigated. The proposed method is computationally simple and easy to implement in computer programming. The accuracy and applicability of the method is presented by some numerical examples.
The theory of fractional calculus has played an important role in engineering and natural sciences. Currently, the concept of fractional calculus has been effectively used in many social, physical, signal, image processing, biological and engineering problems. Further, it has been realized that a fractional system provides a more accurate interpretation than the integer-order system in many real modeling problems. For more details, one can refer to [1,2,3,4,5,6,7,8,9,10].
Oscillation phenomena take part in different models of real world applications; see for instance the papers [11,12,13,14,15,16,17] and the papers cited therein. More precisely, we refer the reader to the papers [18,19] on bio-mathematical models where oscillation and/or delay actions may be formulated by means of cross-diffusion terms. Recently and although it is rare, the study on the oscillation of fractional partial differential equations has attracted many researchers. In [20,21,22,23], the researchers have established the requirements of the oscillation for certain kinds of fractional partial differential equations.
In [24], Luo et al. studied the oscillatory behavior of the fractional partial differential equation of the form
D1+α+,tu(y,t)+p(t)Dα+,tu(y,t)+q(y,t)∫t0(t−ℏ)−αu(y,ℏ)dℏ=a(t)Δu(y,t)+m∑i=1ai(t)Δu(y,t−τi),(y,t)∈Q×R+=H |
subject to either of the following boundary conditions
∂u(y,t)∂ν+β(y,t)u(y,t)=0,(y,t)∈∂Q×R+,u(y,t)=0,(y,t)∈∂Q×R+. |
They have obtained some sufficient conditions for the oscillation of all solutions of this kind of fractional partial differential equations by using the integral averaging technique and Riccati transformations.
On other hand in [25], Xu and Meng considered a fractional partial differential equation of the form
Dα+,t(r(t)Dα+,tu(y,t))+p(t)Dα+,tu(y,t)+q(y,t)f(u(y,t))=a(t)Δu(y,t)+m∑i=1bi(t)Δu(y,t−τi),(y,t)∈Q×R+=H |
with the Robin boundary condition
∂u(y,t)∂N+g(y,t)u(y,t)=0,(y,t)∈∂Q×R+, |
they obtained some oscillation criteria using the integral averaging technique and Riccati transformations.
Prakash et al. [26] considered the oscillation of the fractional differential equation
∂∂t(r(t)Dα+,tu(y,t))+q(y,t)f(∫t0(t−v)−αu(y,v)dv)=a(t)Δu(y,t),(y,t)∈Q×R+ |
with the Neumann boundary condition
∂u(y,t)∂N=0,(y,t)∈∂Q×R+, |
they obtained some oscillation criteria by using the integral averaging technique and Riccati transformations.
Furthermore in [27], Ma et al. considered the forced oscillation of the fractional partial differential equation with damping term of the form
∂∂t(r(t)Dα+,tu(y,t))+p(t)Dα+,tu(y,t)+q(y,t)f(u(y,t))=a(t)Δu(y,t)+˜g(y,t),(y,t)∈Q×R+ |
with the boundary condition
∂u(y,t)∂N+β(y,t)u(y,t)=0,(y,t)∈∂Q×R+, |
they obtained some oscillation criteria by using the integral averaging technique.
From the above mentioned literature, one can notice that the Riccati transformation method has been incorporated into the proof of the oscillation results. Unlike previous results, however, we study in this paper the forced oscillation of the fractional partial differential equation with the damping term of the form
∂∂t(a(t)∂∂t(r(t)g(Dα+,tu(y,t))))+p(t)∂∂t(r(t)g(Dα+,tu(y,t)))=b(t)Δu(y,t)+m∑i=1ai(t)Δu(y,t−τi)−q(y,t)∫t0(t−ℏ)−αu(y,ℏ)dℏ+f(y,t),(y,t)∈Q×R+=H | (1.1) |
via the application of the integral averaging technique only. Equation (1.1) is presented under a high degree of generality providing a general platform for many particular cases. Here, Dα+,tu(y,t) is the Riemann-Liouville fractional partial derivative of order α of u,α∈(0,1), Δ is the Laplacian in Rn, i.e.,
Δu(y,t)=∑nr=1∂2u(y,t)∂y2r, |
Q is a bounded domain of Rn with the piecewise smooth boundary ∂Q and R+:=(0,∞).
Further, we assume the Robin and Dirichlet boundary conditions
∂u(y,t)∂N+γ(y,t)u(y,t)=0,(y,t)∈∂Q×R+ | (1.2) |
and
u(y,t)=0,(y,t)∈∂Q×R+, | (1.3) |
where N is the unit outward normal to ∂Q and γ(y,t)>0 is a continuous function on ∂Q×R+. The following conditions are assumed throughout:
(H1) a(t)∈C1([t0,∞);R+) and r(t)∈C2([t0,∞);R+);
(H2) g(t)∈C2(R;R) is an increasing function and there exists a positive constant k such that yg(y)=k>0, yg(y)≠0 for y≠0;
(H3) p(t)∈C([t0,∞);R) and A(t)=∫tt0p(ζ)a(ζ)dζ;
(H4) b(t),ai(t)∈C(R+;R+) and τi are non-negative constants, i∈Im={1,2,…,m};
(H5) q(y,t)∈C(H;R+) and q(t)=miny∈Qq(y,t);
(H6) f(y,t)∈C(ˉH;R).
By a solution of the problems (1.1) and (1.2) (or (1.1)–(1.3)), we mean a function u(y,t)∈C2+α(ˉQ×[0,∞)), which satisfies (1.1) on H and the boundary condition (1.2) (or (1.3)).
A solution u(y,t) of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative. Otherwise, it is non-oscillatory.
The rest of the paper is organized as follows. Some basic definitions and known lemmas are included in Section 2. In Sections 3 and 4, we study the oscillations of (1.1) and (1.2), and (1.1) and (1.3), respectively. Section 5 deals with some applications for the sake of showing the feasibility and effectiveness of our results. Lastly, we add a conclusion in Section 6.
Before we start the main work, we present some basic lemmas and definitions which are applied in what follows.
Definition 1. [4] The Riemann-Liouville fractional integral of order α>0 of a function y:R+→R on the half-axis R+ is defined by
(Iα+y)(t):=1Γ(α)∫t0(t−ϑ)α−1y(ϑ)dϑ,t>0 |
provided the right-hand side is pointwise defined on R+, where Γ is the gamma function.
Definition 2. [4] The Riemann-Liouville fractional derivative of order α>0 of a function y:R+→R on the half-axis R+ is defined by
(Dα+y)(t):=d⌈α⌉dt⌈α⌉(I⌈α⌉−α+y)(t),t>0 |
provided the right-hand side is pointwise defined on R+, where ⌈α⌉ is the ceiling function of α.
Definition 3. [4] The Riemann-Liouville fractional partial derivative of order 0<α<1 with respect to t of a function u(y,t) is defined by
(Dα+,tu)(y,t):=1Γ(1−α)∂∂t∫t0(t−ϑ)−αu(y,ϑ)dϑ |
provided the right-hand side is pointwise defined on R+.
Lemma 1. [4] Let y be a solution of (1.1) and
L(t):=∫t0(t−ϑ)−αy(ϑ)dϑ |
for α∈(0,1) and t>0. Then
L′(t)=Γ(1−α)(Dα+y)(t). |
Lemma 2. [4] Let α≥0,m∈N and D=ddt. If the fractional derivatives (Dαa+y)(t) and (Dα+ma+y)(t) exist, then
(DmDαa+y)(t)=(Dα+ma+y)(t). |
Lemma 3. [4] If α∈(0,1), then
(Iαa+Dαa+y)(t)=y(t)−y1−α(a)Γ(α)(t−a)α−1, |
where y1−α(t)=(I1−αa+y)(t).
Lemma 4. [5] The smallest eigenvalue β0 of the Dirichlet problem
Δω(y)+βω(y)=0 in Qω(y)=0 on ∂Q |
is positive and the corresponding eigenfunction ϕ(y) is positive in Q.
In this section, we establish the oscillation criteria for (1.1) and (1.2).
Theorem 1. If (H1)−(H6) are valid, limt→∞I1−α+U(0)=C0 and if
lim inft→∞∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ]dℏ<0 | (3.1) |
and
lim supt→∞∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ]dℏ>0 | (3.2) |
for some constants C0,C1 and C2 with F(t)=∫Qf(y,t)dy, then all solutions of (1.1) and (1.2) are oscillatory.
Proof. If u(y,t) is a non-oscillatory solution of (1.1) and (1.2) then there exists a t0≥0 such that u(y,t)>0 (or u(y,t)<0),t≥t0.
Case 1. Let u(y,t)>0 for t≥t0. Integrating (1.1) over Q, we get
ddt(a(t)ddt(r(t)g(Dα+U(t))))+p(t)ddt(r(t)g(Dα+U(t)))=b(t)∫QΔu(y,t)dy+m∑i=1ai(t)∫QΔu(y,t−τi)dy−∫Q(q(y,t)∫t0(t−ℏ)−αu(y,ℏ)dℏ)dy+∫Qf(y,t)dy, | (3.3) |
where U(t)=∫Qu(y,t)dy with U(t)>0. By (1.2) and Green's formula, we have
∫QΔu(y,t)dy=∫∂Q∂u∂Ndζ=−∫∂Qγ(y,t)u(y,t)dζ<0 | (3.4) |
and
∫QΔu(y,t−τi)dy<0. | (3.5) |
Also, by (H5), one can get
∫Q(q(y,t)∫t0(t−ℏ)−αu(y,ℏ)dℏ)dy≥q(t)∫t0(t−ℏ)−α(∫Qu(y,ℏ)dy)dℏ=q(t)L(t), | (3.6) |
where L(t)=∫t0(t−ℏ)−αU(ℏ)dℏ. Because of the inequalities (3.4)–(3.6), (3.3) becomes
ddt(a(t)ddt(r(t)g(Dα+U(t))))+p(t)ddt(r(t)g(Dα+U(t)))≤−q(t)L(t)+F(t)≤F(t). |
Thus, we get
(eA(t)a(t)(r(t)g(Dα+U(t)))′)′=eA(t)((a(t)(r(t)g(Dα+U(t)))′)′+p(t)(r(t)g(Dα+U(t)))′)≤eA(t)F(t). |
Integrating the above inequality over [t0,t], one can get
eA(t)a(t)(r(t)g(Dα+U(t)))′≤∫tt0eA(ζ)F(ζ)dζ+C1, |
where
C1=eA(t0)a(t0)(r(t0)g(Dα+U(t0)))′. |
Again integrating the above inequality over [t0,t], we get
r(t)g(Dα+U(t))≤C2+∫tt0C1eA(τ)a(τ)dτ+∫tt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ, |
where C2=r(t0)g(Dα+U(t0)). Then using (H5), we obtain
Dα+U(t)k≤C2r(t)+1r(t)∫tt0C1eA(τ)a(τ)dτ+1r(t)∫tt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ. |
Applying the Riemann-Liouville fractional integral operator of order α to the above inequality and using Lemma 3, we obtain
U(t)−I1−α0U(0)Γ(α)tα−1≤kΓ(α)∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ]dℏ. |
Then
lim inft→∞U(t)≤lim inft→∞C0Γ(α)tα−1+lim inft→∞{kΓ(α)∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ]dℏ}. |
Therefore, by our hypothesis, as given by (3.1), we get lim inft→∞U(t)≤0. This leads to a contradiction to U(t)>0.
Case 2. Let u(y,t)<0 for t≥t0. Just as in Case 1, we can obtain that (3.3) holds and U(t)<0. By (1.2) and Green's formula, we get
∫QΔu(y,t)dy=∫∂Q∂u∂Ndζ=−∫∂Qγ(y,t)u(y,t)dζ>0 | (3.7) |
and
∫QΔu(y,t−τi)dy>0. | (3.8) |
Also, by (H5), we have
∫Q(q(y,t)∫t0(t−ℏ)−αu(y,ℏ)dℏ)dy≤q(t)∫t0(t−ℏ)−α(∫Qu(y,ℏ)dy)dℏ=q(t)L(t). | (3.9) |
Because of the inequalities (3.7)–(3.9), (3.3) becomes
ddt(a(t)ddt(r(t)g(Dα+U(t))))+p(t)ddt(r(t)g(Dα+U(t)))≥−q(t)L(t)+F(t)≥F(t), | (3.10) |
that is,
(eA(t)a(t)(r(t)g(Dα+U(t)))′)′=eA(t)((a(t)(r(t)g(Dα+U(t)))′)′+p(t)(r(t)g(Dα+U(t)))′)≥eA(t)F(t). |
Integrating the above inequality over [t0,t], we have
eA(t)a(t)(r(t)g(Dα+U(t)))′≥∫tt0eA(ζ)F(ζ)dζ+C1, |
where
C1=eA(t0)a(t0)(r(t0)g(Dα+U(t0)))′. |
Again integrating the above inequality over [t0,t], we obtain
r(t)g(Dα+U(t))≥C2+∫tt0C1eA(τ)a(τ)dτ+∫tt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ, |
where C2=r(t0)g(Dα+U(t0)). Then using (H5), we obtain
Dα+U(t)k≥C2r(t)+1r(t)∫tt0C1eA(τ)a(τ)dτ+1r(t)∫tt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ. |
Applying the Riemann-Liouville fractional integral operator of order α to the above inequality and using Lemma 3, we obtain
U(t)−I1−α0U(0)Γ(α)tα−1≥kΓ(α)∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ]dℏ. |
Then
lim supt→∞U(t)≥lim supt→∞C0Γ(α)tα−1+lim supt→∞{kΓ(α)∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ]dℏ}. |
Therefore, by our hypothesis given by (3.2), we get lim supt→∞U(t)≥0. This leads to a contradiction to U(t)<0.
In this section, we establish the oscillation criteria for (1.1) and (1.3).
Theorem 2. If (H1)−(H5) are valid, limt→∞I1−α+U1(0)=A1 and if
lim inft→∞∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F1(ζ)dζ)dτ]dℏ<0 | (4.1) |
and
lim supt→∞∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F1(ζ)dζ)dτ]dℏ>0 | (4.2) |
for some constants A1,C1 and C2 with
F1(t)=∫Qf(y,t)ϕ(y)dyandU1(t)=∫Qu(y,t)ϕ(y)dy, |
then all solutions of (1.1) and (1.3) are oscillatory.
Proof. If u(y,t) is a non-oscillatory solution of (1.1) and (1.3) then there exists a t0≥0 such that u(y,t)>0 (or u(y,t)<0) for t≥t0.
Case 1. Let u(y,t)>0 for t≥t0. Multiplying (1.1) by ϕ(y) and then integrating over Q, we get
∫Q∂∂t(a(t)∂∂t(r(t)g(Dα+,tu(y,t))))ϕ(y)dy+∫Qp(t)∂∂t(r(t)g(Dα+,tu(y,t)))ϕ(y)dy=∫Qb(t)Δu(y,t)ϕ(y)dy+∫Qm∑i=1ai(t)Δu(y,t−τi)ϕ(y)dy−∫Q(q(y,t)∫t0(t−ℏ)−αu(y,ℏ)dℏ)ϕ(y)dy+∫Qf(y,t)ϕ(y)dy. | (4.3) |
By Lemma 4 and Green's formula, we have
∫QΔu(y,t)ϕ(y)dy=∫Qu(y,t)Δϕ(y)dy=−β0∫Qu(y,t)ϕ(y)dy<0 | (4.4) |
and
∫QΔu(y,t−τi)ϕ(y)dy<0. | (4.5) |
Also, by (H5), we get
∫Q(q(y,t)∫t0(t−ℏ)−αu(y,ℏ)ϕ(y)dℏ)dy≥q(t)∫t0(t−ℏ)−α(∫Qu(y,ℏ)ϕ(y)dy)dℏ=q(t)L1(t), | (4.6) |
where
L1(t)=∫t0(t−ℏ)−αU1(ℏ)dℏ>0. |
Because of the inequalities (4.4)–(4.6), (4.3) becomes
ddt(a(t)ddt(r(t)g(Dα+U1(t))))+p(t)ddt(r(t)g(Dα+U1(t)))≤−q(t)L1(t)+F1(t)≤F1(t), |
that is,
(eA(t)a(t)(r(t)g(Dα+U1(t)))′)′=eA(t)[(a(t)(r(t)g(Dα+U1(t)))′)′+p(t)(r(t)g(Dα+U1(t)))′]≤eA(t)F1(t). |
Integrating the above inequality over [t0,t], we have
eA(t)a(t)(r(t)g(Dα+U1(t)))′≤∫tt0eA(ζ)F1(ζ)dζ+C1, |
where
C1=eA(t0)a(t0)(r(t0)g(Dα+U1(t0)))′. |
Again integrating the above inequality over [t0,t], we have
r(t)g(Dα+U1(t))≤C2+∫tt0C1eA(τ)a(τ)dτ+∫tt01eA(τ)a(τ)(∫τt0eA(ζ)F1(ζ)dζ)dτ, |
where C2=r(t0)g(Dα+U1(t0)). Then using (H5), we obtain
Dα+U1(t)k≤C2r(t)+1r(t)∫tt0C1eA(τ)a(τ)dτ+1r(t)∫tt01eA(τ)a(τ)(∫τt0eA(ζ)F1(ζ)dζ)dτ. |
Applying the Riemann-Liouville fractional integral operator of order α to the above inequality and using Lemma 3, we obtain
U1(t)−I1−α0U1(0)Γ(α)tα−1≤kΓ(α)∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F1(ζ)dζ)dτ]dℏ. |
Then
lim inft→∞U1(t)≤lim inft→∞A1Γ(α)tα−1+lim inft→∞{kΓ(α)∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F1(ζ)dζ)dτ]dℏ}. |
Therefore, by our hypothesis given by (4.1), we get lim inft→∞U1(t)≤0. This leads to a contradiction to U1(t)>0.
Case 2. Let u(y,t)<0 for t≥t0. Multiplying (1.1) by ϕ(y) and then integrating over Q, one can get (4.3). Using Green's formula, we have
∫QΔu(y,t)ϕ(y)dy=∫Qu(y,t)Δϕ(y)dy=−β0∫Qu(y,t)ϕ(y)dy>0 | (4.7) |
and
∫QΔu(y,t−τi)ϕ(y)dy>0. | (4.8) |
Also, by (H5), we have
∫Q(q(y,t)∫t0(t−ℏ)−αu(y,ℏ)dℏ)ϕ(y)dy≤q(t)∫t0(t−ℏ)−α(∫Qu(y,ℏ)ϕ(y)dy)dℏ=q(t)L1(t), | (4.9) |
where
L1(t)=∫t0(t−ℏ)−αU1(ℏ)dℏ<0. |
Because of the inequalities (4.7)–(4.9), (4.3) becomes
ddt(a(t)ddt(r(t)g(Dα+U1(t))))+p(t)ddt(r(t)g(Dα+U1(t)))≥−q(t)L1(t)+F1(t)≥F1(t), | (4.10) |
that is,
(eA(t)a(t)(r(t)g(Dα+U1(t)))′)′=eA(t)((a(t)(r(t)g(Dα+U1(t)))′)′+p(t)(r(t)g(Dα+U1(t)))′)≥eA(t)F1(t). |
Integrating the above inequality over [t0,t], we get
eA(t)a(t)(r(t)g(Dα+U1(t)))′≥∫tt0eA(ζ)F1(ζ)dζ+C1, |
where
C1=eA(t0)a(t0)(r(t0)g(Dα+U1(t0)))′. |
Again integrating the above inequality over [t0,t], we get
r(t)g(Dα+U1(t))≥C2+∫tt0C1eA(τ)a(τ)dτ+∫tt01eA(τ)a(τ)(∫τt0eA(ζ)F1(ζ)dζ)dτ, |
where C2=r(t0)g(Dα+U1(t0)). Then using (H5), we obtain
Dα+U1(t)k≥C2r(t)+1r(t)∫tt0C1eA(τ)a(τ)dτ+1r(t)∫tt01eA(τ)a(τ)(∫τt0eA(ζ)F1(ζ)dζ)dτ. |
Applying the Riemann-Liouville fractional integral operator of order α to the above inequality and using Lemma 3, we obtain
U1(t)−I1−α0U1(0)Γ(α)tα−1≥kΓ(α)∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F1(ζ)dζ)dτ]dℏ. |
Then
lim supt→∞U1(t)≥lim supt→∞A1Γ(α)tα−1+lim supt→∞{kΓ(α)∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F1(ζ)dζ)dτ]dℏ}. |
Therefore, by our hypothesis given by (4.2), we get lim supt→∞U1(t)≥0. This leads to a contradiction to U1(t)<0.
In this section, we give two examples to illustrate our main results.
Example 1. Let us consider the fractional partial differential system
D52+,tu(y,t)=1πΔu(y,t)+2tΔu(y,t−1)−(y2+1t2)∫t0(t−ℏ)−12u(y,ℏ)dℏ+e2tcos(t)sin(y),(y,t)∈(0,π)×R+ | (5.1) |
with the condition
uy(0,t)=uy(π,t)=0. | (5.2) |
In the above, a(t)=1,r(t)=1,g(t)=t,α=1/2,p(t)=0,b(t)=1/π,m=1,a1(t)=2t,τ1=1, q(y,t)=(y2+1t2),f(y,t)=e2tcos(t)sin(y),Q=(0,π),q(t)=miny∈(0,π)q(y,t)=1/t2 and t0=0.
Since F(t)=∫π0e2tcos(t)sin(y)dy=2e2tcos(t) and A(t)=0, we have
∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ]dℏ=C2∫t0(t−ℏ)−1/2dℏ+C1∫t0(t−ℏ)−1/2(∫ℏ0dτ)dℏ+25∫t0(t−ℏ)−1/2(2∫ℏ0e2τcos(τ)dτ+∫ℏ0e2τsin(τ)dτ−2∫ℏ0dτ)dℏ=(C2−6/25)∫t0(t−ℏ)−1/2dℏ+(C1−4/5)∫t0ℏ(t−ℏ)−1/2dℏ+6/25∫t0e2ℏ(t−ℏ)−1/2cos(ℏ)dℏ+8/25∫t0e2ℏ(t−ℏ)−1/2sin(ℏ)dℏ. |
Fixing y2=t−ℏ, then
∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ]dℏ=2(C2−6/25)√t+4/3(C1−4/5)t3/2+4/25e2t(3cos(t)∫√t0e−2y2cos(y2)dy+3sin(t)∫√t0e−2y2sin(y2)dy+4sin(t)∫√t0e−2y2cos(y2)dy−4cos(t)∫√t0e−2y2sin(y2)dy). | (5.3) |
Pointing out that
|e−2y2cos(y2)|≤e−2y2,|e−2y2sin(y2)|≤e−2y2 and limt→∞∫√t0e−2y2dy=√2π4, |
we can conclude that
limt→∞∫√t0e−2y2cos(y2)dy and limt→∞∫√t0e−2y2sin(y2)dy |
are convergent. Thus, we have that
limt→∞[cos(t)(3∫√t0e−2y2cos(y2)dy−4∫√t0e−2y2sin(y2)dy)+sint(3∫√t0e−2y2sin(y2)dy+4∫√t0e−2y2cos(y2)dy)] |
is convergent. Fixing
limt→∞∫√t0e−2y2cos(y2)dy=P,limt→∞∫√t0e−2y2sin(y2)dy=Q |
and considering the sequence
tn=3π2+2nπ−arctan(3P−4Q3Q+4P), |
we get
limn→∞{cos(tn)(3∫√tn0e−2y2cos(y2)dy−4∫√tn0e−2y2sin(y2)dy)+sin(tn)(3∫√tn0e−2y2sin(y2)dy+4∫√tn0e−2y2cos(y2)dy)}=√(3P−4Q)2+(3Q+4P)2sin(3π2+2nπ−arctan(3P−4Q3Q+4P)+arctan(3P−4Q3Q+4P))=5√P2+Q2sin(3π2+2nπ)=−5√P2+Q2. |
Since limn→∞tn=∞, from (5.3), we have
lim inft→∞∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ]dℏ=lim infn→∞{2(C2−6/25)√tn+4/3(e−1C1−4/5)t3/2n+4/25e2tn[cos(tn)(3∫√tn0e−2y2cos(y2)dy−4∫√tn0e−2y2sin(y2)dy)+sin(tn)(3∫√tn0e−2y2sin(y2)dy+4∫√tn0e−2y2cos(y2)dy)]}=−∞<0. |
Similarly, fixing
tn=π2+2nπ−arctan(3P−4Q3Q+4P), |
we get
limn→∞[cos(tn)(3∫√tn0e−2y2cos(y2)dy−4∫√tn0e−2y2sin(y2)dy)+sin(tn)(3∫√tn0e−2y2sin(y2)dy+4∫√tn0e−2y2cos(y2)dy)]=5√P2+Q2. |
Thus, from (5.3), we can get
\limsup\limits_{ t\to\infty}\int_{0}^{ t}\frac{( t-\hbar)^{\alpha-1}}{r(\hbar)}\left[C_{2}+\int_{ t_{0}}^{\hbar}\frac{C_{1}}{e^{A(\tau)}a(\tau)}d\tau+\int_{ t_{0}}^{\hbar}\frac{1}{e^{A(\tau)}a(\tau)}\left(\int_{ t_{0}}^{\tau}e^{A(\zeta)}F(\zeta)d\zeta\right)d\tau \right]d\hbar\\ = \limsup\limits_{n\to\infty}\\ \left\{2(C_{2}-6/25)\sqrt{ t_{n}}+4/3(e^{-1}C_{1}-4/5) t_{n}^{3/2}+4/25e^{2 t_{n}}\left[\cos (t_{n}) \left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy\right.\right.\right.\\ \quad\left.\left.\left.-4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy\right)+\sin (t_{n})\left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy+4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy\right) \right]\right\}\\ = \infty > 0. |
Therefore, by referring to Theorem 1, the solutions of (5.1) and (5.2) are oscillatory.
Example 2. Let us consider the fractional partial differential system
\frac{1}{1875\sqrt{\pi}}D_{+, t}^{\frac{5}{2}}u(y, t) = \frac{1}{10^{5} t^{\frac{5}{2}}}\Delta u(y, t)+\\ \left(\frac{16}{75\times 10^{2}\pi t^{3}}-\frac{16e^{2 t}\cos (t)}{5\pi t^{3}}\right)\int_{0}^{ t}( t-\hbar)^{-\frac{1}{2}}u(y, \hbar)d\hbar\\ +e^{2 t}\cos (t)\cos(10y), \quad (y, t)\in (0, \pi)\times (0, 1.5) | (5.4) |
with the condition
\begin{align} u(0, t) = u(\pi, t) = 0. \end{align} | (5.5) |
In the above, a(t) = 1 , r(t) = \frac{1}{1875\sqrt{\pi}} , g(t) = t , \alpha = 1/2 , p(t) = 0 , b(t) = \frac{1}{2\times 10^{5} t^{\frac{5}{2}}} , m = 1 , a_{1}(t) = \frac{1}{2\times 10^{5} t^{\frac{5}{2}}} , \tau_{1} = 0 , q(y, t) = \frac{-16}{75\times 10^{2}\pi t^{3}}+\frac{16e^{2 t}\cos (t)}{5\pi t^{3}}, f(y, t) = e^{2 t}\cos (t) \sin (y), Q = (0, \pi), q(t) = \min_{y\in(0, \pi)}q(y, t) = \frac{-16}{75\times 10^{2}\pi t^{3}}+\frac{16e^{2 t}\cos (t)}{5\pi t^{3}} and t_{0} = 0 . It is obvious that \beta_{0} = 1 and \phi(y) = \sin (y). Since F_{1}(t) = \int_{0}^{\pi}e^{2 t}\cos (t) \cos(10y) \sin (y) dy = \frac{-2}{99}e^{2 t}\cos (t) and A(t) = 0, we have
\begin{align*} &\int_{0}^{ t}\frac{( t-\hbar)^{\alpha-1}}{r(\hbar)}\left(C_{2}+\int_{ t_{0}}^{\hbar}\frac{C_{1}}{e^{A(\tau)}a(\tau)}d\tau+\int_{ t_{0}}^{\hbar}\frac{1}{e^{A(\tau)}a(\tau)}\left(\int_{ t_{0}}^{\tau}e^{A(\zeta)}F(\zeta)d\zeta\right)d\tau \right)d\hbar\\ & = -\frac{3750\sqrt{\pi}}{99}\int_{0}^{ t}( t-\hbar)^{\alpha-1}\left(\int_{ t_{0}}^{\hbar}\left(\int_{ t_{0}}^{\tau}e^{2\zeta}\cos (\zeta) d\zeta\right)d\tau \right)d\hbar\\ & = \frac{50\sqrt{\pi}}{11}\int_{0}^{ t}( t-\hbar)^{-1/2}d\hbar+\frac{500\sqrt{\pi}}{33}\int_{0}^{ t}\hbar( t-\hbar)^{-1/2}d\hbar\\ &\quad-\frac{50\sqrt{\pi}}{33}\left[3\int_{0}^{ t}e^{2\hbar}( t-\hbar)^{-1/2}\cos (\hbar) d\hbar+4\int_{0}^{ t}e^{2\hbar}( t-\hbar)^{-1/2}\sin( \hbar) d\hbar\right]. \end{align*} |
Fixing y^{2} = t-\hbar , then
\int_{0}^{ t}\frac{( t-\hbar)^{\alpha-1}}{r(\hbar)}\left[C_{2}+\int_{ t_{0}}^{\hbar}\frac{C_{1}}{e^{A(\tau)}a(\tau)}d\tau+\int_{ t_{0}}^{\hbar}\frac{1}{e^{A(\tau)}a(\tau)}\left(\int_{ t_{0}}^{\tau}e^{A(\zeta)}F(\zeta)d\zeta\right)d\tau \right]d\hbar\\ = \frac{10^{2}\sqrt{\pi t}}{11}+\frac{2\times 10^{3}}{99} t^{3/2}-\frac{10^{2}\sqrt{\pi}}{33}e^{2 t}\left\{3\cos (t) \int_{0}^{\sqrt{ t}}e^{-2y^{2}}\cos (y^{2})dy\right.\\ \left.+3\sin (t)\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\sin (y^{2})dy+4\sin (t)\\ \int_{0}^{\sqrt{ t}}e^{-2y^{2}}\cos (y^{2})dy-4\cos (t) \int_{0}^{\sqrt{ t}}e^{-2y^{2}}\sin (y^{2})dy\right\}. | (5.6) |
Pointing out that
|e^{-2y^{2}}\cos (y^{2})|\le e^{-2y^{2}}, \; |e^{-2y^{2}}\sin (y^{2})|\le e^{-2y^{2}}\;\text{ and }\; \lim\limits_{ t\to\infty}\int_{0}^{\sqrt{ t}}e^{-2y^{2}}dy = \frac{\sqrt{2\pi}}{4}, |
we can conclude that
\lim\limits_{ t\to\infty}\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\cos (y^{2})dy\quad\text{ and }\quad\lim\limits_{ t\to\infty}\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\sin (y^{2})dy |
are convergent. Thus, we have that
\begin{align*} \lim\limits_{ t\to\infty}&\left[\cos (t) \left(3\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\cos (y^{2})dy-4\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\sin (y^{2})dy\right)\right.\\ &\quad\left.+\sin t\left(3\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\sin (y^{2})dy+4\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\cos (y^{2})dy\right)\right] \end{align*} |
is convergent. Fixing
\lim\limits_{ t\to\infty}\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\cos (y^{2})dy = P\;\text{ and }\;\lim\limits_{ t\to\infty}\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\sin (y^{2})dy = Q |
and considering the sequence
t_{n} = \frac{3\pi}{2}+2n\pi-\arctan \biggl(\frac{3P-4Q}{3Q+4P}\biggl), |
we get
\begin{align*} \lim\limits_{n\to\infty}&\left\{\cos (t_{n}) \left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy-4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy\right)\right.\\ &\quad\left.+\sin (t_{n})\left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy+4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy\right)\right\}\\ & = \sqrt{(3P-4Q)^{2}+(3Q+4P)^{2}}\sin\left(\frac{3\pi}{2}+2n\pi-\arctan \left(\frac{3P-4Q}{3Q+4P}\right)+\arctan \left(\frac{3P-4Q}{3Q+4P}\right)\right)\\ & = 5\sqrt{P^{2}+Q^{2}}\sin\left(\frac{3\pi}{2}+2n\pi\right)\\ & = -5\sqrt{P^{2}+Q^{2}}. \end{align*} |
Since \lim\limits_{n\to\infty} t_{n} = \infty , from (5.6), we have
\limsup\limits_{ t\to\infty} \int_{0}^{ t}\frac{( t-\hbar)^{\alpha-1}}{r(\hbar)}\left[C_{2}+\int_{ t_{0}}^{\hbar}\frac{C_{1}}{e^{A(\tau)}a(\tau)}d\tau+\int_{ t_{0}}^{\hbar}\frac{1}{e^{A(\tau)}a(\tau)}\left(\int_{ t_{0}}^{\tau}e^{A(\zeta)}F(\zeta)d\zeta\right)d\tau \right]d\hbar\\ = \limsup\limits_{n\to\infty}\left\{\frac{10^{2}\sqrt{\pi t_{n}}}{11}\sqrt{ t_{n}}+\frac{2\times 10^{3}}{99} t_{n}^{3/2}-\frac{10^{2}\sqrt{\pi}}{33}e^{2 t_{n}}\left[\cos (t_{n}) \left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy\right.\right.\right.\\ \quad\left.\left.\left.-4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy\right)+\sin (t_{n})\left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy+4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy \right)\right]\right\}\\ = \infty > 0. |
Similarly, fixing
\begin{align*} t_{n} = \frac{\pi}{2}+2n\pi-\arctan \left(\frac{3P-4Q}{3Q+4P}\right), \end{align*} |
we get
\begin{align*} \lim\limits_{n\to\infty}&\left\{\cos (t_{n})\left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy-4\int_{0}^{\sqrt{t_{n}}}e^{-2y^{2}}\sin (y^{2})dy\right)\right.\\ &\quad\left.+\sin (t_{n})\left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy+4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy\right)\right\}\\ & = 5\sqrt{P^{2}+Q^{2}}. \end{align*} |
Thus, from (5.6), we get
\liminf\limits_{ t\to\infty} \int_{0}^{ t}\frac{( t-\hbar)^{\alpha-1}}{r(\hbar)}\left[C_{2}+\int_{ t_{0}}^{\hbar}\frac{C_{1}}{e^{A(\tau)}a(\tau)}d\tau+\int_{ t_{0}}^{\hbar}\frac{1}{e^{A(\tau)}a(\tau)}\left(\int_{ t_{0}}^{\tau}e^{A(\zeta)}F(\zeta)d\zeta\right)d\tau \right]d\hbar\\ = \liminf\limits_{n\to\infty}\left\{\frac{10^{2}\sqrt{\pi t_{n}}}{11}\sqrt{ t_{n}}+\frac{2\times 10^{3}}{99} t_{n}^{3/2}-\frac{10^{2}\sqrt{\pi}}{33}e^{2 t_{n}}\left[\cos (t_{n}) \left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy\right.\right.\right.\\ \quad\left.\left.\left.-4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy\right)+\sin (t_{n})\left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy+4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy \right)\right]\right\}\\ = -\infty < 0. |
Therefore, by referring to Theorem 2, the solutions of (5.4) and (5.5) are oscillatory. In fact, u(y, t) = t^{5/2}\cos(10y) is a solution of (5.4) and (5.5) and its oscillatory behavior is demonstrated in Figure 1.
In this paper, we have obtained some new oscillation results for the fractional partial differential equation with damping and forcing terms under Robin and Dirichlet boundary conditions. The main results are proved by using only the integral averaging technique and without implementing the Riccati approach. Further, the obtained results are justified by some examples which can not be commented upon by using the previous results. Our results have been obtained for the general equation which may cover other particular cases.
A. Palanisamy was supported by the University Grants Commission (UGC-Ref. No.: 958/(CSIR-UGC NET JUNE 2018)), New Delhi, India and the third author was partially supported by the DST-FIST Scheme (Grant No. SR/FST/MST-115/2016), New Delhi, India. J. Alzabut is thankful to Prince Sultan University and Ostim Technical University for their endless support. The authors are grateful to the reviewers for their precious help in improving this manuscript.
The authors declare that they have no conflicts of interest.
[1] |
M. Alsuyuti, E. Doha, S. Ezz-Eldien, B. Bayoumi, D. Baleanu, Modified Galerkin algorithm for solving multitype fractional differential equations, Math. Method. Appl. Sci., 42 (2019), 1389–1412. https://doi.org/10.1002/mma.5431 doi: 10.1002/mma.5431
![]() |
[2] |
M. Amin, M. Abbas, M. Iqbal, D. Baleanu, Non-polynomial quintic spline for numerical solution of fourth-order time fractional partial differential equations, Adv. Differ. Equ., 2019 (2019), 183. https://doi.org/10.1186/s13662-019-2125-1 doi: 10.1186/s13662-019-2125-1
![]() |
[3] |
M. Amin, M. Abbas, M. Iqbal, A. Ismail, D. Baleanu, A fourth order non-polynomial quintic spline collocation technique for solving time fractional superdiffusion equations, Adv. Differ. Equ., 2019 (2019), 514. https://doi.org/10.1186/s13662-019-2442-4 doi: 10.1186/s13662-019-2442-4
![]() |
[4] |
M. Amin, M. Abbas, M. Iqbal, D. Baleanu, Numerical treatment of time-fractional Klein-Gordon equation using redefined extended cubic B-spline functions, Front. Phys., 8 (2020), 288. https://doi.org/10.3389/fphy.2020.00288 doi: 10.3389/fphy.2020.00288
![]() |
[5] |
R. Amin, S. Yuzbasi, L. Gao, M. Asif, I. Khan, Algorithm for the numerical solutions of Volterra population growth model with fractional order via Haar wavelet, Contemporary Mathematics, 1 (2020), 54–111. https://doi.org/10.37256/cm.00056.102-111 doi: 10.37256/cm.00056.102-111
![]() |
[6] |
J. Banas, D. O'Regan, On existence and local attractivity of solutions of a quadratic Volterra integral equation of fractional order, J. Math. Anal. Appl., 345 (2008), 573–582. https://doi.org/10.1016/j.jmaa.2008.04.050 doi: 10.1016/j.jmaa.2008.04.050
![]() |
[7] |
S. Bazm, A. Hosseini, Numerical solution of nonlinear integral equations using alternative Legendre polynomials, J. Appl. Math. Comput., 56 (2018), 25–51. https://doi.org/10.1007/s12190-016-1060-5 doi: 10.1007/s12190-016-1060-5
![]() |
[8] |
A. Bhrawy, S. Ezz-Eldien, A new Legendre operational technique for delay fractional optimal control problems, Calcolo, 53 (2016), 521–543. https://doi.org/10.1007/s10092-015-0160-1 doi: 10.1007/s10092-015-0160-1
![]() |
[9] | C. Canuto, M. Yousuff Hussaini, A. Quarteroni, T. Zang, Spectral methods: fundamentals in single domains, Berlin: Springer-Verlag, 2006. https://doi.org/10.1007/978-3-540-30726-6 |
[10] | V. Chelyshkov, Alternative orthogonal polynomials and quadratures, Electron. T. Numer. Anal., 25 (2006), 17–26. |
[11] |
E. Coutsias, T. Hagstrom, D. Torres, An efficient spectral method for ordinary differential equations with rational function, Math. Comput., 65 (1996), 611–635. https://doi.org/10.1090/S0025-5718-96-00704-1 doi: 10.1090/S0025-5718-96-00704-1
![]() |
[12] | K. Deimling, Nonlinear functional analysis, Berlin: Springer-Verlag, 1985. https://doi.org/10.1007/978-3-662-00547-7 |
[13] | K. Diethelm, The analysis of fractional differential equations, Berlin: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2 |
[14] |
E. Doha, A. Bhrawy, D. Baleanu, S. Ezz-Eldien, On shifted Jacobi spectral approximations for solving fractional differential equations, Appl. Math. Comput., 219 (2013), 8042–8056. https://doi.org/10.1016/j.amc.2013.01.051 doi: 10.1016/j.amc.2013.01.051
![]() |
[15] |
G. Elnagar, M. Kazemi, Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations, J. Comput. Appl. Math., 76 (1996), 147–158. https://doi.org/10.1016/S0377-0427(96)00098-2 doi: 10.1016/S0377-0427(96)00098-2
![]() |
[16] | A. El-Sayed, M. Mohamed, F. Mohamed, Existence of positive continuous solution of a quadratic integral equation of fractional orders, Journal of Fractional Calculus and Applications, 1 (2011), 1–7. |
[17] |
A. El-Sayed, H. Hashem, E. Ziada, Picard and Adomian decomposition methods for a quadratic integral equation of fractional order, Comput. Appl. Math., 33 (2014), 95–109. https://doi.org/10.1007/s40314-013-0045-3 doi: 10.1007/s40314-013-0045-3
![]() |
[18] | A. El-Sayed, M. Saleh, A. Ziada, Numerical and analytic solution for nonlinear quadratic integral equations, Math. Sci. Res. J., 12 (2008), 183–191. |
[19] |
A. El-Sayed, H. Hashem, Y. Omar, Positive continuous solution of a quadratic integral equation of fractional orders, Mathematical Sciences Letters, 2 (2013), 19–27. https://doi.org/10.12785/msl/020103 doi: 10.12785/msl/020103
![]() |
[20] |
S. Esmaeili, M. Shamsi, Y. Luchko, Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials, Comput. Math. Appl., 62 (2011), 918–929. https://doi.org/10.1016/j.camwa.2011.04.023 doi: 10.1016/j.camwa.2011.04.023
![]() |
[21] |
S. Ezz-Eldien, New quadrature approach based on operational matrix for solving a class of fractional variational problems, J. Comput. Phys., 317 (2016), 362–381. https://doi.org/10.1016/j.jcp.2016.04.045 doi: 10.1016/j.jcp.2016.04.045
![]() |
[22] |
S. Ezz-Eldien, E. Doha, Fast and precise spectral method for solving pantograph type Volterra integro-differential equations, Numer. Algor., 81 (2019), 57–77. https://doi.org/10.1007/s11075-018-0535-x doi: 10.1007/s11075-018-0535-x
![]() |
[23] |
S. Ezz-Eldien, Y. Wang, M. Abdelkawy, M. Zaky, A. Aldraiweesh, J. Machado, Chebyshev spectral methods for multi-order fractional neutral pantograph equations, Nonlinear Dyn., 100 (2020), 3785–3797. https://doi.org/10.1007/s11071-020-05728-x doi: 10.1007/s11071-020-05728-x
![]() |
[24] |
M. Fariborzi Araghi, S. Noeiaghdam, A novel technique based on the homotopy analysis method to solve the first kind Cauchy integral equations arising in the theory of airfoils, Journal of Interpolation and Approximation in Scientific Computing, 2016 (2016), 1–13. https://doi.org/10.5899/2016/jiasc-00092 doi: 10.5899/2016/jiasc-00092
![]() |
[25] |
F. Ghomanjani, S. Noeiaghdam, S. Micula, Application of transcedental Bernstein polynomials for solving two-dimensional fractional optimal control problems, Complexity, 2022 (2022), 4303775. https://doi.org/10.1155/2022/4303775 doi: 10.1155/2022/4303775
![]() |
[26] |
Z. Gu, Y. Chen, Piecewise Legendre spectral-collocation method for Volterra integro-differential equations, LMS J. Comput. Math., 18 (2015), 231–249. https://doi.org/10.1112/S1461157014000485 doi: 10.1112/S1461157014000485
![]() |
[27] |
M. Heydari, A computational method for a class of systems of nonlinear variable-order fractional quadratic integral equations, Appl. Numer. Math., 153 (2020), 164–178. https://doi.org/10.1016/j.apnum.2020.02.011 doi: 10.1016/j.apnum.2020.02.011
![]() |
[28] |
S. Hu, M. Khavani, W. Zhuang, Integral equations arrising in the kinetic theory of gases, Appl. Anal., 34 (1989), 261–266. https://doi.org/10.1080/00036818908839899 doi: 10.1080/00036818908839899
![]() |
[29] |
S. Kazem, S. Abbasbandy, S. Kumar, Fractional-order Legendre functions for solving fractional-order differential equations, Appl. Math. Model., 37 (2013), 5498–5510. https://doi.org/10.1016/j.apm.2012.10.026 doi: 10.1016/j.apm.2012.10.026
![]() |
[30] | C. Kelly, Approximation of solutions of some quadratic integral equations in transport theory, Journal of Integral Equations, 4 (1982), 221–237. |
[31] | E. Kreyszig, Introductory functional analysis with applications, New York: Wiley, 1978. |
[32] |
N. Khalid, M. Abbas, M. Iqbal, J. Singh, A. Ismail, A computational approach for solving time-fractional differential equation via spline functions, Alex. Eng. J., 59 (2020), 3061–3078. https://doi.org/10.1016/j.aej.2020.06.007 doi: 10.1016/j.aej.2020.06.007
![]() |
[33] | P. Kythe, P. Puri, Computational methods for linear integral equations, Boston: Birkhäuser, 2002. https://doi.org/10.1007/978-1-4612-0101-4 |
[34] |
Z. Ma, A. Alikhanov, C. Huang, G. Zhang, A multi-domain spectral collocation method for Volterra integral equations with a weakly singular kernel, Appl. Numer. Math., 167 (2021), 218–236. https://doi.org/10.1016/j.apnum.2021.05.006 doi: 10.1016/j.apnum.2021.05.006
![]() |
[35] |
F. Mohammadi, S. Mohyud-Din, A fractional-order Legendre collocation method for solving the Bagley-Torvik equations, Adv. Differ. Equ., 2016 (2016), 269. https://doi.org/10.1186/s13662-016-0989-x doi: 10.1186/s13662-016-0989-x
![]() |
[36] |
F. Mohammadi, Numerical solution of systems of fractional delay differential equations using a new kind of wavelet basis, Comput. Appl. Math., 37 (2018), 4122–4144. https://doi.org/10.1007/s40314-017-0550-x doi: 10.1007/s40314-017-0550-x
![]() |
[37] |
F. Mirzaee, E. Hadadian, Application of modified hat functions for solving nonlinear quadratic integral equations, Iranian Journal of Numerical Analysis and Optimization, 6 (2016), 65–84. https://doi.org/10.22067/ijnao.v6i2.46565 doi: 10.22067/ijnao.v6i2.46565
![]() |
[38] |
F. Mirzaee, S. Alipour, Approximate solution of nonlinear quadratic integral equations of fractional order via piecewise linear functions, J. Comput. Appl. Math., 331 (2018), 217–227. https://doi.org/10.1016/j.cam.2017.09.038 doi: 10.1016/j.cam.2017.09.038
![]() |
[39] |
S. Noeiaghdam, M. Fariborzi Araghi, D. Sidorov, Dynamical strategy on homotopy perturbation method for solving second kind integral equations using the CESTAC method, J. Comput. Appl. Math., 411 (2022), 114226. https://doi.org/10.1016/j.cam.2022.114226 doi: 10.1016/j.cam.2022.114226
![]() |
[40] |
S. Noeiaghdam, S. Micula, A novel method for solving second kind Volterra integral equations with discontinuous kernel, Mathematics, 9 (2021), 2172. https://doi.org/10.3390/math9172172 doi: 10.3390/math9172172
![]() |
[41] |
S. Noeiaghdam, D. Sidorov, A. Wazwaz, N. Sidorov, V. Sizikov, The numerical validation of the Adomian decomposition method for solving Volterra integral equation with discontinuous kernel using the CESTAC method, Mathematics, 9 (2021), 260. https://doi.org/10.3390/math9030260 doi: 10.3390/math9030260
![]() |
[42] | Z. Odibat, N. Shawagfeh, Generalized Taylor's formula, Appl. Math. Comput., 186 (2007), 286–293. https://doi.org/10.1016/j.amc.2006.07.102 |
[43] |
C. Oguza, M. Sezer, Chelyshkov collocation method for a class of mixed functional integro-differential equations, Appl. Math. Comput., 259 (2015), 943–954. https://doi.org/10.1016/j.amc.2015.03.024 doi: 10.1016/j.amc.2015.03.024
![]() |
[44] |
Y. Pan, J. Huang, Y. Ma, Bernstein series solutions of multi-dimensional linear and nonlinear Volterra integral equations with fractional order weakly singular kernels, Appl. Math. Comput., 347 (2019), 149–161. https://doi.org/10.1016/j.amc.2018.10.022 doi: 10.1016/j.amc.2018.10.022
![]() |
[45] | I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1999. |
[46] |
M. Rasty, M. Hadizadeh, A Product integration approach on new orthogonal polynomials for nonlinear weakly singular integral equations, Acta Appl. Math., 109 (2010), 861–873. https://doi.org/10.1007/s10440-008-9351-y doi: 10.1007/s10440-008-9351-y
![]() |
[47] |
P. Rahimkhani, Y. Ordokhani, Numerical solution of Volterra-Hammerstein delay integral equations, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 445–457. https://doi.org/10.1007/s40995-020-00846-y doi: 10.1007/s40995-020-00846-y
![]() |
[48] |
C. Ravichandran, D. Baleanu, Existence results for fractional neutral functional integro-differential evolution equations with infinite delay in Banach spaces, Adv. Differ. Equ., 2013 (2013), 215. https://doi.org/10.1186/1687-1847-2013-215 doi: 10.1186/1687-1847-2013-215
![]() |
[49] |
J. Saffar Ardabili, Y. Talaei, Chelyshkov collocation method for solving the two-dimensional Fredholm-Volterra integral equations, Int. J. Appl. Comput. Math., 4 (2018), 25. https://doi.org/10.1007/s40819-017-0433-2 doi: 10.1007/s40819-017-0433-2
![]() |
[50] |
M. Shafiq, M. Abbas, F. Abdullah, A. Majeed, T. Abdeljawad, M. Alqudah, Numerical solutions of time fractional Burgers equation involving Atangana-Baleanu derivative via cubic B-spline functions, Results Phys., 34 (2022), 105244. https://doi.org/10.1016/j.rinp.2022.105244 doi: 10.1016/j.rinp.2022.105244
![]() |
[51] |
Y. Talaei, M. Asgari, An operational matrix based on Chelyshkov polynomials for solving multi-order fractional differential equations, Neural. Comput. Applic., 30 (2018), 1369–1376. https://doi.org/10.1007/s00521-017-3118-1 doi: 10.1007/s00521-017-3118-1
![]() |
[52] |
Y. Talaei, Chelyshkov collocation approach for solving linear weakly singular Volterra integral equations, J. Appl. Math. Comput., 60 (2019), 201–222. https://doi.org/10.1007/s12190-018-1209-5 doi: 10.1007/s12190-018-1209-5
![]() |
[53] |
F. Usta, Numerical analysis of fractional Volterra integral equations via Bernstein approximation method, J. Comput. Appl. Math., 384 (2021), 113198. https://doi.org/10.1016/j.cam.2020.113198 doi: 10.1016/j.cam.2020.113198
![]() |
[54] |
K. Wang, Q. Wang, Taylor collocation method and convergence analysis for the Volterra-Fredholm integral equations, J. Comput. Appl. Math., 260 (2014), 294–300. https://doi.org/10.1016/j.cam.2013.09.050 doi: 10.1016/j.cam.2013.09.050
![]() |
[55] |
Ş. Yüzbaşi, M. Sezer, A numerical method to solve a class of linear integro-differential equations with weakly singular kernel, Math. Meth. Appl. Sci., 35 (2012), 621–632. https://doi.org/10.1002/mma.1559 doi: 10.1002/mma.1559
![]() |
[56] |
Ş. Yüzbaşi, Numerical solutions of fractional Riccati type differential equations by means of the Bernstein polynomials, Appl. Comput. Math., 219 (2013), 6328–6343. https://doi.org/10.1016/j.amc.2012.12.006 doi: 10.1016/j.amc.2012.12.006
![]() |
[57] |
Ş. Yüzbaşi, A numerical approximation for Volterra's population growth model with fractional order, Appl. Math. Model., 37 (2013), 3216–3227. https://doi.org/10.1016/j.apm.2012.07.041 doi: 10.1016/j.apm.2012.07.041
![]() |
[58] |
Ş. Yüzbaşi, A shifted Legendre method for solving a population model and delay linear Volterra integro-differential equations, Int. J. Biomath., 10 (2017), 1750091. http://dx.doi.org/10.1142/S1793524517500917 doi: 10.1142/S1793524517500917
![]() |
[59] |
Ş. Yüzbaşi, A new Bell function approach to solve linear fractional differential equations, Appl. Numer. Math., 174 (2022), 221–235. https://doi.org/10.1016/j.apnum.2022.01.014 doi: 10.1016/j.apnum.2022.01.014
![]() |
[60] | E. Ziada, Numerical solution for nonlinear quadratic integral equations, Journal of Fractional Calculus and Applications, 7 (2013), 1–11. |
1. | Jehad Alzabut, Said R. Grace, Jagan Mohan Jonnalagadda, Shyam Sundar Santra, Bahaaeldin Abdalla, Higher-Order Nabla Difference Equations of Arbitrary Order with Forcing, Positive and Negative Terms: Non-Oscillatory Solutions, 2023, 12, 2075-1680, 325, 10.3390/axioms12040325 | |
2. | Abdullah Özbekler, Kübra Uslu İşler, Jehad Alzabut, Sturmian comparison theorem for hyperbolic equations on a rectangular prism, 2024, 9, 2473-6988, 4805, 10.3934/math.2024232 | |
3. | Hasib Khan, Jehad Alzabut, J.F. Gómez-Aguilar, Praveen Agarwal, Piecewise mABC fractional derivative with an application, 2023, 8, 2473-6988, 24345, 10.3934/math.20231241 | |
4. | Jehad Alzabut, Said R. Grace, Shyam Sundar Santra, Mohammad Esmael Samei, Oscillation Criteria for Even-Order Nonlinear Dynamic Equations with Sublinear and Superlinear Neutral Terms on Time Scales, 2024, 23, 1575-5460, 10.1007/s12346-024-00961-w | |
5. | Osama Moaaz, Asma Al-Jaser, Functional differential equations of the neutral type: Oscillatory features of solutions, 2024, 9, 2473-6988, 16544, 10.3934/math.2024802 | |
6. | S. Sangeetha, S. K. Thamilvanan, S. S. Santra, S. Noeiaghdam, M. Abdollahzadeh, Property \bar{A} of third-order noncanonical functional differential equations with positive and negative terms, 2023, 8, 2473-6988, 14167, 10.3934/math.2023724 |