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Abstract: This paper addresses a new spectral collocation method for solving nonlinear fractional
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based on fractional order Chelyshkov polynomials (FCHPs). To this end, first, we introduce these
polynomials and express some of their properties. The operational matrices of fractional integral and
product are derived. The spectral collocation method is utilized together with operational matrices to
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1. Introduction

In this paper, we introduce a numerical method based on the spectral collocation method to solve
nonlinear fractional quadratic integral equations

y(x) = a(x) +
f (x, y(x))

Γ(α)

∫ x

0
(x − t)α−1g(t, y(t))dt, α ∈ (0, 1], x ∈ [0, 1], (1.1)
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where Γ(·) is the gamma function, y(x) is the unknown function and a : [0, 1]→ R is a given function.
The functions f and g satisfy the following conditions:

(1) The functions f,g: [0, 1] ×R→ R in (1.1) are continuous and bounded functions with

M1 := sup
(x,y)∈[0,1]×R

| f (x, y)|, M2 := sup
(x,y)∈[0,1]×R

|g(x, y)|.

(2) The functions f and g satisfy the Lipschitz condition with respect to the second variable, i.e., there
exist constants L1 > 0 and L2 > 0 such that, for all (x, y1) and (x, y2), we have

| f (x, y1) − f (x, y2)| ≤ L1|y1 − y2|,

|g(x, y1) − g(x, y2)| ≤ L2|y1 − y2|.

Integral equations are used to model some practical physical problems in the theory of radiative
transfer, kinetic theory of gases, neutron transport, and traffic theory [12, 17, 28, 30, 33]. Also, some
applications in the load leveling problem of energy systems, airfoils and optimal control problems can
be found in [24,25,39–41]. Existence and uniqueness theorems and some other properties of quadratic
integral equations have been studied in [6,16,17,19,48]. So far, various numerical methods for solving
quadratic integral equations have been introduced: Adomian decomposition method [17, 18, 60],
repeated trapezoidal methods [18], modified hat functions method [37], piecewise linear functions
method [38], Chebyshev cardinal functions method [27], etc.

Spectral methods are a class of reliable techniques in solving various mathematical modeling of
real-life phenomena. The general framework of these methods is based on approximating the solutions
of the problems using a finite series of orthogonal polynomials as

∑
ciξi, where ξi are called basis

functions and can be considered as Legendre, Chebyshev, Hermit, Jacobi polynomials and so on.
Spectral methods have been developed to solve various types of fractional differential equations, such
as [1,8,14,21,23,44,53,55,59]. The spectral collocation method is a powerful approach that provides
high accuracy approximations for the solutions of both linear and nonlinear problems provided that
these solutions are sufficiently smooth [9, 11, 22, 58]. The spectral collocation methods based on some
extended class of B-spline functions and finite difference formulation have been investigated to find the
approximate solutions of time fractional partial differential equations [2–4, 32, 50]. In the last years,
the extension of spectral methods based on fractional order basis functions have been developed for
solving fractional differential and integral problems [5,20,29,35,52,56,57]. In these works, the authors
constructed the fractional order basis functions by writing x → xγ, (0 < γ < 1) in the standard basis
functions.

The Chelyshkov orthogonal polynomials were introduced in [10] and then used to solve various
classes of differential and integral equations, mixed functional integro-differential equations [43],
weakly singular integral equations [46, 52], nonlinear Volttera-Hammerstian integral equations [7],
multi-order fractional differential equations [51], two-dimensional Fredholm-Volterra integral
equation [49], systems of fractional delay differential equations [36], Volterra-Hammerstein delay
integral equations [47]. Some properties of Chelyshkov polynomials can be listed as follows:

• The Chelyshkov polynomials CN,n(x) can be expressed in terms of the Jacobi polynomials
P(γ,δ)

m (x) [9] by the following relation

CN,n(x) = (−1)N−nxnP(0,2n+1)
N−n (2x − 1) =

N∑
j=n

(−1) j−n

(
N − n
j − n

)(
N + j + 1

N − n

)
x j, n = 0, ...N. (1.2)
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In the set {CN,n(x)}Nn=0, every member has degree N with N − n simple roots. Hence, for every N if
the roots of the polynomial CN,0(x) are chosen as collocation points, then an accurate numerical
collocation method can be derived (for more details see [10]).
• The Chelyshkov polynomials (1.2) are orthogonal on the interval [0, 1] with respect to the weight

function w(x) = 1, i.e., ∫ 1

0
CN,i(x)CN, j(x)dx =

 0, i , j,
1

2i + 1
, i = j.

About the structure of numerical methods in solving the fractional quadratic integral equations
there are various researches, however some of them have not considered the singular behavior of the
solutions. Most of these methods that were considered lie in the class of spectral methods and attempt
to solve the problem via integer-order polynomial basis. Nevertheless, the obtained numerical solutions
do not provide good approximations, and hence the convergence rates of the obtained numerical
solutions are not be acceptable. Therefore, these methods cannot be considered as a comprehensive
tool in solving fractional integral equations of the form of Eq (1.1) due to the singular behavior of
their solutions. These disadvantages motivated us to overcome this drawback by developing a spectral
method based on proper basis functions such that covers both smooth and non-smooth solutions of
Eq (1.1). In this paper, we introduce a spectral collocation method via implementing a sequence
of fractional-order Chelyshkov polynomials as basis functions to produce the numerical solution of
Eq (1.1) regarding the singular behavior of the exact solution. These polynomials are constructed by
writing x→ xγ, (0 < γ < 1) in the standard Chelyshkov polynomials [10]; i.e.,

ĈN,n,γ(x) := CN,n,γ(xγ), n = 0, ...,N,

which have both integer and non-integer powers. In this paper, we first convert the Eq (1.1) into a
system of integral equation with linear integral operator. Then, the numerical method is implemented
to reduce this problem to a set of nonlinear algebraic equations. This allows us to determine the
approximate solution of the Eq (1.1) with a high order of accuracy versus results of other numerical
methods based on standard orthogonal basis functions.

The contribution of this paper can be summarized as follows:

• In Theorems 4.1 and 4.2, we construct the operational matrices of fractional integration and
multiplication based on fractional-order Chelyshkov polynomials with a simple calculative
technique that is easy to implement in computer programming.
• The upper bound for the error vectors of the operational matrices is discussed in Theorems 4.4

and 4.5.
• The proposed numerical method is applied to an equivalent system of integral equations of the

form (5.3), which includes a linear integral terms, to reduce the problem to a system of algebraic
equations. This method is based on using simple operational matrix techniques so that, unlike
other methods, it does not require any discretization, linearization, or perturbation (see Section 5).
• The approximate solution is expressed as a linear combination of fractional order terms of the

form xiγ such that overcomes the drawback of the poor rate of convergence of the method. The
accuracy of the method for solving the Eq (1.1) with non-smooth solutions is confirmed through
theoretical and numerical results.
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• The convergence analysis and numerical stability of the method are investigated.

The content of this paper is organized as follows: Section 2 contains some necessary definitions
that are used in the rest of the paper. The fractional order Chelyshkov polynomials and their properties
are investigated in Section 3. The operational matrices of integration and product of the fractional
order Chelyshkov polynomials are derived in Section 4. In Section 5, we explain the application of
operational matrices with spectral collocation method to obtain the numerical solution of Eq (1.1). The
convergence analysis of the method is studied in Section 6. In Section 7, some numerical results are
presented to illustrate the accuracy and efficiency of the method. Section 8 is devoted to conclusion
and future works.

2. Preliminaries

In this section, we recall some preliminary results which will be needed throughout the paper. With
the development of theories of fractional derivatives and integrals, many definitions appear, such as
Riemann-Liouville [45], which are described as follows:
For u ∈ L1[a, b], the Riemann-Liouville fractional integral of order γ ∈ R+

0 := R+ ∪ {0} is defined as

Jγa u(x) =
1

Γ(γ)

∫ x

a
(x − t)γ−1u(t)dt, γ ≥ 0. (2.1)

For γ = 0, set J0
a := I, the identity operator. Let u(x) = (x − a)β for some β > −1 and γ > 0. Then

Jγa u(x) =
Γ(β + 1)

Γ(γ + β + 1)
(x − a)γ+β. (2.2)

Let m = dαe, the operator Dα
a defined by

Dγ
au(x) = DmJm−γ

a u(x), (2.3)

is called the Riemann-Liouville fractional differential operator of order γ. For γ = 0, set D0
a := I, the

identity operator. The Caputo fractional differential operator of order n is defined by

Dγ
∗au(x) = Dγ

a [u(x) − Tm−1[u(x); a]] , (2.4)

whenever Dγ
a[u(x) − Tm−1[u(x); a]] exists, where Tm−1[u(x); a] denotes the Taylor polynomial of

degree m − 1 of the function u around the point a. In the case m = 0 define Tm−1[u(x); a] := 0.
Under the above conditions it is easy to show that,

Dγ
∗au(x) = Jm−γ

a u(m)(x). (2.5)

For more details, see [13, 45].

Theorem 2.1. [42] (Generalized Taylor’s formula). Suppose that Dkγ
∗0u(x) ∈ C(0, 1] for k = 0, 1, ...,

N + 1. Then, we can write

u(x) =

N∑
i=0

xiγ

Γ(iγ + 1)
Diγ
∗0u(0+) +

x(N+1)γ

Γ((N + 1)γ + 1)
D(N+1)γ
∗0 u(ξ), (2.6)
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with 0 < ξ ≤ x, ∀x ∈ (0, 1]. Also, we have

|u(x) −
N∑

i=0

xiγ

Γ(iγ + 1)
Diγ
∗0u(0+)| ≤

Mγ

Γ((N + 1)γ + 1)
, (2.7)

provided that |D(N+1)γ
∗0 u(ξ)| ≤ Mγ.

3. Fractional order Chelyshkov polynomials

This section includes the definition of fractional Chelyshkov polynomials (FCHPs) and some of its
essential properties that will be used in the next sections. The FCHPs on the interval [0, 1] are defined
as [52]

ĈN,n,γ(x) =

N∑
j=n

(−1) j−n

(
N − n
j − n

)(
N + j + 1

N − n

)
x jγ, 0 < γ < 1, n = 0, 1, ...,N. (3.1)

These polynomials are orthogonal with respect to the weight function w(x) = xγ−1:

< ĈN,i,γ(x), ĈN,q,γ(x) >:=
∫ 1

0
ĈN,i,γ(x)ĈN, j,γ(x)w(x)dx =


0, i , j,

1
γ(2i+1) , i = j.

(3.2)

For N = 5, we have

Ĉ5,0,γ(x) = 6 − 105 xγ + 560 x2 γ − 1260 x3 γ + 1260 x4 γ − 462 x5 γ

Ĉ5,1,γ(x) = 35 xγ − 280 x2 γ + 756 x3 γ − 840 x4 γ + 330 x5 γ

Ĉ5,2,γ(x) = 56 x2 γ − 252 x3 γ + 360 x4 γ − 165 x5 γ

Ĉ5,3,γ(x) = 36 x3 γ − 90 x4 γ + 55 x5 γ

Ĉ5,4,γ(x) = 10 x4 γ − 11 x5 γ

Ĉ5,5,γ(x) = x5 γ.

It is shown that, every member in the set {Ĉ5,i,γ(x)} has degree 5γ. Figure 1 shows the graphs of these
polynomials for γ = 1

2 on the interval [0, 1].

Figure 1. Plots of Ĉ5,i,γ(x) for i = 0, ..., 5 and γ = 1
2 .
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Lemma 3.1. The fractional order Chelyshkov polynomial ĈN,0,γ(x), has precisely N zeros in the form

x
1
γ

i for i = 1, ...,N, where xi are zeros of the standard Chelyshkov polynomial CN,0(x) defined in (1.2).

Proof. The Chelyshkov polynomial CN,0(x) can be written as

CN,0(x) = (x − x1)(x − x2)...(x − xN).

Changing the variable x = tγ, yields

ĈN,0,γ(t) = (tγ − x1)(tγ − x2)...(tγ − xN),

so, the zeros of ĈN,0,γ(t) are
ti = (xi)

1
γ , i = 1, ...,N.

�

Let MN = span{ĈN,0,α(x), ĈN,1,γ(x), ..., ĈN,N,γ(x)} be a subspace of the Hilbert space L2[0, 1]. Since
MN is a finite dimensional space, for every u ∈ L2[0, 1] there exists a unique best approximation
uN ∈ MN such that

‖u − uN‖2 ≤ ‖u − v‖2, ∀v ∈ MN ,

and there exist unique coefficients a0, a1, ..., aN , such that

uN(x) =

N∑
n=0

anĈN,n,γ(x) = Φ̂T (x)A = ATΦ̂(x), (3.3)

where
A = [a0, a1, ..., aN]T , Φ̂(x) = [ĈN,0,γ(x), ĈN,1,γ(x), ..., ĈN,N,γ(x)]T (3.4)

and

an = (2n + 1)γ
∫ 1

0
u(x)ĈN,n,γ(x)w(x)dx. (3.5)

Lemma 3.2. Suppose that Dkγ
∗0u ∈ C(0, 1] for k = 0, 1, ...,N, and uN is the best approximation of u

defined by (3.3). Then, we have
lim

N→∞
‖u − uN‖2 = 0,

provided that |D(N+1)γ
∗0 u(ξ)| ≤ Mγ.

Proof. From Theorem 2.1, we have

|u(x) −
N∑

i=0

xiγ

Γ(iγ + 1)
Diγ
∗0u(0+)| ≤ Mγ

x(N+1)γ

Γ((N + 1)γ + 1)
. (3.6)

Due to the fact that uN ∈ MN is the best approximation of u, we obtain

‖u − uN‖
2
2 ≤ ‖u −

N∑
i=0

xiγ

Γ(iγ + 1)
Diγ
∗0u(0+)‖22
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≤
M2

γ(
Γ((N + 1)γ + 1)

)2

∫ 1

0
x2(N+1)γw(x)dx

=
M2

γ(
Γ((N + 1)γ + 1)

)2

(2N + 3)γ
. (3.7)

This yields
lim

N→∞
‖u − ûN‖2 = 0.

�

Corollary 3.1. From Lemma 3.2, for the approximate solution uN(x) (3.3), we have the following error
bound

‖u − ûN‖2 = O

 1(
Γ((N + 1)γ + 1)

) √
(2N + 3)γ

 . (3.8)

4. Operational matrices

In this section, we obtain the operational matrix of fractional integration Φ̂(x) and the one of the
product of vectors Φ̂(x) and Φ̂T (x). These operational matrices have major role in reducing the Eq (1.1)
to a system of algebraic equations.

Theorem 4.1. Let Φ̂(x) be the FCHPs vector defined in (3.4) and suppose γ ∈ (0, 1]. Then,

Jα0 Φ̂(x) ' PΦ̂(x),

with P is the (N + 1) × (N + 1) fractional integral operational matrix and is given by

P =


Θ(0, 0) Θ(0, 1) . . . Θ(0,N)
Θ(1, 0) Θ(1, 1) · · · Θ(1,N)

...
...

. . .
...

Θ(N, 0) Θ(N, 1) . . . Θ(N,N)

 ,
where

Θ(n, k) =

N∑
j=n

(−1) j−n

(
N − n
j − n

)(
N + j + 1

N − n

)
Γ( jγ + 1)

Γ( jγ + α + 1)
ξ j,k, (4.1)

and

ξ j,k = γ(2k + 1)
N∑

l=k

(−1)l−k

( j + l + 1)γ + α

(
N − k
l − k

)(
N + l + 1

N − k

)
.

Proof. According to the definition of fractional integral (2.1), we have

Jα0 ĈN,n,γ(x) =

N∑
j=n

(−1) j−n

(
N − n
j − n

)(
N + j + 1

N − n

)
Jα0 x jγ
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=

N∑
j=n

(−1) j−n

(
N − n
j − n

)(
N + j + 1

N − n

)
Γ( jγ + 1)

Γ( jγ + α + 1)
x jγ+α. (4.2)

Now, by approximating x jγ+α in terms of Φ̂(x), we have

x jγ+α '

N∑
k=0

ξ j,kĈN,k,γ(x), (4.3)

where

ξ j,k = γ(2k + 1)
∫ 1

0
x jγ+αĈN,k,γ(x)w(x)dx

= γ(2k + 1)
N∑

l=k

(−1)l−k

(
N − k
l − k

)(
N + l + 1

N − k

) ∫ 1

0
x( j+l+1)γ+α−1dx

= γ(2k + 1)
N∑

l=k

(−1)l−k

( j + l + 1)γ + α

(
N − k
l − k

)(
N + l + 1

N − k

)
. (4.4)

Therefore, we derive from (4.2) and (4.3) that

Jα0 ĈN,n,γ(x) =

N∑
k=0

 N∑
j=n

(−1) j−n

(
N − n
j − n

)(
N + j + 1

N − n

)
Γ( jγ + 1)

Γ( jγ + α + 1)
ξ j,k

 ĈN,k,γ(x)

=

N∑
k=0

Θ(n, k)ĈN,k,γ(x). (4.5)

This leads to the desired result. �

Theorem 4.2. If V = [v0, v1, ..., vN]T , then

Φ̂(x)Φ̂T (x)V ' V̂Φ̂(x), (4.6)

where

V̂ = [̂vi, j]N
i, j=0, v̂i, j :=

N∑
l=0

vlµi,l, j, (4.7)

and vl, µi,l, j will be introduced through the proof.

Proof. Let

Φ̂(x)Φ̂T (x)V =


∑N

j=0 v jĈN,0,γ(x)ĈN, j,γ(x)∑N
j=0 v jĈN,1,γ(x)ĈN, j,γ(x)

...∑N
j=0 v jĈN,N,γ(x)ĈN, j,γ(x)

 . (4.8)

By approximating ĈN,i,γ(x)ĈN, j,γ(x) in terms of Φ̂(x), we have

ĈN,i,γ(x)ĈN, j,γ(x) '
N∑

k=0

µi, j,kĈN,k,γ(x), (4.9)
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where

µi, j,k = γ(2k + 1)
∫ 1

0
ĈN,i,γ(x)ĈN, j,γ(x)ĈN,k,γ(x)w(x)dx. (4.10)

On the other hand, we can write Φ̂(x) = DX̂(x), where X̂(x) = [1, xγ, ..., xNγ]T and D is an upper
triangular coefficient matrix (see [51] for details). Let Di denote the i-th row of D. Therefore, we
achieve

µi, j,k = γ(2k + 1)
∫ 1

0
ĈN,i,γ(x)ĈN, j,γ(x)ĈN,k,γ(x)w(x)dx

= γ(2k + 1)
∫ 1

0
DiX̂(x)X̂T (x)DT

j ĈN,k,γ(x)w(x)dx

= Di

(
γ(2k + 1)

∫ 1

0
X̂(x)X̂T (x)ĈN,k,γ(x)w(x)dx

)
DT

j

= DiKDT
j , (4.11)

where K is the (N + 1) × (N + 1) matrix given by

[K]r,s = γ(2k + 1)
∫ 1

0
x(r+s)γĈN,k,γ(x)w(x)dx

= γ(2k + 1)
N∑

l=k

(−1)l−k

(
N − k
l − k

)(
N + l + 1

N − k

) ∫ 1

0
x(r+s+l+1)γ−1dx

= (2k + 1)
N∑

l=k

(−1)l−k

r + s + l + 1

(
N − k
l − k

)(
N + l + 1

N − k

)
, (4.12)

for r, s, k = 0, ...,N. From (4.8) and (4.9), we obtain

N∑
j=0

v jĈN,i,γ(x)ĈN, j,γ(x) '
N∑

j=0

v j

 N∑
k=0

µi, j,kĈN,k,γ(x)


=

N∑
k=0

 N∑
j=0

v jµi, j,k

 ĈN,k,γ(x)

=

N∑
k=0

v̂i,kĈN,k,γ(x), (4.13)

for i = 0, 1, ...,N. This leads to the desired result. �

Now, we find the upper bound for the error vector of the operational matrix P defined in
Theorem 4.1. To this end, first we state the following theorems:

Theorem 4.3. [31] Suppose that H is a Hilbert space and U = span{u1, u2..., uN} is a closed subspace
of H. Let u be an arbitrary element in H and u∗ ∈ U be the unique best approximation to u ∈ H. Then,

‖u − u∗‖22 =
G(u, u1, u2, ..., uN)
G(u1, u2, ..., uN)

,
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where

G(u, u1, u2, ..., uN) =

∣∣∣∣∣∣∣∣∣∣∣∣
< u, u > < u, u1 > . . . < u, uN >

< u1, u > < u1, u1 > . . . < u1, uN >
...

...
...

...

< uN , u > < uN , u1 > . . . < uN , uN >

∣∣∣∣∣∣∣∣∣∣∣∣ .
Theorem 4.4. Let

EI,α(x) = Jα0 Φ̂(x) − PΦ̂(x),

be the error vector of the operational matrix P defined in Theorem 4.1. Then,

‖e j,α‖2 ≤

N∑
i= j

(
N − j
i − j

)(
N + i + 1

N − j

)
Γ(iγ + 1)

Γ(iγ + α + 1)


G
(
xiγ+α, ĈN,0,γ(x), ĈN,1,γ(x), ..., ĈN,N,γ(x)

)
G
(
ĈN,0,γ(x), ĈN,1,γ(x), ..., ĈN,N,γ(x)

)


1/2

and
‖EI,α‖2 → 0, (4.14)

where e j,α(x) is the j-th component of EI,α(x) and ‖EI,α‖2 :=
(∑

j ‖e j,α‖
2
2

) 1
2

.

Proof. We have

e j,α(x) =

N∑
i= j

(−1)i− j

(
N − j
i − j

)(
N + i + 1

N − j

)
Γ(iγ + 1)

Γ(iγ + α + 1)

xiγ+α −

N∑
k=0

ξk,iĈN,k,γ(x)

 , (4.15)

for j = 0, 1, ...,N. From Theorem 4.3, we can write

‖xiγ+α −

N∑
k=0

ξk,iĈN,k,γ(x)‖2 =


G
(
xiγ+α, ĈN,0,γ(x), ĈN,1,γ(x), ..., ĈN,N,γ(x)

)
G
(
ĈN,0,γ(x), ĈN,1,γ(x), ..., ĈN,N,γ(x)

)


1/2

. (4.16)

From (4.15) and (4.16), we obtain

‖e j,α‖2 ≤

N∑
i= j

(
N − j
i − j

)(
N + i + 1

N − j

)
Γ(iγ + 1)

Γ(iγ + α + 1)


G
(
xiγ+α, ĈN,0,γ(x), ĈN,1,γ(x), ..., ĈN,N,γ(x)

)
G
(
ĈN,0,γ(x), ĈN,1,γ(x), ..., ĈN,N,γ(x)

)


1/2

. (4.17)

By considering the above results and Lemma 3.2, we can conclude that

‖EI,α‖2 → 0, N → ∞.

�

Theorem 4.5. Let
EP,α(x) = Φ̂(x)Φ̂T (x)V − V̂Φ̂(x),
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be the error vector of the operational matrix of V̂ defined in Theorem 4.2. Then, a similar proof for
‖EP,α‖2 can be obtained, since from (4.9) and Theorem 4.3, we have

‖ĈN,i,γ(x)ĈN, j,γ(x) −
N∑

k=0

µi, j,kĈN,k,γ(x)‖2 =


G
(
ĈN,i,γ(x)ĈN, j,γ(x), ĈN,0,γ(x), ĈN,1,γ(x), ..., ĈN,N,γ(x)

)
G
(
ĈN,0,γ(x), ĈN,1,γ(x), ..., ĈN,N,γ(x)

)


1/2

.

For example, for N = 5, α = γ = 1
2 , the following upper bound for components of EI, 1

2
(x) can be

achieved:

‖e0, 1
2
‖2 ≤ 2.3639 × 10−1, ‖e1, 1

2
‖2 ≤ 1.6885 × 10−1, ‖e2, 1

2
‖2 ≤ 8.4424 × 10−2,

‖e3, 1
2
‖2 ≤ 2.8141 × 10−2, ‖e4, 1

2
‖2 ≤ 5.6283 × 10−3, ‖e5, 1

2
‖2 ≤ 5.1166 × 10−4.

Hence,

EI,1/2(x) ≤



2.3639 × 10−1

1.6885 × 10−1

8.4424 × 10−2

2.8141 × 10−2

5.6283 × 10−3

5.1166 × 10−4


.

5. Description of the method

By using the definition of Riemann-Liouville fractional integral in (2.1) we can rewrite the Eq (1.1)
in the form

y(x) = a(x) + f (x, y(x))Jα0 g(x, y(x)). (5.1)

Based on the implicit collocation method [15], let

w1(x) = f (x, y(x)), w2(x) = g(x, y(x)). (5.2)

From Eqs (5.1) and (5.2), we have
w1(x) = f

(
x, a(x) + w1(x)Jα0 w2(x)

)
,

w2(x) = g
(
x, a(x) + w1(x)Jα0 w2(x)

)
,

(5.3)

The integral operator in (5.3) is linear and therefore application of the operational matrices becomes
straightforward. The functions w1(x) and w2(x) can be approximated as follows

w1(x) ' wN,1(x) =

N∑
i=0

wi,1ĈN,i,γ(x) = Φ̂T (x)W1,

w2(x) ' wN,2(x) =

N∑
i=0

wi,2ĈN,i,γ(x) = Φ̂T (x)W2,

(5.4)
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where Wi = [wi,0,wi,1, ...,wi,N]T are the unknown coefficient vectors for i = 1, 2. By applying
Theorems 4.1 and 4.2, we get

w1(x)Jα0 w2(x) 'WT
1 Φ̂(x)Jα0 Φ̂

T (x)W2 'WT
1 Φ̂(x)Φ̂T (x)PT W2 ' Φ̂

T (x)ŴT
1 PT W2. (5.5)

From (5.4) and (5.5), the system (5.3) can be written as follows: Φ̂T (x)W1 ' f
(
x, a(x) + Φ̂T (x)ŴT

1 PT W2

)
,

Φ̂T (x)W2 ' g
(
x, a(x) + Φ̂T (x)ŴT

1 PT W2

)
.

(5.6)

By collocating Eq (5.6) at the points x̂i = x
1
γ

i , the zeros of ĈN+1,0,γ(x), we obtain the following system
of nonlinear algebraic equations

Φ̂T (x̂i)W1 = f
(
x̂i, a(x̂i) + Φ̂T (x̂i)ŴT

1 PT W2

)
,

Φ̂T (x̂i)W2 = g
(
x̂i, a(x̂i) + Φ̂T (x̂i)ŴT

1 PT W2

)
.

(5.7)

This nonlinear system can be solved for the unknown vectors W1 and W2. We employed the “fsolve”
command in Maple for solving this system. Finally, the approximate solution of the Eq (1.1) is obtained
as follows:

yN(x) = a(x) + wN,1(x)Jα0 wN,2(x). (5.8)

We present the algorithm of the method which is used to solve the numerical examples:
Algorithm:
Input: The numbers α, γ; the functions a(.), f (., .) and g(., .).
Step 1. Choose N and construct the vector basis Φ̂ using relation (3.1).
Step 2. Compute the operational matrices P and V̂ using Theorems 4.1 and 4.2.
Step 3. Compute the relation (5.5).
Step 4. Generate x̂i for i = 0, ...,N, the roots of ĈN+1,0,γ(x) (5.5).
Step 5. Construct the nonlinear system of algebraic Eq (5.7) by using the nodes x̂i.
Step 6. Solve the system obtained in Step 5 to determine the vectors W1 and W2.
Output: The approximate solution (5.8).

6. Convergence analysis

In this section, we investigate the convergence of the proposed method in the space L2[0, 1].

Theorem 6.1. Assume that wi(x) and wi,N(x) are the exact and approximate solutions of Problems (5.3)
and (5.6), respectively, and that Conditions (1) and (2) are satisfied. Then,

lim
N→∞
‖ei‖2 = 0, i = 1, 2,

provided that
0 < (L1 + L2)M1 < 1, 0 < (L1 + L2)M2 < 1, (6.1)

in which ei,N := wi − wi,N are called the error functions.
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Proof. By subtracting (5.6) from (5.3) and using Condition (2), we get
|e1,N(x)| ≤ L1|w1(x)Jα0 w2(x) − Φ̂T (x)ŴT

1 PT W2|,

|e2,N(x)| ≤ L2|w1(x)Jα0 w2(x) − Φ̂T (x)ŴT
1 PT W2|.

(6.2)

The Relation (6.2) can be written as
|e1,N(x)| ≤ L1|w1(x)Jα0 w2(x) − w1,N(x)Jα0 w2,N(x)| + L1|Eα(x)|,

|e2,N(x)| ≤ L2|w1(x)Jα0 w2(x) − w1,N(x)Jα0 w2,N(x)| + L2|Eα(x)|,
(6.3)

where
Eα(x) = w1,N(x)Jα0 w2,N(x) − Φ̂T (x)ŴT

1 PT W2.

From Theorems 4.4 and 4.5, we can conclude that ‖Eα‖2 → 0 as N → ∞. Using Condition (1) and the
Cauchy-Schwarz inequality, we get

|w1(x)Jα0 w2(x) − w1,N(x)Jα0 w2,N(x)| ≤ |w1(x)Jα0 w2(x) − w1(x)Jα0 w2,N(x) + w1(x)Jα0 w2,N(x) − w1,N(x)Jα0 w2,N(x)|
≤ |w1(x)||Jα0 w2(x) − Jα0 w2,N(x)| + |w1(x) − w1,N(x)||Jα0 w2,N(x)|
≤ M1|Jα0 e2,N(x)| + |e1,N(x)||Jα0 w2(x)| + |e1,N(x)||Jα0 e2,N(x)|
≤ M1‖e2,N‖2 + M2|e1,N(x)| + |e1,N(x)|‖e2‖2, (6.4)

therefore, from (6.3) and (6.4), we can write
‖e1,N‖2 ≤ L1M1‖e2,N‖2 + L1M2‖e1,N‖2 + L1‖e1,N‖2,N‖e2,N‖2,

‖e2,N‖2 ≤ L2M1‖e2,N‖2 + L2M2‖e1,N‖2 + L2‖e1,N‖2‖e2,N‖2.

(6.5)

By ignoring the term ‖e1‖‖e2‖2 in (6.5), we obtain

‖e1,N‖2,N + ‖e2,N‖2 ≤

(
L1M1 + L2M1

)
‖e2,N‖2 +

(
L1M2 + L2M2

)
‖e1,N‖2,

which yields (
1 − L1M2 − L2M2

)
‖e1,N‖2 +

(
1 − L1M1 − L2M1

)
‖e2,N‖2 ≤ 0.

Now according to inequalities expressed in (6.1), the proof is complete. �

Theorem 6.2. Suppose that y(x) and yN(x) are the exact solution and approximate solution of Eq (1.1),
respectively and that Conditions (1), (2) and Relation (6.1) hold. Then, we have

lim
N→∞
‖y − yN‖2 = 0. (6.6)

Proof. By subtracting (5.8) from (5.1), we get

y(x) − yN(x) = w1(x)Jα0 w2(x) − wN,1(x)Jα0 wN,2(x).

Therefore, from Theorem 6.1 we can conclude that (6.6) is valid. �
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7. Numerical results

In this section, we provide some numerical examples to illustrate the efficiency and accuracy of
the method. All calculations are performed in Maple 2018. The results are compared to the ones
obtained using spectral collocation based on standard Chelyshkov basis polynomials (γ = 1) [43],
Taylor-collocation method [54] and Chebyshev cardinal functions method [27]. The computational
error norm (‖EN‖2) is calculated in order to test the accuracy of the method as:

EN(x) := |y(x) − yN(x)|,

‖EN‖2 :=

√∑N
i=0 E2

N(xi)
N

, (xi = ih, Nh = 1).

To investigate the numerical stability of the method, we solve the perturbed Eq (1.1) of the form

y(x) = aε(x) +
f ε(x, y(x))

Γ(α)

∫ x

0
(x − t)α−1gε(t, y(t))dt, x ∈ [0, 1],

with ε = 10−3, 10−6, 10−9.

Example 7.1. Consider the fractional quadratic integral equation

y(x) =
−1
15

sin(
√

x)
(√

πxBesselJ(1,
√

x) − 15
)

+
y(x)

20Γ(1/2)

∫ x

0
(x − t)

−1
2 y(t)dt, (7.1)

in which BesselJ(·, ·) denotes the Bessel function of the first kind. The exact solution of this problem
is y(x) = sin(

√
x). In Table 1, the ‖EN‖2-errors for γ = 1

4 ,
1
2 and γ = 1 (standard Chelyshkov

polynomials [43]) are given, and also the CPU-times are computed. From this table, we see that
fractional order basis functions get approximate solutions with higher accuracy than the integer order
basis functions.

Table 1. Comparison of the ‖EN‖2-error for different values of γ in Example 7.1.

γ = 1
4 CPU-Time γ = 1

2 CPU-Time γ = 1 CPU-Time

N=3 2.391962 × 10−4 1.326s 1.866606 × 10−6 1.124s 2.172051 × 10−4 0.811s
N=5 7.866499 × 10−7 2.387s 7.046119 × 10−8 2.169s 6.374901 × 10−5 1.872s
N=7 3.493808 × 10−8 5.180s 4.002629 × 10−10 4.602s 2.764246 × 10−5 4.742s
N=9 3.942763 × 10−9 10.031s 1.252167 × 10−12 9.220s 1.465058 × 10−5 8.549s
N=11 6.300361 × 10−12 21.762s 2.556736 × 10−15 19.984s 8.758143 × 10−6 17.316s

Table 2 presents a comparison between the numerical results given by our method and the ones
obtained using Taylor-collocation method [54] and Chebyshev cardinal functions method [27].
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Table 2. The ‖EN‖2-error of the our method and [27, 54] for Example 7.1.

Our method Taylor-collocation Chebyshev cardinal functions
(γ = 1

2 ) method [54] method [27]

N=3 1.866606 × 10−6 8.022061 × 10−4 -
N=5 7.046119 × 10−8 2.793213 × 10−4 5.457252 × 10−5

N=7 4.002629 × 10−10 1.433133 × 10−4 3.071930 × 10−5

N=9 1.252167 × 10−12 8.802562 × 10−5 1.672349 × 10−5

N=11 2.556736 × 10−15 5.997519 × 10−5 8.332697 × 10−6

Figure 2 shows that the spectral accuracy of our method with γ = 1
2 is achieved because the semi-

logarithmic representation of the errors has almost similar behavior with the test line (dash-dot line).
This line is the semi-logarithmic graph of exp(−N).

Figure 2. The ‖EN‖2-errors for different values of N in Example 7.1 with γ = 1
2 (solid lines)

and γ = 1 (dashed lines).

In Table 3, we solved the perturbed problem with ε = 10−3, 10−6, 10−9 to investigate the stability of
our method. The obtained numerical results in this example confirm the high-order rate of convergence
and stability of the proposed method, as well as the agreement with the obtained theoretical results.

Table 3. The ‖EN‖2-error of perturbed problem of Example 7.1.

ε N = 5 CPU-Time N = 9 CPU-Time

10−3 7.077009 × 10−8 2.246s 1.257245 × 10−12 9.297s
10−6 7.046150 × 10−8 2.184s 1.252172 × 10−12 9.157s
10−9 7.046119 × 10−8 2.262s 1.252167 × 10−12 9.220s
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Example 7.2. Consider the fractional quadratic integral equation

y(x) = x3 +
1

40
x12 +

xy(x)
5Γ(α)

∫ x

0
(x − t)α−1ty2(t)dt.

The exact solution for α = 1 is y(x) = x3.
In this example, we study the applicability of the proposed method when the exact solution does

not exist. Table 4 shows the numerical results for N = 10 and various values of α, γ. From these
results, it is seen that the approximate solution converges to the exact solution as α→ 1. The semi-log
representation of errors for different values of N with α = γ = 1 confirm the spectral (exponential)
rate of convergence of our method in Figure 3.

Table 4. The obtained approximate solutions for α = 0.7, 0.8, 0.9, 0.95 with γ = α and
N = 10 in Example 7.2.

α \ x x=0.2 x=0.4 x=0.6 x=0.8 x=1 CPU-Time

γ = α = 0.70 8.000000548 × 10−3 6.400060857 × 10−2 2.160655858 × 10−1 5.137819785 × 10−1 1.024852816 15.210s

γ = α = 0.80 8.000000046 × 10−3 6.400035132 × 10−2 2.160379087 × 10−1 5.130438155 × 10−1 1.014435189 15.319s

γ = α = 0.90 8.000000093 × 10−3 6.400015092 × 10−2 2.160165000 × 10−1 5.124608263 × 10−1 1.006347436 15.585s

γ = α = 0.95 8.000000050 × 10−3 6.400006977 × 10−2 2.160077126 × 10−1 5.122168920 × 10−1 1.002985209 15.070s
Exa. sol (α = 1) 8.000000000 × 10−3 6.400000000 × 10−2 2.160000000 × 10−1 5.120000000 × 10−1 1.0000000000 -

Figure 3. The ‖EN‖2-errors for different values of N in Example 7.2 with α = γ = 1.

8. Conclusions

Obtaining the analytical solution for integral equations is limited to a certain class of them.
Therefore, it is required to derive appropriate numerical methods to solve them. A numerical method
based on spectral collocation method is presented for solving nonlinear fractional quadratic integral
equations. We used a new (fractional order) version of orthogonal Chelyshkov polynomials as basis
functions. Also, the convergence of the method is investigated. The numerical results show the
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accuracy of the proposed method. Utilizing the new non-integer basis functions produces numerical
results with high accuracy. The proposed method for problems on a large interval was not considered.
As future work, this limitation may be considered by dividing the domain of the problem into sub-
domains and applying the numerical method on them [26, 34]. Also, this method can be applied to
other kinds of integral equations such as cordial integral equations of quadratic type, quadratic integral
equations systems and delay quadratic integral equations.
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