N | HOC-ADI Method [20] | FVM [7] | Present method | C.R. |
4 \times 4 | 6.12E-3 | 4.92E-2 | 9.892E-3 | – |
6 \times 6 | 1.68E-3 | 2.05E-2 | 4.319E-4 | 3.8613 |
8 \times 8 | 7.69E-4 | 1.27E-2 | 9.758E-6 | 6.5873 |
10 \times 10 | 4.40E-4 | 9.20E-3 | 1.577E-7 | 9.2432 |
In this paper we use the topological degree and the fountain theorem to study the existence of weak solutions for a fractional p-Laplacian equation in a bounded domain. For the nonlinearity f, we consider two situations: (1) the non-resonance case where f is (p−1)-asymptotically linear at infinity; (2) the resonance case where f satisfies the Landesman-Lazer type condition.
Citation: Zhiwei Lv, Jiafa Xu, Donal O'Regan. Solvability for a fractional p-Laplacian equation in a bounded domain[J]. AIMS Mathematics, 2022, 7(7): 13258-13270. doi: 10.3934/math.2022731
[1] | Obaid Algahtani, M. A. Abdelkawy, António M. Lopes . A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations. AIMS Mathematics, 2022, 7(8): 15453-15470. doi: 10.3934/math.2022846 |
[2] | Yingchao Zhang, Yingzhen Lin . An ε-approximation solution of time-fractional diffusion equations based on Legendre polynomials. AIMS Mathematics, 2024, 9(6): 16773-16789. doi: 10.3934/math.2024813 |
[3] | Yingchao Zhang, Yuntao Jia, Yingzhen Lin . An ε-approximate solution of BVPs based on improved multiscale orthonormal basis. AIMS Mathematics, 2024, 9(3): 5810-5826. doi: 10.3934/math.2024282 |
[4] | Chuanhua Wu, Ziqiang Wang . The spectral collocation method for solving a fractional integro-differential equation. AIMS Mathematics, 2022, 7(6): 9577-9587. doi: 10.3934/math.2022532 |
[5] | Hui Zhu, Liangcai Mei, Yingzhen Lin . A new algorithm based on compressed Legendre polynomials for solving boundary value problems. AIMS Mathematics, 2022, 7(3): 3277-3289. doi: 10.3934/math.2022182 |
[6] | Chang Phang, Abdulnasir Isah, Yoke Teng Toh . Poly-Genocchi polynomials and its applications. AIMS Mathematics, 2021, 6(8): 8221-8238. doi: 10.3934/math.2021476 |
[7] | A.S. Hendy, R.H. De Staelen, A.A. Aldraiweesh, M.A. Zaky . High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates. AIMS Mathematics, 2023, 8(10): 22766-22788. doi: 10.3934/math.20231160 |
[8] | Shazia Sadiq, Mujeeb ur Rehman . Solution of fractional boundary value problems by ψ-shifted operational matrices. AIMS Mathematics, 2022, 7(4): 6669-6693. doi: 10.3934/math.2022372 |
[9] | Yuanqiang Chen, Jihui Zheng, Jing An . A Legendre spectral method based on a hybrid format and its error estimation for fourth-order eigenvalue problems. AIMS Mathematics, 2024, 9(3): 7570-7588. doi: 10.3934/math.2024367 |
[10] | Yones Esmaeelzade Aghdam, Hamid Mesgarani, Zeinab Asadi, Van Thinh Nguyen . Investigation and analysis of the numerical approach to solve the multi-term time-fractional advection-diffusion model. AIMS Mathematics, 2023, 8(12): 29474-29489. doi: 10.3934/math.20231509 |
In this paper we use the topological degree and the fountain theorem to study the existence of weak solutions for a fractional p-Laplacian equation in a bounded domain. For the nonlinearity f, we consider two situations: (1) the non-resonance case where f is (p−1)-asymptotically linear at infinity; (2) the resonance case where f satisfies the Landesman-Lazer type condition.
In this paper, we propose shifted-Legendre orthogonal function method for high-dimensional heat conduction equation [1]:
{∂u∂t=k(∂2u∂x2+∂2u∂y2+∂2u∂z2),t∈[0,1],x∈[0,a],y∈[0,b],z∈[0,c],u(0,x,y,z)=ϕ(x,y,z),u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. | (1.1) |
Where u(t,x,y,z) is the temperature field, ϕ(x,y,z) is a known function, k is the thermal diffusion efficiency, and a,b,c are constants that determine the size of the space.
Heat conduction system is a very common and important system in engineering problems, such as the heat transfer process of objects, the cooling system of electronic components and so on [1,2,3,4]. Generally, heat conduction is a complicated process, so we can't get the analytical solution of heat conduction equation. Therefore, many scholars proposed various numerical algorithms for heat conduction equation [5,6,7,8]. Reproducing kernel method is also an effective numerical algorithm for solving boundary value problems including heat conduction equation [9,10,11,12,13,14]. Galerkin schemes and Green's function are also used to construct numerical algorithms for solving one-dimensional and two-dimensional heat conduction equations [15,16,17,18,19]. Alternating direction implicit (ADI) method can be very effective in solving high-dimensional heat conduction equations [20,21]. In addition, the novel local knot method and localized space time method are also used to solve convection-diffusion problems [22,23,24,25]. These methods play an important reference role in constructing new algorithms in this paper.
Legendre orthogonal function system is an important function sequence in the field of numerical analysis. Because its general term is polynomial, Legendre orthogonal function system has many advantages in the calculation process. Scholars use Legendre orthogonal function system to construct numerical algorithm of differential equations [26,27,28].
Based on the orthogonality of Legendre polynomials, we delicately construct a numerical algorithm that can be extended to high-dimensional heat conduction equation. The proposed algorithm has α-Order convergence, and our algorithm can achieve higher accuracy compared with other algorithms.
The content of the paper is arranged like this: The properties of shifted Legendre polynomials, homogenization and spatial correlation are introduced in Section 2. In Section 3, we theoretically deduce the numerical algorithm methods of high-dimensional heat conduction equations. The convergence of the algorithm is proved in Section 4. Finally, three numerical examples and a brief summary are given at the end of this paper.
In this section, the concept of shifted-Legendre polynomials and the space to solve Eq (1.1) are introduced. These knowledge will pave the way for describing the algorithm in this paper.
The traditional Legendre polynomial is the orthogonal function system on [−1,1]. Since the variables t,x,y,z to be analyzed for Eq (1.1) defined in different intervals, it is necessary to transform the Legendre polynomial on [c1,c2], c1,c2∈R, and the shifted-Legendre polynomials after translation transformation and expansion transformation by Eq (2.1).
p0(x)=1,p1(x)=2(x−c1)c2−c1−1,pi+1(x)=2i+1i+1[2(x−c1)c2−c1−1]pi(x)−ii+1pi−1(x),i=1,2,⋯. | (2.1) |
Obviously, {pi(x)}∞i=0 is a system of orthogonal functions on L2[c1,c2], and
∫c2c1pi(x)pj(x)dx={c2−c12i+1,i=j,0,i≠j. |
Let Li(x)=√2i+1c2−c1pi(x). Based on the knowledge of ref. [29], we begin to discuss the algorithm in this paper.
Lemma 2.1. [29] {Li(x)}∞i=0 is a orthonormal basis in L2[c1,c2].
Considering that the problem studied in this paper has a nonhomogeneous boundary value condition, the problem (1.1) can be homogenized by making a transformation as follows.
v(t,x,y,z)=u(t,x,y,z)−ϕ(x,y,z). |
Here, homogenization is necessary because we can easily construct functional spaces that meet the homogenization boundary value conditions. This makes us only need to pay attention to the operator equation itself in the next research, without considering the interference caused by boundary value conditions.
In this paper, in order to avoid the disadvantages of too many symbols, the homogeneous heat conduction system is still represented by u, the thermal diffusion efficiency k=1, and the homogeneous system of heat conduction equation is simplified as follows:
{∂2u∂x2+∂2u∂y2+∂2u∂z2−∂u∂t=f(x,y,z),t∈[0,1],x∈[0,a],y∈[0,b],z∈[0,c],u(0,x,y,z)=0,u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. | (2.2) |
The solution space of Eq (2.2) is a high-dimensional space, which can be generated by some one-dimensional spaces. Therefore, this section first defines the following one-dimensional space.
Remember AC represents the space of absolutely continuous functions.
Definition 2.1. W1[0,1]={u(t)|u∈AC,u(0)=0,u′∈L2[0,1]}, and
⟨u,v⟩W1=∫10u′v′dt,u,v∈W1. |
Let c1=0,c2=1, so {Ti(t)}∞i=0 is the orthonormal basis in L2[0,1], where Ti(t)=Li(t), note Tn(t)=n∑i=0citi. And {JTn(t)}∞n=0 is the orthonormal basis of W1[0,1], where
JTn(t)=n∑i=0citi+1i+1. |
Definition 2.2. W2[0,a]={u(x)|u′∈AC,u(0)=u(a)=0,u″∈L2[0,a]}, and
⟨u,v⟩W2=∫a0u″v″dx,u,v∈W2. |
Similarly, {Pn(x)}∞n=0 is the orthonormal basis in L2[0,a], and denote Pn(x)=n∑j=0djxj, where dj∈R.
Let
JPn(x)=n∑j=0djxj+2−aj+1x(j+1)(j+2), |
obviously, {JPn(x)}∞n=0 is the orthonormal basis of W2[0,a].
We start with solving one-dimensional heat conduction equation, and then extend the algorithm to high-dimensional heat conduction equations.
{∂2u∂x2−∂u∂t=f(x),t∈[0,1],x∈[0,a],u(0,x)=0,u(t,0)=u(t,a)=0. | (3.1) |
Let D=[0,1]×[0,a], CC represents the space of completely continuous functions, and Nn represents a set of natural numbers not exceeding n.
Definition 3.1. W(D)={u(t,x)|∂u∂x∈CC,(t,x)∈D,u(0,x)=0,u(t,0)=u(t,a)=0,∂3u∂t∂x2∈L2(D)}, and
⟨u,v⟩W(D)=∬D∂3u∂t∂x2∂3v∂t∂x2dσ. |
Theorem 3.1. W(D) is an inner product space.
Proof. ∀u(t,x)∈W(D), if ⟨u,u⟩W(D)=0, means
∬D[∂3u(t,x)∂t∂x2]2dσ=0, |
and it implies
∂3u(t,x)∂t∂x2=∂∂t(∂2u(t,x)∂x2)=0. |
Combined with the conditions of W(D), we can get u=0.
Obviously, W(D) satisfies other conditions of inner product space.
Theorem 3.2. ∀u∈W(D),v1(t)v2(x)∈W(D), then
⟨u(t,x),v1(t)v2(x)⟩W(D)=⟨⟨u(t,x),v1(t)⟩W1,v2(x)⟩W2. |
Proof.⟨u(t,x),v1(t)v2(x)⟩W(D)=∬D∂3u(t,x)∂t∂x2∂3[v1(t)v2(x)]∂t∂x2dσ=∬D∂2∂x2[∂u(t,x)∂t]∂v1(t)∂t∂2v2(x)∂x2dσ=∫a0∂2∂x2⟨u(t,x),v1(t)⟩W1∂2v2(x)∂x2dx=⟨⟨u(t,x),v1(t)⟩W1,v2(x)⟩W2. |
Corollary 3.1. ∀u1(t)u2(x)∈W(D),v1(t)v2(x)∈W(D), then
⟨u1(t)u2(x),v1(t)v2(x)⟩W(D)=⟨u1(t),v1(t)⟩W1⟨u2(x),v2(x)⟩W2. |
Let
ρij(t,x)=JTi(t)JPj(x),i,j∈N. |
Theorem 3.3. {ρij(t,x)}∞i,j=0is an orthonormal basis inW(D).
Proof. ∀ρij(t,x),ρlm(t,x)∈W(D),i,j,l,m∈N,
⟨ρij(t,x),ρlm(t,x)⟩W(D)=⟨JTi(t)JPj(x),JTl(t)JPm(x)⟩W(D)=⟨JTi(t),JTl(t)⟩W1⟨JPj(x),JPm(x)⟩W2. |
So
⟨ρij(t,x),ρlm(t,x)⟩W(D)={1,i=l,j=m,0,others. |
In addition, ∀u∈W(D), if ⟨u,ρij⟩W(D)=0, means
⟨u(t,x),JTi(t)JPj(x)⟩W(D)=⟨⟨u(t,x),JTi(t)⟩W1,JPj(x)⟩W2=0. |
Note that {JPj(x)}∞j=0 is the complete system of W2, so ⟨u(t,x),JTi(t)⟩W1=0.
Similarly, we can get u(t,x)=0.
Let L:W(D)→L2(D),
Lu=∂2u∂x2−∂u∂t. |
So, Eq (3.1) can be simplified as
Lu=f. | (3.2) |
Definition 3.2. ∀ε>0, if u∈W(D) and
||Lu−f||2L(D)<ε, | (3.3) |
then u is called the ε−best approximate solution for Lu=f.
Theorem 3.4. Any ε>0, there is N∈N, when n>N, then
un(t,x)=n∑i=0n∑j=0η∗ijρij(t,x) | (3.4) |
is the ε−best approximate solution for Lu=f, where η∗ij satisfies
||n∑i=0n∑j=0η∗ijLρij−f||2L2(D)=mindij||n∑i=0n∑j=0dijLρij−f||2L2(D),dij∈R,i,j∈Nn. |
Proof. According to the Theorem 3.3, if u satisfies Eq (3.2), then u(t,x)=∞∑i=0∞∑j=0ηijρij(t,x), where ηij is the Fourier coefficient of u.
Note that L is a bounded operator [30], hence, any ε>0, there is N∈N, when n>N, then
||∞∑i=n+1∞∑j=n+1ηijρij||2W(D)<ε||L||2. |
So,
||n∑i=0n∑j=0η∗ijLρij−f||2L2(D)=mindij||n∑i=0n∑j=0dijLρij−f||2L2(D)≤||n∑i=0n∑j=0ηijLρij−f||2L2(D)=||n∑i=0n∑j=0ηijLρij−Lu||2L2(D)=||∞∑i=n+1∞∑j=n+1ηijLρij||2L2(D)≤||L||2||∞∑i=n+1∞∑j=n+1ηijρij||2W(D)< ε. |
For obtain un(t,x), we need to find the coefficients η∗ij by solving Eq (3.5).
min | (3.5) |
In addition,
J = \|\mathcal{L}u_n-f\|_{L^2(D)}^2\\ = \langle\mathcal{L}u_n-f,\mathcal{L}u_n-f\rangle_{L^2(D)} \\ = \langle\mathcal{L}u_n,\mathcal{L}u_n\rangle_{L^2(D)}-2\langle\mathcal{L}u_n,f\rangle_{L^2(D)}+\langle f,f\rangle_{L^2(D)}\\ = \sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{n}\sum\limits_{l = 0}^{n}\sum\limits_{m = 0}^{n}\eta_{ij}\eta_{lm}\langle\mathcal{L}\rho_{ij},\mathcal{L}\rho_{lm}\rangle_{L^2(D)}-2\sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{n}\eta_{ij}\langle\mathcal{L}\rho_{ij},f\rangle_{L^2(D)}+\langle f,f\rangle_{L^2(D)} . |
So,
\frac{\partial J}{\partial \eta_{ij}} = 2\sum\limits_{l = 0}^{n}\sum\limits_{m = 0}^{n}\eta_{lm}\langle\mathcal{L}\rho_{ij},\mathcal{L}\rho_{lm}\rangle_{L^2(D)}-2\eta_{ij}\langle\mathcal{L}\rho_{ij},f\rangle_{L^2(D)},\; \; i,j\in \mathbb{N}_n |
and the equations \frac{\partial J}{\partial \eta_{ij}} = 0, \; \; i, j \in \mathbb{N}_n can be simplified to
\begin{equation} {\textbf{A}}\eta = {\textbf{B}}, \end{equation} | (3.6) |
where
{\textbf{A}} = (\langle\mathcal{L}\rho_{ij},\mathcal{L}\rho_{lm}\rangle_{L^2(D)})_{N\times N},\; \; N = (n+1)^2,\\\eta = (\eta_{ij})_{N\times 1} , {\textbf{B}} = (\langle\mathcal{L}\rho_{ij},f\rangle_{L^2(D)})_{N\times 1}. |
Theorem 3.5. {\textbf{A}}\eta = {\textbf{B}} has a unique solution.
Proof. It can be proved that {\textbf{A}} is nonsingular. Let \eta satisfy {\textbf{A}}\eta = 0 , that is,
\sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{n}\langle\mathcal{L}\rho_{ij},\mathcal{L}\rho_{lm}\rangle_{L^2(D)}\eta_{ij} = 0,\; \; l,m\in \mathbb{N}_n. |
So, we can get the following equations:
\sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{n}\langle\eta_{ij}\mathcal{L}\rho_{ij},\eta_{lm}\mathcal{L}\rho_{lm}\rangle_{L^2(D)} = 0,\; \; l,m\in \mathbb{N}_n. |
By adding the above (n+1)^2 equations, we can get
\langle\sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{n}\eta_{ij}\mathcal{L}\rho_{ij},\sum\limits_{l = 0}^{n}\sum\limits_{m = 0}^{n}\eta_{lm}\mathcal{L}\rho_{lm}\rangle_{L^2(D)} = \|\sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{n}\eta_{ij}\mathcal{L}\rho_{ij}\|_{L^2(D)}^2 = 0. |
So,
\sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{n}\eta_{ij}\mathcal{L}\rho_{ij} = 0. |
Note that \mathcal{L} is reversible. Therefore, \eta_{ij} = 0, \; \; i, j\in \mathbb{N}_n.
According to Theorem 3.5, u_n(t, x) can be obtained by substituting \eta = A^{-1}B into u_n = \sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{n}\eta_{ij}\rho_{ij}(t, x) .
\begin{equation} \left\{ \begin{array}{l} \dfrac{\partial^2 u}{\partial x^2}+\dfrac{\partial^2 u}{\partial y^2}-\dfrac{\partial u}{\partial t} = f(x,y),\; \; t\in[0,1],x\in[0,a],y\in[0,b],\\ u(0,x,y) = 0,\\ u(t,0,y) = u(t,a,y) = 0,\\ u(t,x,0) = u(t,x,b) = 0. \end{array} \right. \end{equation} | (3.7) |
Similar to definition 2.2, we can give the definition of linear space W_3[0, b] as follows:
W_3[0,b] = \{u(y)|u'\in AC, y\in [0,b], u(0) = u(b) = 0, u''\in L^2[0,b]\}. |
Similarly, let \{Q_n(y)\}_{n = 0}^\infty is the orthonormal basis in L^2[0, b] , and denote Q_n(y) = \sum\limits_{k = 0}^n q_k y^k .
Let
JQ_n(y) = \sum\limits_{k = 0}^n q_k \frac{y^{k+2}-b^{k+1}y}{(k+1)(k+2)}, |
it is easy to prove that \{JQ_n(y)\}_{n = 0}^\infty is the orthonormal basis of W_3[0, b] .
Let \Omega = [0, 1]\times[0, a]\times[0, b] . Now we define a three-dimensional space.
Definition 3.3 W(\Omega) = \{u(t, x, y)|\frac{\partial^2 u}{\partial x \partial y}\in CC, (t, x, y)\in \Omega, u(0, x, y) = 0, u(t, 0, y) = u(t, a, y) = 0, u(t, x, 0) = u(t, x, b) = 0, \frac{\partial^5 u}{\partial t\partial x^2\partial y^2}\in L^2(\Omega)\}, and
\begin{equation*} \begin{split} \langle u, v\rangle_{W(\Omega)} = \iiint\limits_\Omega \frac{\partial^5 u}{\partial t\partial x^2\partial y^2}\frac{\partial^5 v}{\partial t\partial x^2\partial y^2}d\Omega,\; \; \; \; u, v\in W(\Omega). \end{split} \end{equation*} |
Similarly, we give the following theorem without proof.
Theorem 3.6. \{\rho_{ijk}(t, x, y)\}_{i, j, k = 0}^\infty {\mathit{\mbox{is an orthonormal basis of}}}\; W(\Omega) , where
\rho_{ijk}(t,x,y) = JT_i(t)JP_j(x)JQ_k(y),\; \; i,j,k\in \mathbb{N}_n. |
Therefore, we can get u_n as
\begin{equation} u_n(t,x,y) = \sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{n}\sum\limits_{k = 0}^{n}\eta_{ijk}\rho_{ijk}(t,x,y), \end{equation} | (3.8) |
according to the theory in Section 3.1, we can find all \eta_{ijk}, \; \; i, j, k\in \mathbb{N}_n.
\begin{equation} \left\{ \begin{array}{l} \dfrac{\partial^2 u}{\partial x^2}+\dfrac{\partial^2 u}{\partial y^2}+\dfrac{\partial^2 u}{\partial z^2}-\dfrac{\partial u}{\partial t} = f(x,y,z),\; \; t\in[0,1],x\in[0,a],y\in[0,b],z\in[0,c],\\ u(0,x,y,z) = 0,\\ u(t,0,y,z) = u(t,a,y,z) = 0,\\ u(t,x,0,z) = u(t,x,b,z) = 0,\\ u(t,x,y,0) = u(t,x,y,c) = 0. \end{array} \right. \end{equation} | (3.9) |
By Lemma 2.1, note that the orthonormal basis of L_2[0, c] is \{R_n(z)\}_{n = 0}^\infty , and denote R_n(z) = \sum\limits_{m = 0}^n r_m z^m , where r_m is the coefficient of polynomial R_n(z) .
We can further obtain the orthonormal basis JR_n(z) = \sum\limits_{m = 0}^n r_m \frac{z^{m+2}-c^{m+1}z}{(m+1)(m+2)} of W_4[0, c] , where
JR_n(z) = \sum\limits_{m = 0}^n r_m \frac{z^{m+2}-c^{m+1}z}{(m+1)(m+2)}, |
and
W_4[0,c] = \{u(z)|u' \in AC, z \in [0,c], u(0) = u(c) = 0, u''\in L^2[0,c]\}. |
Let G = [0, 1]\times[0, a]\times[0, b]\times[0, c] . Now we define a four-dimensional space.
Definition 3.4. W(G) = \{u(t, x, y, z)|\frac{\partial^3 u}{\partial x \partial y \partial z}\in CC, (t, x, y, z)\in G, u(0, x, y, z) = 0, u(t, 0, y, z) = u(t, a, y, z) = 0, u(t, x, 0, z) = u(t, x, b, z) = 0, u(t, x, y, 0) = u(t, x, y, c) = 0, \frac{\partial^7 u}{\partial t\partial x^2\partial y^2\partial z^2}\in L^2(G)\}, and
\begin{equation*} \langle u, v\rangle_{W(G)} = \iiiint\limits_G \frac{\partial^7 u}{\partial t\partial x^2\partial y^2\partial z^2}\frac{\partial^7 v}{\partial t\partial x^2\partial y^2\partial z^2}dG,\; \; \; \; u, v\in W(G), \end{equation*} |
where dG = dtdxdydz.
Similarly, we give the following theorem without proof.
Theorem 3.7. \{\rho_{ijk}(t, x, y, z)\}_{i, j, k, m = 0}^\infty \mathit{\mbox{is an orthonormal basis of}}\; W(G) , where
\rho_{ijkm}(t,x,y,z) = JT_i(t)JP_j(x)JQ_k(y)JR_m(z),\; \; i,j,k,m\in \mathbb{N}. |
Therefore, we can get u_n as
\begin{equation} u_n(t,x,y,z) = \sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{n}\sum\limits_{k = 0}^{n}\sum\limits_{m = 0}^{n}\eta_{ijkm}\rho_{ijkm}(t,x,y,z), \end{equation} | (3.10) |
according to the theory in Section 3.1, we can find all \eta_{ijkm}, \; \; i, j, k, m\in\mathbb{N}_n.
Suppose u(t, x) = \sum\limits_{i = 0}^{\infty}\sum\limits_{j = 0}^{\infty}\eta_{ij}\rho_{ij}(t, x) is the exact solution of Eq (3.5). Let P_{N_1, N_2}u(t, x) = \sum\limits_{i = 0}^{N_1} \sum\limits_{j = 0}^{N_2} \eta_{ij}T_i(t)P_j(x) is the projection of u in L(D) .
Theorem 4.1. Suppose \dfrac{\partial^{r+l} u(t, x)}{\partial t^{r}\partial x^{l}}\in L^2(D) , and N_1 > r, N_2 > l , then, the error estimate of P_{N_1, N_2}u(t, x) is
||u-P_{N_1,N_2}u||_{L^2(D)}^2 \leq C N^{-\alpha}, |
where C is a constant, N = min\{N_1, N_2\}, \alpha = min\{r, l\}.
Proof. According to the lemma in ref. [29], it follows that
||u-u_{N_1}||_{L_t^2[0,1]}^2 = ||u-P_{t,N_1}u||_{L_t^2[0,1]}^2\leq C_1 N_1^{-r}|| \dfrac{\partial^r}{\partial t^r}u(t,x) ||_{L_t^2[0,1]}^2, |
where u_{N_1} = P_{t, N_1}u represents the projection of u on variable t in L^2[0, 1] , and ||\cdot||_{L_t^2[0, 1]} represents the norm of (\cdot) with respect to variable t in L^2[0, 1] .
By integrating both sides of the above formula with respect to x , we can get
\begin{equation*} \begin{array}{lll} ||u-u_{N_1}||_{L^2(D)}^2 &\leq & C_1 N_1^{-r} \int_0^a ||\dfrac{\partial^r}{\partial t^r}u||_{L_t^2[0,1]}^2 dx\\ & = & C_1 N_1^{-r}||\dfrac{\partial^r}{\partial t^r}u||_{L^2(D)}^2. \end{array} \end{equation*} |
Moreover,
\begin{equation*} \begin{array}{lll} u(t,x)-u_{N_1}(t,x) & = & \sum\limits_{i = N_1+1}^{\infty} \langle u, T_i\rangle _{L_t^2[0,1]}T_i(t)\\ & = & \sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{\infty} \langle \langle u, T_i\rangle _{L_t^2[0,1]}, P_j\rangle_{L_x^2[0,a]} P_j(x)T_i(t). \end{array} \end{equation*} |
According to the knowledge in Section 3,
||u-u_{N_1}||_{L^2(D)}^2 = \sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{\infty}c_{ij}^2, |
where c_{ij} = \langle \langle u, T_i\rangle _{L_t^2[0, 1]}, P_j\rangle_{L_x^2[0, a]} .
Therefore,
\sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{\infty}c_{ij}^2\leq C_1 N_1^{-r}||\dfrac{\partial^r}{\partial t^r}u||_{L^2(D)}^2. |
Similarly,
\sum\limits_{i = 0}^{\infty} \sum\limits_{j = N_2+1}^{\infty}c_{ij}^2\leq C_2 N_2^{-l}||\dfrac{\partial^l}{\partial x^l}u||_{L^2(D)}^2. |
In conclusion,
\begin{equation*} \begin{array}{lll} ||u-P_{N_1,N_2}u||_{L^2(D)}^2 & = & ||(\sum\limits_{i = 0}^{\infty} \sum\limits_{j = 0}^{\infty}-\sum\limits_{i = 0}^{N_1} \sum\limits_{j = 0}^{N_2})c_{ij}^2 T_i(t)P_j(x)||_{L^2(D)}^2\\ &\leq & \sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{N_2}c_{ij}^2+\sum\limits_{i = 0}^{\infty} \sum\limits_{j = N2+1}^{\infty}c_{ij}^2\\ &\leq & \sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{\infty}c_{ij}^2+\sum\limits_{i = 0}^{\infty} \sum\limits_{j = N_2+1}^{\infty}c_{ij}^2\\ &\leq & C_1 N_1^{-r}|| \dfrac{\partial^r}{\partial t^r}u||_{L^2(D)}^2 + C_2 N_2^{-l}|| \dfrac{\partial^l}{\partial x^l}u||_{L^2(D)}^2\\ &\leq & C N^{-\alpha}. \end{array} \end{equation*} |
Theorem 4.2. Suppose \dfrac{\partial^{r+l} u(t, x)}{\partial t^{r}\partial x^{l}}\in L^2(D) , u_n(t, x) is the \varepsilon- best approximate solution of Eq (3.2), and n > max\{r, l\} , then,
||u-u_n||_{W(D)}^2 \leq C n^{-\alpha}. |
where C is a constant, \alpha = min\{r, l\}.
Proof. According to Theorem 3.4 and Theorem 4.1, the following formula holds.
\begin{equation*} ||u-u_n||_{W(D)}^2 \leq ||u-P_{N_1,N_2}u||_{L^2(D)}^2\leq C n^{-\alpha}. \end{equation*} |
So, the \varepsilon- approximate solution has \alpha convergence order, and the convergence rate is related to n , where represents the number of bases, and the convergence order can calculate as follows.
\begin{equation} C.R. = log_{\frac{n_2}{n_1}}\frac{max|e_{n_1}|}{max|e_{n_2}|}. \end{equation} | (4.1) |
Where n_i, i = 1, 2 represents the number of orthonormal base elements.
Here, three examples are compared with other algorithms. N represents the number of orthonormal base elements. For example, N = 10 \times 10 , which means that we use the orthonormal system \{\rho_{ij}\}_{i, j = 0}^{10} of W(D) for approximate calculation, that is, we take the orthonormal system \{JT_i(t)\}_{i = 0}^{10} and \{JP_j(x)\}_{j = 0}^{10} to construct the \varepsilon- best approximate solution.
Example 5.1. Consider the following one-demensional heat conduction system [7,20]
\begin{eqnarray*} \left\{ \begin{array}{l} u_t = u_{xx},\; \; (t,x)\in [0,1]\times[0,2\pi],\\ u(0,x) = \sin(x),\\ u(t,0) = u(t,2\pi) = 0. \end{array} \right. \end{eqnarray*} |
The exact solution of Ex. 5.1 is e^{-t}\sin x .
In Table 1, C.R. is calculated according to Eq (4.2). The errors in Tables 1 and 2 show that the proposed algorithm is very effective. In Figures 1 and 2, the blue surface represents the surface of the real solution, and the yellow surface represents the surface of u_n . With the increase of N , the errors between the two surfaces will be smaller.
N | HOC-ADI Method [20] | FVM [7] | Present method | C.R. |
4 \times 4 | 6.12E-3 | 4.92E-2 | 9.892E-3 | – |
6 \times 6 | 1.68E-3 | 2.05E-2 | 4.319E-4 | 3.8613 |
8 \times 8 | 7.69E-4 | 1.27E-2 | 9.758E-6 | 6.5873 |
10 \times 10 | 4.40E-4 | 9.20E-3 | 1.577E-7 | 9.2432 |
|u-u_n| | t=0.1 | t=0.3 | t=0.5 | t=0.7 | t=0.9 |
x=\frac{\pi}{5} | 1.195E-8 | 3.269E-8 | 5.009E-8 | 6.473E-8 | 8.127E-8 |
x=\frac{3\pi}{5} | 2.583E-8 | 7.130E-8 | 1.088E-7 | 1.390E-7 | 1.577E-7 |
x=\frac{7\pi}{5} | 2.583E-8 | 7.130E-8 | 1.088E-7 | 1.390E-7 | 1.577E-7 |
x=\frac{9\pi}{5} | 1.195E-8 | 3.269E-8 | 5.009E-8 | 6.473E-8 | 8.127E-8 |
Example 5.2. Consider the following two-demensional heat conduction system [20,21]
\begin{eqnarray*} \left\{ \begin{array}{l} u_t = u_{xx}+u_{yy},\; \; (t,x,y)\in [0,1]\times[0,1]\times[0,1],\\ u(0,x,y) = \sin(\pi x)\sin(\pi y),\\ u(t,0,y) = u(t,1,y) = u(t,x,0) = u(t,x,1) = 0. \end{array} \right. \end{eqnarray*} |
The exact solution of Ex. 5.2 is u = e^{-2\pi^2 t}\sin(\pi x)\sin(\pi y) .
Example 5.2 is a two-dimensional heat conduction equation. Table 3 shows the errors comparison with other algorithms. Table 4 lists the errors variation law in the x- axis direction. Figures 3 and 4 show the convergence effect of the scheme more vividly.
N | CCD-ADI Method [21] | RHOC-ADI Method [20] | Present method | C.R. |
4 \times 4 \times 4 | 8.820E-3 | 3.225E-2 | 5.986E-3 | – |
8 \times 8 \times 8 | 6.787E-5 | 1.969E-3 | 3.126E-5 | 2.52704 |
|u-u_n| | y=0.1 | y=0.3 | y=0.5 | y=0.7 | y=0.9 |
x=0.1 | 7.414E-6 | 1.963E-5 | 2.421E-5 | 1.963E-5 | 7.414E-6 |
x=0.3 | 1.963E-5 | 5.130E-5 | 6.347E-5 | 5.130E-5 | 1.963E-5 |
x=0.5 | 2.421E-5 | 6.347E-5 | 7.839E-5 | 6.347E-5 | 2.421E-5 |
x=0.7 | 1.963E-5 | 5.130E-5 | 6.347E-5 | 5.130E-5 | 1.963E-5 |
x=0.9 | 7.414E-6 | 1.963E-5 | 2.421E-5 | 1.963E-5 | 7.414E-6 |
Example 5.3. Consider the three-demensional problem as following:
\begin{eqnarray*} \left\{ \begin{array}{l} (\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2})u_t = u_{xx}+u_{yy}+u_{zz},\; \; (t,x,y,z)\in [0,1]\times[0,a]\times[0,b]\times[0,c],\\ u(0,x,y) = \sin(\dfrac{\pi x}{a})\sin(\dfrac{\pi y}{b})\sin(\dfrac{\pi z}{c}),\\ u(t,0,y) = u(t,1,y) = u(t,x,0) = u(t,x,1) = 0. \end{array} \right. \end{eqnarray*} |
The exact solution of Ex. 5.3 is u = e^{-\pi^2t}\sin(\dfrac{\pi x}{a})\sin(\dfrac{\pi y}{b})\sin(\dfrac{\pi z}{c}) .
Example 5.3 is a three-dimensional heat conduction equation, this kind of heat conduction system is also the most common case in the industrial field. Table 5 lists the approximation degree between the \varepsilon- best approximate solution and the real solution when the boundary time t = 1 .
|u-u_n| | y=0.2 | y=0.6 | y=1.0 | y=1.4 | y=1.8 |
x=0.1 | 1.130E-3 | 2.873E-3 | 3.451E-3 | 2.873E-3 | 1.130E-3 |
x=0.3 | 2.893E-3 | 7.350E-3 | 8.820E-3 | 7.350E-3 | 2.893E-3 |
x=0.5 | 3.482E-3 | 8.838E-3 | 1.059E-2 | 8.838E-3 | 3.482E-3 |
x=0.7 | 2.893E-3 | 7.350E-3 | 8.820E-3 | 7.735E-3 | 2.893E-3 |
x=0.9 | 1.130E-3 | 2.873E-3 | 3.451E-3 | 2.873E-3 | 1.130E-3 |
The Shifted-Legendre orthonormal scheme is applied to high-dimensional heat conduction equations. The algorithm proposed in this paper has some advantages. On the one hand, the algorithm is evolved from the algorithm for solving one-dimensional heat conduction equation, which is easy to be understood and expanded. On the other hand, the standard orthogonal basis proposed in this paper is a polynomial structure, which has the characteristics of convergence order.
This work has been supported by three research projects (2019KTSCX217, 2020WQNCX097, ZH22017003200026PWC).
The authors declare no conflict of interest.
[1] |
F. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc., 9 (1983), 1–39. http://dx.doi.org/10.1090/S0273-0979-1983-15153-4 doi: 10.1090/S0273-0979-1983-15153-4
![]() |
[2] |
K. Du, R. Peng, N. Sun, The role of protection zone on species spreading governed by a reaction-diffusion model with strong Allee effect, J. Differ. Equations, 266 (2019), 7327–7356. http://dx.doi.org/10.1016/j.jde.2018.11.035 doi: 10.1016/j.jde.2018.11.035
![]() |
[3] | G. Franzina, G. Palatucci, Fractional p-eigenvalues, Riv. Math. Univ. Parma., 5 (2014), 373–386. |
[4] |
B. Ge, Y. Cui, L. Sun, M. Ferrara, The positive solutions to a quasi-linear problem of fractional p-Laplacian type without the Ambrosetti-Rabinowitz condition, Positivity, 22 (2018), 873–895. http://dx.doi.org/10.1007/s11117-018-0551-z doi: 10.1007/s11117-018-0551-z
![]() |
[5] |
K. Ho, K. Perera, I. Sim, M. Squassina, A note on fractional p-Laplacian problems with singular weights, J. Fixed Point Theory Appl., 19 (2017), 157–173. http://dx.doi.org/10.1007/s11784-016-0344-6 doi: 10.1007/s11784-016-0344-6
![]() |
[6] |
B. Hung, H. Toan, On existence of weak solutions for a p-Laplacian system at resonance, RACSAM, 110 (2016), 33–47. http://dx.doi.org/10.1007/s13398-015-0217-7 doi: 10.1007/s13398-015-0217-7
![]() |
[7] |
B. Hung, H. Toan, On fractional p-Laplacian equations at resonance, Bull. Malays. Math. Sci. Soc., 43 (2020), 1273–1288. http://dx.doi.org/10.1007/s40840-019-00740-w doi: 10.1007/s40840-019-00740-w
![]() |
[8] |
A. Iannizzotto, S. Liu, K. Perera, M. Squassina, Existence results for fractional p-Laplacian problems via Morse theory, Adv. Calc. Var., 9 (2016), 101–125. http://dx.doi.org/10.1515/acv-2014-0024 doi: 10.1515/acv-2014-0024
![]() |
[9] |
A. Iannizzotto, M. Squassina, Weyl-type laws for fractional p-eigenvalue problems, Asymptotic Anal., 88 (2014), 233–245. http://dx.doi.org/10.3233/ASY-141223 doi: 10.3233/ASY-141223
![]() |
[10] |
X. Ke, C. Tang, Multiple solutions for semilinear elliptic equations near resonance at higher eigenvalues, Nonlinear Anal.-Theor., 74 (2011), 805–813. http://dx.doi.org/10.1016/j.na.2010.09.031 doi: 10.1016/j.na.2010.09.031
![]() |
[11] |
K. Lan, A variational inequality theory for demicontinuous S-contractive maps with applications to semilinear elliptic inequalities, J. Differ. Equations, 246 (2009), 909–928. http://dx.doi.org/10.1016/j.jde.2008.10.007 doi: 10.1016/j.jde.2008.10.007
![]() |
[12] |
D. Liu, On a p-Kirchhoff equation via fountain theorem and dual fountain theorem, Nonlinear Anal.-Theor., 72 (2010), 302–308. http://dx.doi.org/10.1016/j.na.2009.06.052 doi: 10.1016/j.na.2009.06.052
![]() |
[13] |
S. Mosconi, K. Perera, M. Squassina, Y. Yang, The Brezis-Nirenberg problem for the fractional p-Laplacian, Calc. Var., 55 (2016), 105. http://dx.doi.org/10.1007/s00526-016-1035-2 doi: 10.1007/s00526-016-1035-2
![]() |
[14] |
Z. Ou, Existence of weak solutions for a class of (p, q)-Laplacian systems on resonance, Appl. Math. Lett., 50 (2015), 29–36. http://dx.doi.org/10.1016/j.aml.2015.06.004 doi: 10.1016/j.aml.2015.06.004
![]() |
[15] |
R. Pei, Fractional p-Laplacian equations with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition, Mediterr. J. Math., 15 (2018), 66. http://dx.doi.org/10.1007/s00009-018-1115-y doi: 10.1007/s00009-018-1115-y
![]() |
[16] | K. Perera, R. Agarwal, D. O'Regan, Morse theoretic aspects of p-Laplacian type operators, Providence: American Mathematical Society, 2010. http://dx.doi.org/10.1090/surv/161 |
[17] |
K. Perera, M. Squassina, Y. Yang, A note on the Dancer-Fučík spectra of the fractional p-Laplacian and Laplacian operators, Adv. Nonlinear Anal., 4 (2015), 13–23. http://dx.doi.org/10.1515/anona-2014-0038 doi: 10.1515/anona-2014-0038
![]() |
[18] |
K. Perera, M. Squassina, Y. Yang, Bifurcation and multiplicity results for critical fractional p-Laplacian problems, Math. Nachr., 289 (2016), 332–342. http://dx.doi.org/10.1002/mana.201400259 doi: 10.1002/mana.201400259
![]() |
[19] |
Y. Pu, X. Wu, C. Tang, Fourth-order Navier boundary value problem with combined nonlinearities, J. Math. Anal. Appl., 398 (2013), 798–813. http://dx.doi.org/10.1016/j.jmaa.2012.09.019 doi: 10.1016/j.jmaa.2012.09.019
![]() |
[20] | X. Shang, Multiplicity theorems for semipositone p-Laplacian problems, Electron. J. Differ. Eq., 2011 (2011), 58. |
[21] | I. Skrypnik, Nonlinear elliptic boundary value problems, Leipzig: Teubner, 1986. |
[22] |
N. Sun, X. Han, Asymptotic behavior of solutions of a reaction-diffusion model with a protection zone and a free boundary, Appl. Math. Lett., 107 (2020), 106470. http://dx.doi.org/10.1016/j.aml.2020.106470 doi: 10.1016/j.aml.2020.106470
![]() |
[23] |
N. Sun, A time-periodic reaction-diffusion-advection equation with a free boundary and signchanging coefficients, Nonlinear Anal.-Real, 51 (2020), 102952. http://dx.doi.org/10.1016/j.nonrwa.2019.06.002 doi: 10.1016/j.nonrwa.2019.06.002
![]() |
[24] |
N. Sun, J. Fang, Propagation dynamics of Fisher-KPP equation with time delay and free boundaries, Calc. Var., 58 (2019), 148. http://dx.doi.org/10.1007/s00526-019-1599-8 doi: 10.1007/s00526-019-1599-8
![]() |
[25] |
N. Sun, B. Lou, M. Zhou, Fisher-KPP equation with free boundaries and time-periodic advections, Calc. Var., 56 (2017), 61. http://dx.doi.org/10.1007/s00526-017-1165-1 doi: 10.1007/s00526-017-1165-1
![]() |
[26] | N. Sun, C. Lei, Long-time behavior of a reactiondiffusion model with strong allee effect and free boundary: effect of protection zone, J. Dyn. Diff. Equat., in press. http://dx.doi.org/10.1007/s10884-021-10027-z |
[27] |
M. Xiang, B. Zhang, X. Guo, Infinitely many solutions for a fractional Kirchhoff type problem via fountain theorem, Nonlinear Anal.-Theor., 120 (2015), 299–313. http://dx.doi.org/10.1016/j.na.2015.03.015 doi: 10.1016/j.na.2015.03.015
![]() |
[28] |
J. Xu, W. Dong, D. O'Regan, Existence of weak solutions for a fourth-order Navier boundary value problem, Appl. Math. Lett., 37 (2014), 61–66. http://dx.doi.org/10.1016/j.aml.2014.01.003 doi: 10.1016/j.aml.2014.01.003
![]() |
[29] |
W. Zou, Variant fountain theorems and their applications, Manuscripta Math., 104 (2001), 343–358. http://dx.doi.org/10.1007/s002290170032 doi: 10.1007/s002290170032
![]() |
[30] |
J. Zuo, T. An, M. Li, Superlinear Kirchhoff-type problems of the fractional p-Laplacian without the (AR) condition, Bound. Value Probl., 2018 (2018), 180. http://dx.doi.org/10.1186/s13661-018-1100-1 doi: 10.1186/s13661-018-1100-1
![]() |
1. | Yahong Wang, Wenmin Wang, Cheng Yu, Hongbo Sun, Ruimin Zhang, Approximating Partial Differential Equations with Physics-Informed Legendre Multiwavelets CNN, 2024, 8, 2504-3110, 91, 10.3390/fractalfract8020091 | |
2. | Shiyv Wang, Xueqin Lv, Songyan He, The reproducing kernel method for nonlinear fourth-order BVPs, 2023, 8, 2473-6988, 25371, 10.3934/math.20231294 | |
3. | Yingchao Zhang, Yuntao Jia, Yingzhen Lin, A new multiscale algorithm for solving the heat conduction equation, 2023, 77, 11100168, 283, 10.1016/j.aej.2023.06.066 | |
4. | Safia Malik, Syeda Tehmina Ejaz, Shahram Rezapour, Mustafa Inc, Ghulam Mustafa, Innovative numerical method for solving heat conduction using subdivision collocation, 2025, 1598-5865, 10.1007/s12190-025-02429-9 |
|u-u_n| | t=0.1 | t=0.3 | t=0.5 | t=0.7 | t=0.9 |
x=\frac{\pi}{5} | 1.195E-8 | 3.269E-8 | 5.009E-8 | 6.473E-8 | 8.127E-8 |
x=\frac{3\pi}{5} | 2.583E-8 | 7.130E-8 | 1.088E-7 | 1.390E-7 | 1.577E-7 |
x=\frac{7\pi}{5} | 2.583E-8 | 7.130E-8 | 1.088E-7 | 1.390E-7 | 1.577E-7 |
x=\frac{9\pi}{5} | 1.195E-8 | 3.269E-8 | 5.009E-8 | 6.473E-8 | 8.127E-8 |
|u-u_n| | y=0.1 | y=0.3 | y=0.5 | y=0.7 | y=0.9 |
x=0.1 | 7.414E-6 | 1.963E-5 | 2.421E-5 | 1.963E-5 | 7.414E-6 |
x=0.3 | 1.963E-5 | 5.130E-5 | 6.347E-5 | 5.130E-5 | 1.963E-5 |
x=0.5 | 2.421E-5 | 6.347E-5 | 7.839E-5 | 6.347E-5 | 2.421E-5 |
x=0.7 | 1.963E-5 | 5.130E-5 | 6.347E-5 | 5.130E-5 | 1.963E-5 |
x=0.9 | 7.414E-6 | 1.963E-5 | 2.421E-5 | 1.963E-5 | 7.414E-6 |
|u-u_n| | y=0.2 | y=0.6 | y=1.0 | y=1.4 | y=1.8 |
x=0.1 | 1.130E-3 | 2.873E-3 | 3.451E-3 | 2.873E-3 | 1.130E-3 |
x=0.3 | 2.893E-3 | 7.350E-3 | 8.820E-3 | 7.350E-3 | 2.893E-3 |
x=0.5 | 3.482E-3 | 8.838E-3 | 1.059E-2 | 8.838E-3 | 3.482E-3 |
x=0.7 | 2.893E-3 | 7.350E-3 | 8.820E-3 | 7.735E-3 | 2.893E-3 |
x=0.9 | 1.130E-3 | 2.873E-3 | 3.451E-3 | 2.873E-3 | 1.130E-3 |
N | HOC-ADI Method [20] | FVM [7] | Present method | C.R. |
4 \times 4 | 6.12E-3 | 4.92E-2 | 9.892E-3 | – |
6 \times 6 | 1.68E-3 | 2.05E-2 | 4.319E-4 | 3.8613 |
8 \times 8 | 7.69E-4 | 1.27E-2 | 9.758E-6 | 6.5873 |
10 \times 10 | 4.40E-4 | 9.20E-3 | 1.577E-7 | 9.2432 |
|u-u_n| | t=0.1 | t=0.3 | t=0.5 | t=0.7 | t=0.9 |
x=\frac{\pi}{5} | 1.195E-8 | 3.269E-8 | 5.009E-8 | 6.473E-8 | 8.127E-8 |
x=\frac{3\pi}{5} | 2.583E-8 | 7.130E-8 | 1.088E-7 | 1.390E-7 | 1.577E-7 |
x=\frac{7\pi}{5} | 2.583E-8 | 7.130E-8 | 1.088E-7 | 1.390E-7 | 1.577E-7 |
x=\frac{9\pi}{5} | 1.195E-8 | 3.269E-8 | 5.009E-8 | 6.473E-8 | 8.127E-8 |
N | CCD-ADI Method [21] | RHOC-ADI Method [20] | Present method | C.R. |
4 \times 4 \times 4 | 8.820E-3 | 3.225E-2 | 5.986E-3 | – |
8 \times 8 \times 8 | 6.787E-5 | 1.969E-3 | 3.126E-5 | 2.52704 |
|u-u_n| | y=0.1 | y=0.3 | y=0.5 | y=0.7 | y=0.9 |
x=0.1 | 7.414E-6 | 1.963E-5 | 2.421E-5 | 1.963E-5 | 7.414E-6 |
x=0.3 | 1.963E-5 | 5.130E-5 | 6.347E-5 | 5.130E-5 | 1.963E-5 |
x=0.5 | 2.421E-5 | 6.347E-5 | 7.839E-5 | 6.347E-5 | 2.421E-5 |
x=0.7 | 1.963E-5 | 5.130E-5 | 6.347E-5 | 5.130E-5 | 1.963E-5 |
x=0.9 | 7.414E-6 | 1.963E-5 | 2.421E-5 | 1.963E-5 | 7.414E-6 |
|u-u_n| | y=0.2 | y=0.6 | y=1.0 | y=1.4 | y=1.8 |
x=0.1 | 1.130E-3 | 2.873E-3 | 3.451E-3 | 2.873E-3 | 1.130E-3 |
x=0.3 | 2.893E-3 | 7.350E-3 | 8.820E-3 | 7.350E-3 | 2.893E-3 |
x=0.5 | 3.482E-3 | 8.838E-3 | 1.059E-2 | 8.838E-3 | 3.482E-3 |
x=0.7 | 2.893E-3 | 7.350E-3 | 8.820E-3 | 7.735E-3 | 2.893E-3 |
x=0.9 | 1.130E-3 | 2.873E-3 | 3.451E-3 | 2.873E-3 | 1.130E-3 |