Research article

Cubic m-polar fuzzy topology with multi-criteria group decision-making

  • The concept of cubic m-polar fuzzy set (CmPFS) is a new approach to fuzzy modeling with multiple membership grades in terms of fuzzy intervals as well as multiple fuzzy numbers. We define some fundamental properties and operations of CmPFSs. We define the topological structure of CmPFSs and the idea of cubic m-polar fuzzy topology (CmPF topology) with P-order (R-order). We extend several concepts of crisp topology to CmPF topology, such as open sets, closed sets, subspaces and dense sets, as well as the interior, exterior, frontier, neighborhood, and basis of CmPF topology with P-order (R-order). A CmPF topology is a robust approach for modeling big data, data analysis, diagnosis, etc. An extension of the VIKOR method for multi-criteria group decision making with CmPF topology is designed. An application of the proposed method is presented for chronic kidney disease diagnosis and a comparative analysis of the proposed approach and existing approaches is also given.

    Citation: Muhammad Riaz, Khadija Akmal, Yahya Almalki, S. A. Alblowi. Cubic m-polar fuzzy topology with multi-criteria group decision-making[J]. AIMS Mathematics, 2022, 7(7): 13019-13052. doi: 10.3934/math.2022721

    Related Papers:

    [1] Kamaraj Dhurai, Nak Eun Cho, Srikandan Sivasubramanian . On a class of analytic functions closely related to starlike functions with respect to a boundary point. AIMS Mathematics, 2023, 8(10): 23146-23163. doi: 10.3934/math.20231177
    [2] Lina Ma, Shuhai Li, Huo Tang . Geometric properties of harmonic functions associated with the symmetric conjecture points and exponential function. AIMS Mathematics, 2020, 5(6): 6800-6816. doi: 10.3934/math.2020437
    [3] Georgia Irina Oros, Gheorghe Oros, Daniela Andrada Bardac-Vlada . Certain geometric properties of the fractional integral of the Bessel function of the first kind. AIMS Mathematics, 2024, 9(3): 7095-7110. doi: 10.3934/math.2024346
    [4] Bo Wang, Rekha Srivastava, Jin-Lin Liu . Certain properties of multivalent analytic functions defined by q-difference operator involving the Janowski function. AIMS Mathematics, 2021, 6(8): 8497-8508. doi: 10.3934/math.2021493
    [5] Pinhong Long, Huo Tang, Wenshuai Wang . Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator. AIMS Mathematics, 2021, 6(2): 1191-1208. doi: 10.3934/math.2021073
    [6] Ekram E. Ali, Rabha M. El-Ashwah, Wafaa Y. Kota, Abeer M. Albalahi, Teodor Bulboacă . A study of generalized distribution series and their mapping properties in univalent function theory. AIMS Mathematics, 2025, 10(6): 13296-13318. doi: 10.3934/math.2025596
    [7] K. Saritha, K. Thilagavathi . Differential subordination, superordination results associated with Pascal distribution. AIMS Mathematics, 2023, 8(4): 7856-7864. doi: 10.3934/math.2023395
    [8] Muajebah Hidan, Abbas Kareem Wanas, Faiz Chaseb Khudher, Gangadharan Murugusundaramoorthy, Mohamed Abdalla . Coefficient bounds for certain families of bi-Bazilevič and bi-Ozaki-close-to-convex functions. AIMS Mathematics, 2024, 9(4): 8134-8147. doi: 10.3934/math.2024395
    [9] Kholood M. Alsager, Sheza M. El-Deeb, Ala Amourah, Jongsuk Ro . Some results for the family of holomorphic functions associated with the Babalola operator and combination binomial series. AIMS Mathematics, 2024, 9(10): 29370-29385. doi: 10.3934/math.20241423
    [10] Aoen, Shuhai Li, Tula, Shuwen Li, Hang Gao . New subclass of generalized close-to-convex function related with quasi-subordination. AIMS Mathematics, 2025, 10(5): 12149-12167. doi: 10.3934/math.2025551
  • The concept of cubic m-polar fuzzy set (CmPFS) is a new approach to fuzzy modeling with multiple membership grades in terms of fuzzy intervals as well as multiple fuzzy numbers. We define some fundamental properties and operations of CmPFSs. We define the topological structure of CmPFSs and the idea of cubic m-polar fuzzy topology (CmPF topology) with P-order (R-order). We extend several concepts of crisp topology to CmPF topology, such as open sets, closed sets, subspaces and dense sets, as well as the interior, exterior, frontier, neighborhood, and basis of CmPF topology with P-order (R-order). A CmPF topology is a robust approach for modeling big data, data analysis, diagnosis, etc. An extension of the VIKOR method for multi-criteria group decision making with CmPF topology is designed. An application of the proposed method is presented for chronic kidney disease diagnosis and a comparative analysis of the proposed approach and existing approaches is also given.



    In the literature, special functions have a great importance in a variety of fields of mathematics, such as mathematical physics, mathematical biology, fluid mechanics, geometry, combinatory and statistics. Due of the essential position of special functions in mathematics, they continue to play an essential role in the subject as well as in the geometric function theory. For geometric behavior of some other special functions, one can refer to [1,2,3,4,5,6,7,8,9,10,11,12]. An interesting way to discuss the geometric properties of special functions is by the means of some criteria due to Ozaki, Fejér and MacGregor. One of the important special functions is the Mathieu series that appeared in the nineteenth century in the monograph [13] defined on R by

    S(r)=n12n(n2+r2)2. (1.1)

    Surprisingly, the Mathieu series is considered in a variety of fields of mathematical physics, namely, in the elasticity of solid bodies [13]. For more applications regarding the Mathieu series, we refer the interested reader to [14, p. 258, Eq (54)]. The functions bear the name of the mathematician Émile Leonard Mathieu (1835–1890). Recently, a more general family of the Mathieu series was studied by Diananda [15] in the following form:

    Sμ(r)=n12n(n2+r2)μ+1(μ>0,rR). (1.2)

    In 2020, Gerhold et al. [16], considered a new Mathieu type power series, defined by

    Sα,β,μ(r;z)=k=0(k!)αzk((k!)β+r2)μ+1, (1.3)

    where α,μ0,β,r>0 and |z|1, such that α<β(μ+1).

    In [17], Bansal and Sokól have determined sufficient conditions imposed on the parameters such that the normalized form of the function S(r,z) belong to a certain class of univalent functions, such as starlike and close-to-convex. In [18], the authors presented some generalizations of the results of Bansal and Sokól by using the same technique. In addition, Gerhold et al. [18, Theorems 5 and 6] has established some sufficient conditions imposed on the parameter of the normalized form of the function S1,2,μ(r;z) defined by

    Qμ(r;z):=z+n=2n!(r2+1)μ+1((n!)2+r2)μ+1zn, (1.4)

    to be starlike and close-to-convex in the open unit disk. The main focus of the present paper is to extend and improve some results from [18] by using a completely different method. More precisely, in this paper we present some sufficient conditions, such as the normalized form of the function S1,β,μ(r;z) defined by

    Qμ,β(r;z)=z+n=2n!(r2+1)μ+1zn((n!)β+r2)μ+1, (1.5)

    satisfying several geometric properties such as starlikeness, convexity and close-to-convexity.

    We denoted by H the class of all analytic functions inside the unit disk

    D={z:zCand|z|<1}.

    Assume that A denoted the collection of all functions fH, satisfying the normalization f(0)=f(0)1=0 such that

    f(z)=z+k=2akzk,(zD).

    A function fA is said to be a starlike function (with respect to the origin zero) in D, if f is univalent in D and f(D) is a starlike domain with respect to zero in C. This class of starlike functions is denoted by S. The analytic characterization of S is given [19] below:

    (zf(z)f(z))>0(zD).

    If f(z) is a univalent function in D and f(D) is a convex domain in C, then fA is said to be a convex function in D. We denote this class of convex functions by K, which can also be described as follows:

    (1+zf(z)f(z))>0(zD).

    An analytic function f in A is called close-to-convex in the open unit disk D if there exists a function g(z), which is starlike in D such that

    (zf(z)g(z))>0,zD.

    It can be noted that every close-to-convex function in D is also univalent in D (see, for details, [19,20]).

    In order to show the main results, the following preliminary lemmas will be helpful. The first result is due to Ozaki (see also [21, Lemma 2.1]).

    Lemma 1.1. [22] Let

    f(z)=z+n=2anzn,

    be analytic in D. If

    12a2(n+1)an+10,

    or if

    12a2(n+1)an+12,

    then f is close-to-convex with respect to the function log(1z).

    Remark 1.2. We note that, as Ponnusamy and Vuorinen pointed out in [21], proceeding exactly as in the proof of Lemma 1.1, one can verify directly that if a function f:DC satisfies the hypothesis of the above lemma, then it is close-to-convex with respect to the convex function

    z1z.

    The next two lemmas are due to Fejér [23].

    Lemma 1.3. Suppose that a function f(z)=1+k=2akzk1, with ak0(k2) as analytic in D. If (ak)k1 is a convex decreasing sequence, i.e., ak2ak+1+ak+20 and akak+10 for all k1, then

    (f(z))>12(zD).

    Lemma 1.4. Suppose that a f(z)=z+k=2akzk, with ak0(k2) as analytic in D. If (kak)k1 and (kak(k+1)ak+1)k1 both are decreasing, then f is starlike in D.

    Lemma 1.5 ([24]). Assume that fA. If the following inequality

    |f(z)z1|<1,

    holds for all zD, then f is starlike in

    D12:={zCand|z|<12}.

    Lemma 1.6 ([25]). Assume that fA and satisfies

    |f(z)1|<1,

    for each zD, then f is convex in D12.

    Theorem 2.1. Let μ,β>0 and 0<r1 such that β1+2μ+1. In addition, if the following condition holds:

    H:(2β+12)μ+14,

    then the function Qμ,β(r;z) is close-to-convex in D with respect to the function log(1z).

    Proof. For the function Qμ,β(r;z), we have

    a1=1andak=k!(r2+1)μ+1((k!)β+r2)μ+1(k2).

    To prove the result, we need to show that the sequence {kak}k1 is decreasing under the given conditions. For k2 we have

    kak(k+1)ak+1=(r2+1)μ+1[kk!((k!)β+r2)μ+1(k+1)(k+1)!(((k+1)!)β+r2)μ+1]=k!(r2+1)μ+1[k((k!)β+r2)μ+1(k+1)2(((k+1)!)β+r2)μ+1]=k!(r2+1)μ+1Ak(β,μ,r)[((k!)β+r2)(((k+1)!)β+r2)]μ+1, (2.1)

    where

    Ak(β,μ,r)=k(((k+1)!)β+r2)μ+1(k+1)2((k!)β+r2)μ+1,k2.

    However, we have

    Ak(β,μ,r)=(k1μ+1((k+1)!)β+k1μ+1r2)μ+1((k+1)2μ+1(k!)β+(k+1)2μ+1r2)μ+1=exp((μ+1)log[k1μ+1((k+1)!)β+k1μ+1r2])exp((μ+1)log[(k+1)2μ+1(k!)β+(k+1)2μ+1r2])=j=0[logj(k1μ+1((k+1)!)β+k1μ+1r2)logj((k+1)2μ+1(k!)β+(k+1)2μ+1r2)](μ+1)jj!. (2.2)

    In addition, for all k2, we have

    k1μ+1((k+1)!)β+k1μ+1r2(k+1)2μ+1(k!)β+(k+1)2μ+1r2=r2(k1μ+1(k+1)2μ+1)+k1μ+1((k+1)!)β(k+1)2μ+1(k!)β[k1μ+1(k+1)2μ+1+k1μ+1((k+1)!)β2]+[k1μ+1((k+1)!)β2(k+1)2μ+1(k!)β]=k1μ+1(1+((k+1)!)β2((k+1)2k)1μ+1)+(k!)β(k1μ+1(k+1)β2(k+1)2μ+1)k1μ+1(k+1)2μ+1(1+(k!)β(k+1)21k1μ+1)+(k!)β(k+1)2μ+1(k1μ+1(k+1)21)k1μ+1(k+1)2μ+1(1+(k!)βk1μ+11k1μ+1)+(k!)β(k+1)2μ+1(k1μ+11), (2.3)

    which is positive by our assumption. Having (2.1)–(2.3), we conclude that the sequence (kak)k2 is decreasing. Finally, we see that the condition (H) implies that a12a2, then the function Qμ,β(r;z) is close-to-convex in D with respect to the function log(1z) by Lemma 1.1.

    If we set β=32 in Theorem 2.1, we derive the following result as follows:

    Corollary 2.2. Let 0<r1. If μ3, then the function Qμ,32(r;z) is close-to-convex in D with respect to the function log(1z).

    Upon setting μ=2 in Theorem 2.1, we get the following result:

    Corollary 2.3. Let 0<r1. If β53, then the function Q2,β(r;z) is close-to-convex in D with respect to the function log(1z).

    Remark 2.4. In [18], it is established that the function Qμ,2(r;z)=:Qμ(r;z) is close-to-convex in D with respect to the function z1z for all 0<rμ. Moreover, in view of Remark 1.2, we conclude that the function Qμ,2(r;z) is close-to-convex in D with respect to the function log(1z) for all 0<rμ. However, in view of Corollaries 2.2 and 2.3, we deduce that Theorem 2.1 improves the corresponding result available in [18, Theorem 5] for 0<r1.

    Theorem 2.5. Assume that μ,β>0,0<r1 such that β1+1μ+1. In addition, if the condition (H) holds, then

    (Qμ,β(r;z)z)>12,

    for all zD.

    Proof. For k1, we get

    ((k!)β+r2)μ+1(((k+1)!)β+r2)μ+1(akak+1)(r2+1)μ+1=k!(((k+1)!)β+r2)μ+1(k+1)!((k!)β+r2)μ+1=[(k!)1μ+1((k+1)!)β+r2)]μ+1[((k+1)!)1μ+1((k!)β+r2)]μ+1. (2.4)

    Further, for all k1, we have

    (k!)1μ+1((k+1)!)β+r2)((k+1)!)1μ+1((k!)β+r2)=r2[(k!)1μ+1((k+1)!)1μ+1]+(k!)1μ+1((k+1)!)β((k+1)!)1μ+1(k!)β(k!)1μ+1((k+1)!)1μ+1+(k!)1μ+1((k+1)!)β((k+1)!)1μ+1(k!)β=(k!)1μ+1[1+(k!)β(k+1)β2(k+1)1μ+1]+(k!)β+1μ+1[(k+1)β2(k+1)1μ+1](k!)1μ+1[1+(k+1)1+1μ+12(k+1)1μ+1]+(k!)β+1μ+1[(k+1)1+1μ+12(k+1)1μ+1]=(k!)1μ+1[1+(k+1)1μ+1((k+1)21)]+(k!)β+1μ+1(k+1)1μ+1((k+1)21)>0. (2.5)

    Hence, in view of (2.4) and (2.5), we deduce that the sequence (ak)k1 is decreasing. Next, we prove that (ak)k1 is a convex decreasing sequence, then, for k2 we obtain

    ((k!)β+r2)μ+1(((k+1)!)β+r2)μ+1(ak2ak+1)(r2+1)μ+1=k!(((k+1)!)β+r2)μ+12(k+1)!((k!)β+r2)μ+1=[(k!)1μ+1((k+1)!)β+r2)]μ+1[(2(k+1)!)1μ+1((k!)β+r2)]μ+1. (2.6)

    Moreover, we get

    (k!)1μ+1(((k+1)!)β+r2)(2(k+1)!)1μ+1((k!)β+r2)=r2[(k!)1μ+1(2(k+1)!)1μ+1]+(k!)1μ+1((k+1)!)β(2(k+1)!)1μ+1(k!)β>[(k!)1μ+1(2(k+1)!)1μ+1]+(k!)1μ+1((k+1)!)β3+2(k!)β+1μ+13[(k+1)β3.2μμ+1(k+1)1μ+1](k!)1μ+1[1+((k+1)!)1+1μ+13(2(k+1))1μ+1]+2(k!)β+1μ+13[(k+1)1+1μ+13.2μμ+1(k+1)1μ+1]=(k!)1μ+1[1+(k+1)1μ+1{(k+1)(k!)1+1μ+1321μ+1}]+2(k!)β+1μ+1(k+1)1μ+13[(k+1)3.2μμ+1]>2[12μμ+1](k!)β+1μ+1(k+1)1μ+1>0. (2.7)

    Keeping (2.6) and (2.7) in mind, we have ak2ak+1>0 for all k2. In addition, the condition (H) implies a12a20. This in turn implies that the sequence (ak)k1 is convex. Finally, by Lemma 1.3, we obtain the desired result.

    Taking β=32 in Theorem 2.5, we derive the following result:

    Corollary 2.6. Assume that r(0,1]. If μlog(4)log(232+1)log(2)11.14, then

    (Qμ,32(r;z)z)>12(zD).

    Setting μ=1 in Theorem 2.5, we established the following result which reads as follows:

    Corollary 2.7. Let 0<r1. If βlog(3)log(2), then

    (Q1,β(r;z)z)>12(zD).

    Remark 2.8. The result obtained in the above theorem has been derived from [18, Theorem 6] for β=2,μ>0 and 0<r<μ. Hence, in view of Corollaries 2.2 and 2.6, we deduce that Theorem 2.5 improves the corresponding result given in [18, Theorem 6] for 0<r1.

    Theorem 2.9. Assume that min(μ,β)>0,0<r1 such that β1+3μ+1, then the function Qμ,β(r;z) is starlike in D.

    Proof. We see in the proof of Theorem 2.1 that the sequence (kak)k1 is decreasing. Hence, with the aid of Lemma 1.4 to show that the function Qμ,β(r;z) is starlike in D, it suffices to prove that the sequence (kak(k+1)ak+1)k1 is decreasing. We have

    kak2(k+1)ak+1=k!(r2+1)μ+1Bk(β,μ,r)[((k!)β+r2)((k+1)!)β+r2)]μ+1, (2.8)

    where

    Bk(β,μ,r)=k(((k+1)!)β+r2)μ+12(k+1)2((k!)β+r2)μ+1,k1.

    For k2, we have

    k1μ+1(((k+1)!)β+r2)(2(k+1)2)1μ+1((k!)β+r2)k1μ+1(2(k+1)2)1μ+1+k1μ+1((k+1)!)β2+[k1μ+1((k+1)!)β2(2(k+1)2)1μ+1(k!)β]=k1μ+1+k1μ+1((k+1)!)β2(2(k+1)2)1μ+1+(k!)β(k1μ+1(k+1)β2(2(k+1)2)1μ+1)k1μ+1+(k+1)2μ+1(k1μ+1(k!)β(k+1)221μ+1)+(k!)β(k+1)2μ+1(k1μ+1(k+1)221μ+1)k1μ+1+(k+1)2μ+1(k1μ+1(k!)β21μ+1)+(k!)β(k+1)2μ+1(k1μ+121μ+1)>0, (2.9)

    which in turn implies that

    Bk(β,μ,r)>0,

    for all k2, and consequently, the sequence (kak(k+1)ak+1)k2 is decreasing. Further, a simple computation gives

    a14a2+3a3(1+r2)μ+1=1(1+r2)μ+18(2β+r2)μ+1+18(6β+r2)μ+112μ+182β(μ+1)+18(6β+r2)μ+1=2β(μ+1)2μ+42(β+1)(μ+1)+18(6β+r2)μ+12μ+42μ+42(β+1)(μ+1)+18(6β+r2)μ+1>0.

    Therefore, (kak(k+1)ak+1)k1 is decreasing, which leads us to the asserted result.

    In the next Theorem we present another set of sufficient conditions to be imposed on the parameters so that the function Qμ,β(r;z) is starlike in D.

    Theorem 2.10. Let the parameters be the same as in Theorem 2.1. In addition, if the following conditions

    H:(2β+12)μ+18(e2),

    hold true, then the function Qμ,β(r;z) is starlike in D.

    Proof. First of all, we need to prove that the sequences (uk)k2 and (vk)k2 defined by

    uk=(k!)2(r2+1)μ+1((k!)β+r2)μ+1andvk=(k1)(k!)2(r2+1)μ+1((k!)β+r2)μ+1,

    are decreasing. Indeed, we have

    ((k!)β+r2)μ+1(((k+1)!)β+r2)μ+1(ukuk+1)(k!)2(r2+1)μ+1=(((k+1)!)β+r2)μ+1(k+1)2((k!)β+r2)μ+1. (2.10)

    In addition, for any k2, we have

    ((k+1)!)β+r2(k+1)2μ+1((k!)β+r2)=r2(1(k+1)2μ+1)+((k+1)!)β(k+1)2μ+1(k!)β1(k+1)2μ+1+((k+1)!)β(k+1)2μ+1(k!)β=1+(((k+1)!)β2(k+1)2μ+1)+(((k+1)!)β2(k+1)2μ+1(k!)β)1+((k!)β(k+1)1+2μ+12(k+1)2μ+1)+(k!)β((k+1)1+2μ+12(k+1)2μ+1)=1+(k+1)2μ+1((k!)β(k+1)21)+(k!)β(k+1)2μ+1(k+121)>0. (2.11)

    According to (2.10) and (2.11) we conclude that the sequence (uk)k2 is decreasing. Also, for k2, we have

    ((k!)β+r2)μ+1(((k+1)!)β+r2)μ+1(vkvk+1)(k!)2(r2+1)μ+1=(k1)(((k+1)!)β+r2)μ+1k(k+1)2((k!)β+r2)μ+1. (2.12)

    Moreover, for all k2, we find

    (k1)1μ+1(((k+1)!)β+r2)(k(k+1)2)1μ+1((k!)β+r2)=r2((k1)1μ+1(k(k+1)2)1μ+1)+(k1)1μ+1((k+1)!)β(k(k+1)2)1μ+1(k!)β(k1)1μ+1(k(k+1)2)1μ+1+(k1)1μ+1((k+1)!)β3+2(k1)1μ+1((k+1)!)β3(k(k+1)2)1μ+1(k!)β(k1)1μ+1+(k+1)2μ+1((k1)1μ+1(k!)1+2μ+1(k+1)3k1μ+1)+(k!)β(k+1)2μ+1(2(k1)1μ+1(k+1)3k1μ+1)(k1)1μ+1+(k+1)2μ+1((k1)1μ+1(k!)1+2μ+1k1μ+1)+(k!)β(k+1)2μ+1(2(k1)1μ+1k1μ+1). (2.13)

    Since the sequence (k/(k1))n2 is decreasing, we deduce that kk12 for all k2 and consequently,

    (kk1)1μ+121μ+12(k2,μ>0).

    Hence, in view of the above inequality combined with (2.13) and (2.12), we conclude that the sequence (vk)k2 is decreasing. Now, we set

    ˜Qμ,β(r;z):=z[Qμ,β(r;z)]Qμ,β(r;z),zD.

    We see that the function ˜Qμ,β(r;z) is analytic in D and satisfies ˜Qμ,β(r;0)=1. Hence, to derive the desired result, it suffices to prove that, for any zD, we have

    (˜Qμ,β(r;z))>0.

    For this goal in view, it suffices to show that

    |˜Qμ,β(r;z)1|<1(zD).

    For all zD, we get

    |[Qμ,β(r;z)]Qμ,β(r;z)z|<k=2(k1)k!(r2+1)μ+1((k!)β+r2)μ+1=k=2vkk!v2(e2). (2.14)

    In addition, in view of the inequality:

    |a+b|||a||b||,

    we obtain

    |Qμ,β(r;z)z|>1k=2(k!)(r2+1)μ+1((k!)β+r2)μ+1=1k=2ukk!1u2(e2). (2.15)

    By using (2.14) and (2.15), for zD, we get

    |˜Qμ,β(r;z)1|=|[Qμ,β(r;z)]Qμ,β(r;z)z||Qμ,β(r;z)z|<v2(e2)1u2(e2). (2.16)

    Furthermore, by using the fact that the function rχμ,β(r)=(r2+1r2+2β)μ+1 is strictly increasing on (0,1], and with the aid of condition (H), we obtain

    (v2+u2)(e2)=8(e2)(r2+1)μ+1(2β+r2)μ+1<8(e2)(22β+1)μ+11. (2.17)

    Finally, by combining (2.16) and (2.17), we derived the desired results.

    By setting β=2 in Theorem 2.10, we obtain the following corollary:

    Corollary 2.11. If 0<r1 and μ1, then the function Qμ(r;z) defined in (1.4) is starlike in D.

    Taking β=32 in Theorem 2.10, we obtain:

    Corollary 2.12. Under the assumptions of Corollary 2.2, the function Qμ,32(r;z) is starlike in D.

    Setting in Theorem 2.10 the values μ=2, we compute the following corollary:

    Corollary 2.13. Suppose that all hypotheses of Corollary 2.3 hold, then the function Q2,β(r;z) is starlike in D.

    Example 2.14. The functions Q3,32(1/2;z) and Q2,53(1/2;z) are starlike in D.

    Figure 1 illustrates the mappings of the above examples in D.

    Figure 1.  Mappings of Qμ,β(r;z) over D.

    Theorem 2.15. Let μ,β>0 and 0<r1 such that β1+3μ+1. If the following condition

    H:(2β+12)μ+116(e2),

    holds true, then the function Qμ,β(r;z) is convex in D.

    Proof. We define the sequences (xk)k2 and (yk)k2 by

    xk=k(k!)2(r2+1)μ+1((k!)β+r2)μ+1andyk=k(k1)(k!)2(r2+1)μ+1((k!)β+r2)μ+1.

    Let k2, then

    ((k!)β+r2)μ+1(((k+1)!)β+r2)μ+1(xkxk+1)(k!)2(r2+1)μ+1=k(((k+1)!)β+r2)μ+1(k+1)3((k!)β+r2)μ+1. (2.18)

    However, we have

    k1μ+1(((k+1)!)β+r2)(k+1)3μ+1((k!)β+r2)k1μ+1(k+1)3μ+1+k1μ+1((k+1)!)β(k+1)3μ+1(k!)β=k1μ+1+(k1μ+1(k!)β(k+1)β2(k+1)3μ+1)+(k1μ+1(k!)β(k+1)β2(k+1)3μ+1(k!)β)k1μ+1+(k+1)3μ+1(k1μ+1(k!)β(k+1)21)+(k!)β(k+1)3μ+1(k1μ+1(k+1)21)>0. (2.19)

    Hence, in view of (2.18) and (2.19), we get that (xk)k2 is decreasing. Also, we have

    ((k!)β+r2)μ+1(((k+1)!)β+r2)μ+1(ykyk+1)k(k!)2(r2+1)μ+1=(k1)(((k+1)!)β+r2)μ+1(k+1)3((k!)β+r2)μ+1. (2.20)

    Moreover, for k2, we find that

    (k1)1μ+1(((k+1)!)β+r2)(k+1)3μ+1((k!)β+r2)(k1)1μ+1+((k1)1μ+1(k!)β(k+1)β2(k+1)3μ+1)+(k!)β((k1)1μ+1(n+1)β2(n+1)3μ+1)(k1)1μ+1+(k+1)3μ+1((k1)1μ+1(k!)β(k+1)21)+(k!)β(k+1)3μ+1((k1)1μ+1(k+1)21)>0. (2.21)

    Having (2.20) and (2.21) in mind, we deduce that the sequence (yk)k2 is decreasing. To show that the function Qμ,β(r;z) is convex in D, it suffices to establish that the function

    ˆQμ,β(r;z):=z[Qμ,β(r;z)],

    is starlike in D. For this objective in view, it suffices to find that

    |z[ˆQμ,β(r;z)]ˆQμ,β(r;z)1|<1(zD).

    For all zD and since (yk)k2 is decreasing, we get

    |[ˆQμ,β(r;z)]ˆQμ,β(r;z)z|<k=2k(k1)k!(r2+1)μ+1((k!)β+r2)μ+1=k=2ykk!y2(e2). (2.22)

    Further, for any zD, we obtain

    |ˆQμ,β(r;z)z|>1k=2k(k!)(r2+1)μ+1((k!)β+r2)μ+1=1k=2xkk!1x2(e2). (2.23)

    Keeping (2.22) and (2.23) in mind, for zD, we get

    |z[ˆQμ,β(r;z)]ˆQμ,β(r;z)1|=|[ˆQμ,β(r;z)]ˆQμ,β(r;z)z||ˆQμ,β(r;z)z|<y2(e2)1x2(e2)=8(e2)(r2+1)μ+1(2β+r2)μ+18(e2)(r2+1)μ+1. (2.24)

    Again, by using the fact that the function rχμ,β(r) is increasing on (0,1] and with the aid of hypothesis (H) we obtain that

    8(e2)(r2+1)μ+1(2β+r2)μ+18(e2)(r2+1)μ+1<1. (2.25)

    Finally, by combining the above inequality and (2.24), we obtain the desired result asserted by Theorem 2.15.

    Taking β=2 in Theorem 2.15, in view of (1.4), the following result holds true:

    Corollary 2.16. Let 0<r1. If μ2, then the function Qμ(r;z) is convex in D.

    If we set μ=1 in Theorem 2.15, in view of (1.5), we derive the following result:

    Corollary 2.17. Let 0<r1. If βlog(8e21)log(2), then the function Q1,β(r;z) is convex in D.

    Example 2.18. The functions Q2(r;z) and Q1,83(r;z) are convex in D.

    Figure 2 gives the mappings of the above presented examples in D.

    Figure 2.  Mappings of Qμ,β(r;z) over D.

    Theorem 2.19. Let the parameters be the same as in Theorem 2.1, then the function Qμ,β(r;z) is starlike in D12.

    Proof. For any zD we get

    |Qμ,β(r;z)z1|<k=2k!(r2+1)μ+1(k!)β+r2)μ+1=k=2ckk!, (2.26)

    where

    ck:=(k!)2(r2+1)μ+1((k!)β+r2)μ+1,k2.

    Straightforward calculation gives

    [((k!)β+r2)(((k+1)!)β+r2)]μ+1(ckck+1)(k!)2(r2+1)μ+1=(((k+1)!)β+r2)μ+1((k+1)2μ+1((k!)β+r2))μ+1. (2.27)

    Furthermore, for k2, we get

    ((k+1)!)β+r2(n+1)2μ+1((k!)β+r2)=r2(1(k+1)2μ+1)+((k+1)!)β(k!)β(k+1)2μ+1(1+((k+1)!)β2(k+1)2μ+1)+(k!)β((k+1)β2(k+1)2μ+1)(1+(k!)β(k+1)1+2μ+12(k+1)2μ+1)+(k!)β(k+1)2μ+1(k1)2(1+(k+1)2μ+1((k!)β(k+1)2)2)+(k!)β(k+1)2μ+1(k1)2>0. (2.28)

    Thus, the sequence (ck)k2 is decreasing. However, in view of (2.26), for zD we obtain

    |Qμ,β(r;z)z1|<k=2k!(r2+1)μ+1((k!)β+r2)μ+1=k=2c2k!=c2(e2)=4(e2)(r2+1)μ+1(2β+r2)μ+1. (2.29)

    According to the monotony property of the function rχβ,μ(r) on (0,1) we get

    χβ,μ(r)<14. (2.30)

    Hence, in view (2.29) and (2.30) we find for all zD that

    |Qμ,β(r;z)z1|<(e2)<1.

    With the help of Lemma 1.5, we deduce that the function Qμ,β(r;z) is starlike in D12.

    Corollary 2.20. Assume that all conditions of Corollary 2.2 are satisfied, then the function Qμ,32(r;z) is starlike in D12.

    Corollary 2.21. Suppose that all hypotheses of Corollary 2.3 hold, then the function Q2,β(r;z) is starlike in D12.

    If we set β=2 in the above Theorem, in view of (1.4), the following result is true:

    Corollary 2.22. Let 0<r1 If μ1, then the function Qμ(r;z) is starlike in D12.

    Example 2.23. The functions Q3,32(1/2;z),Q1(1;z) and Q2,53(1/2;z) are starlike in D12.

    In Figure 3, we give the mappings of the above presented examples in D.

    Figure 3.  Mappings of Qμ,β(r;z) over D12.

    Theorem 2.24. Let β,μ>0 and 0<r<1. If β1+3μ+1, then the function Qμ,β(r;z) is convex in D12.

    Proof. For all zD, it follows that

    |Qμ,β(r;z)1|<k=2kk!(r2+1)μ+1((k!)β+r2)μ+1=k=2dkk(k1), (2.31)

    where

    dk:=k2(k1)k!(r2+1)μ+1(k!)β+r2)μ+1,k2.

    For all k2, we get

    ((k!)β+r2)μ+1(((k+1)!)β+r2)μ+1(dkdk+1)kk!(1+r2)μ+1=((k(k1))1μ+1[((k+1)!)β+r2])μ+1(((k+1))3μ+1[(k!)β+r2])μ+1. (2.32)

    However, for all k2 and under the conditions imposed on the parameters, we have

    (k(k1))1μ+1[((k+1)!)β+r2]((k+1))3μ+1[(k!)β+r2](k(k1))1μ+1((k+1))3μ+1+(k(k1))1μ+1((k+1)!)β(k+1)3μ+1(k!)β=(k(k1))1μ+1+((k(k1))1μ+1(k!)β(k+1)β2(k+1)3μ+1)+(k!)β((k(k1))1μ+1(k+1)β2(k+1)3μ+1)(k(k1))1μ+1+(n+1)3μ+1((k(k1))1μ+1(k!)β(k+1)21)+(k!)β(k+1)3μ+1((k(k1))1μ+1(k+1)21)(k(k1))1μ+1+(k+1)3μ+1((k(k1))1μ+1(k!)β1)+(k!)β(k+1)3μ+1((k(k1))1μ+11)>0. (2.33)

    Hence, in view of (2.32) and (2.33) we conclude that the sequence (dk)k2 is decreasing. Therefore, by (2.31), we conclude

    |Qμ,β(r;z)1|<k2d2k(k1)=d2. (2.34)

    Moreover, since β1+3μ+1 and r(0,1], we get

    (r2+1r2+2β)μ+118,

    and consequently, for all zD, we obtain

    |Qμ,β(r;z)1|<1. (2.35)

    Finally, with the means of Lemma 1.6, we conclude that the function Qμ,β(r;z) is convex in D12.

    If we take β=2 in Theorem 2.15, in view of (1.4), the following result holds true:

    Corollary 2.25. Let 0<r1. If μ2, then the function Qμ(r;z) is convex in D12.

    If we let μ=1 in Theorem 2.15, in view of (1.5), we derive the following result:

    Corollary 2.26. Let 0<r1. If β52, then the function Q1,β(r;z) is convex in D12.

    Example 2.27. The functions Q2(r;z) and Q1,52(r;z) are convex in D12.

    In Figure 4, we present the mappings of these examples in D.

    Figure 4.  Mappings of Qμ,β(r;z) over D12.

    Remark 2.28. The geometric properties of the function Qμ(r;z) derived in Corollaries 2.16, 2.22 and 2.25 are new.

    In our present paper, we have derived sufficient conditions such that a class of functions associated to the generalized Mathieu type power series are to be starlike, close-to-convex and convex in the unit disk D. The various results, which we have established in this paper, are believed to be new, and their importance is illustrated by several interesting corollaries and examples. Furthermore, we are confident that our paper will inspire further investigation in this field and pave the way for some developments in the study of geometric functions theory involving certain classes of functions related to the Mathieu type powers series.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA for funding this research work through the project number "NBU-FFR-2023-0093".

    The authors declare that they have no conflicts of interest.



    [1] L. A. Zadeh, Fuzzy sets, Inform. Control., 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
    [2] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Inform. Sci., 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5
    [3] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3
    [4] K. T. Atanassov, Intuitionistic fuzzy sets: Theory and applications, Springer-Verlag Berlin Heidelberg GmbH, 283 (2012), 1–322. https://doi.org/10.1007/978-3-7908-1870-3 doi: 10.1007/978-3-7908-1870-3
    [5] R. R. Yager, Pythagorean fuzzy subsets, 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
    [6] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [7] R. R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst., 25 (2017), 1220–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [8] W. R. Zhang, Bipolar fuzzy sets and relations: A computational framework for cognitive modeling and multiagent decision analysis, NAFIPS/IFIS/NASA94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference, The Industrial Fuzzy Control and Intellige., (1994), 305–309. https://doi.org/10.1109/IJCF.1994.375115
    [9] W. R. Zhang, (Yin)(Yang) bipolar fuzzy sets, IEEE International Conference on Fuzzy Systems Proceedings, IEEE World Congress Comput. Intell., 1 (1998), 835–840. https://doi.org/10.1109/FUZZY.1998.687599 doi: 10.1109/FUZZY.1998.687599
    [10] J. Chen, S. Li, S. Ma, X. Wang, m-Polar fuzzy sets: An extension of bipolar fuzzy sets, Sci. World J., 2014 (2014), 1–8. https://doi.org/10.1155/2014/416530 doi: 10.1155/2014/416530
    [11] F. Smarandache, A unifying field in logics, neutrosophy: Neutrosophic probability, set and logic, Amer. Res. Press: Rehoboth, DE, USA., (1999). 1–141.
    [12] F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math., 24 (2005), 287–297. https://doi.org/10.1089/blr.2005.24.297 doi: 10.1089/blr.2005.24.297
    [13] B. C. Cuong, Picture fuzzy sets, J. Comput. Sci. Cybern., 30 (2014), 409–420. https://doi.org/10.15625/1813-9663/30/4/5032
    [14] Z. S. Xu, Intuitionistic fuzzy aggregation operators, IEEE Trans. Fuzzy Syst., 15 (2007), 1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678 doi: 10.1109/TFUZZ.2006.890678
    [15] H. Garg, Nancy, Linguistic single-valued neutrosophic prioritized aggregation operators and their applications to multiple-attribute group decision-making, J. Ambient. Intell. Human. Comput., 9 (2018), 1975–1997. https://doi.org/10.1007/s12652-018-0723-5 doi: 10.1007/s12652-018-0723-5
    [16] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [17] N. agman, S. Enginoglu, Soft set theory and uniint decision making, Eur. J. Oper. Res., 207 (2010), 848–855. https://doi.org/10.1016/j.ejor.2010.05.004 doi: 10.1016/j.ejor.2010.05.004
    [18] Y. B. Jun, C. S. Kim, K. O. Yang, Cubic Sets, Annal. Fuzzy Math. Inform., 4 (2012), 83–98.
    [19] M. Riaz, M. R. Hashmi, MAGDM for agribusiness in the environment of various cubic m-polar fuzzy averaging aggregation operators, J. Intell. Fuzzy Syst., 37 (2019), 3671–3691. https://doi.org/10.3233/JIFS-182809 doi: 10.3233/JIFS-182809
    [20] M. Riaz, M. R. Hashmi, Linear Diophantine fuzzy set and its applications towards multi-attribute decision making problems, J. Intell. Fuzzy Syst., 37 (2019), 5417–5439. https://doi.org/10.3233/JIFS-190550 doi: 10.3233/JIFS-190550
    [21] M. Riaz, M. R. Hashmi. H. Kalsoom, D. Pamucar, Y. M. Chu, Linear Diophantine fuzzy soft rough sets for the selection of sustainable material handling equipment, Symmetry., 12 (2020), 1–39. https://doi.org/10.3390/sym12081215 doi: 10.3390/sym12081215
    [22] M. Riaz, M. R. Hashmi, D. Pamucar, Y. M. Chu, Spherical linear Diophantine fuzzy sets with modeling uncertainties in MCDM, Comput. Model. Eng. Sci., 126 (2021), 1125–1164. https://doi.org/10.32604/cmes.2021.013699 doi: 10.32604/cmes.2021.013699
    [23] P. Liu, Z. Ali, T. Mahmood, N. Hassan, Group decision-making using complex q-rung orthopair fuzzy Bonferroni mean, Int. J. Comput. Intell. Syst., 13 (2020), 822–851. https://doi.org/10.2991/ijcis.d.200514.001 doi: 10.2991/ijcis.d.200514.001
    [24] P. Liu, P. Wang, Multiple attribute group decision making method based on intuitionistic fuzzy Einstein interactive operations, Int. J. Fuzzy Syst., 22 (2020), 790–809. https://doi.org/10.1007/s40815-020-00809-w doi: 10.1007/s40815-020-00809-w
    [25] A. Jain, J. Darbari, A. Kaul, P. C. Jha, Selection of a green marketing strategy using MCDM under fuzzy environment, In: Soft Computing for Problem Solving, (2020), https://doi.org/10.1007/978-981-15-0184-5_43
    [26] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182–190. https://doi.org/10.1016/0022-247X(68)90057-7
    [27] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets Syst., 88 (1997), 81–89. https://doi.org/10.1016/S0165-0114(96)00076-0 doi: 10.1016/S0165-0114(96)00076-0
    [28] M. Olgun, M. Unver, Yardimci, Pythagorean fuzzy topological spaces, Complex Intell. Syst., 5 (2019), 177–183. https://doi.org/10.1007/s40747-019-0095-2 doi: 10.1007/s40747-019-0095-2
    [29] N. Cagman, S. Karatas, S. Enginoglu, Soft topology, Comput. Math. Applic., 62 (2011), 351–358. https://doi.org/10.1016/j.camwa.2011.05.016
    [30] A. Saha, T. Senapati, R. R. Yager, Hybridizations of generalized Dombi operators and Bonferroni mean operators under dual probabilistic linguistic environment for group decision-making, Int. J. Intell. Syst., 11 (2021), 6645–6679. https://doi.org/10.1002/int.22563 doi: 10.1002/int.22563
    [31] A. Saha, H. Garg, D. Dutta, Probabilistic linguistic q-rung orthopair fuzzy generalized Dombi and Bonferroni mean operators for group decision-making with unknown weights of experts, Int. J. Intell. Syst., 12 (2021), 7770–7804. https://doi.org/10.1002/int.22607 doi: 10.1002/int.22607
    [32] C. Jana, G. Muhiuddin, M. Pal, D. Al-Kadi, Intuitionistic fuzzy Dombi hybrid decision-making method and their applications to enterprise financial performance evaluation, Math. Prob. Eng., 2021 (2021), 1–14. https://doi.org/10.1155/2021/3218133 doi: 10.1155/2021/3218133
    [33] C. Jana, M. Pal, J. Wang, Bipolar fuzzy Dombi prioritized aggregation operators in multiple attribute decision making, Soft Comput., 24 (2020), 3631–3646. https://doi.org/10.1007/s00500-019-04130-z. doi: 10.1007/s00500-019-04130-z
    [34] M. Akram, G. Ali, J. C. R. Alcantud, Attributes reduction algorithms for m-polar fuzzy relation decision systems, Int. J. Approx. Reas., 140 (2022), 232–254. https://doi.org/10.1016/j.ijar.2021.10.005 doi: 10.1016/j.ijar.2021.10.005
    [35] M. Akram, A. Luqman, J. C. R. Alcantud, Risk evaluation in failure modes and effects analysis: Hybrid TOPSIS and ELECTRE I solutions with Pythagorean fuzzy information, Neural Comput. Applic., 33 (2021), 5675–5703. https://doi.org/10.1007/s00521-020-05350-3 doi: 10.1007/s00521-020-05350-3
    [36] S. Ashraf, S. Abdullah, Decision aid modeling based on sine trigonometric spherical fuzzy aggregation information, Soft Comput., 25 (2021), 8549–8572. https://doi.org/10.1007/s00500-021-05712-6 doi: 10.1007/s00500-021-05712-6
    [37] A. O. Almagrabi, S. Abdullah, M. Shams, Y. D. Al-Otaibi, S. Ashraf, A new approach to q-linear Diophantine fuzzy emergency decision support system for COVID19, J. Ambient. Intell. Human. Comput., 13 (2021), 1687–1713. https://doi.org/10.1007/s12652-021-03130-y doi: 10.1007/s12652-021-03130-y
    [38] M. Ali, I. Deli, F. Smarandache, The theory of neutrosophic cubic sets and their applications in pattern recognition, J. Intell. Fuzzy Syst., 30 (2016), 1957–1963. https://doi.org/10.3233/IFS-151906 doi: 10.3233/IFS-151906
    [39] M. Ali, L. H. Son, I. Deli, N. D. Tien, Bipolar neutrosophic soft sets and applications in decision making, J. Intell. Fuzzy Syst., 33 (2017), 4077–4087. https://doi.org/10.3233/JIFS-17999 doi: 10.3233/JIFS-17999
    [40] J. Zhao, X. Y. You, H. C. Liu, S. M. Wu, An extended VIKOR method using intuitionistic fuzzy sets and combination weights for supplier selection, Symmetry, 9 (2017), 1–16. https://doi.org/10.3390/sym9090169 doi: 10.3390/sym9090169
    [41] R. Joshi, S. Kumar, An intuitionistic fuzzy information measure of order-(α,β) with a new approach in supplier selection problems using an extended VIKOR method, J. Appl. Math. Comput., 60 (2019), 27–50. https://doi.org/10.1007/s12190-018-1202-z doi: 10.1007/s12190-018-1202-z
    [42] J. H. Park, H. J. Cho, J. S. Hwang, Y. C. Kwun, Extension of the VIKOR method to dynamic intuitionistic fuzzy multiple attribute decision making, Third International Workshop on Advanced Computational Intelligence, (2010), 189–195. https://doi.org/10.1109/IWACI.2010.5585223
    [43] Z. Shouzhen, C. S. Ming, K. L. Wei, Multiattribute decision making based on novel score function of intuitionistic fuzzy values and modified VIKOR method, Inform. Sci., 488 (2019), 76–92. https://doi.org/10.1016/j.ins.2019.03.018 doi: 10.1016/j.ins.2019.03.018
    [44] V. Arya, S. Kumar, A novel VIKOR-TODIM Approach based on Havrda-Charvat-Tsallis entropy of intuitionistic fuzzy sets to evaluate management information system, Fuzzy Inform. Eng., 11 (2019), 357–384. https://doi.org/10.1080/16168658.2020.1840317 doi: 10.1080/16168658.2020.1840317
    [45] K. Devi, Extension of VIKOR method in intuitionistic fuzzy environment for robot selection, Expert Syst. Applic., 38 (2011), 14163–14168. https://doi.org/10.1016/j.eswa.2011.04.227 doi: 10.1016/j.eswa.2011.04.227
    [46] X. Luo, X. Wang, Extended VIKOR method for intuitionistic fuzzy multiattribute decision-making based on a new distance measure, Math. Prob. Eng., 2017 (2017), 1–16. https://doi.org/10.1155/2017/4072486 doi: 10.1155/2017/4072486
    [47] T. Y. Chen, Remoteness index-based Pythagorean fuzzy VIKOR methods with a generalized distance measure for multiple criteria decision analysis, Inf. Fus., 41 (2018), 129–150. https://doi.org/10.1016/j.inffus.2017.09.003 doi: 10.1016/j.inffus.2017.09.003
    [48] F. Zhou, T. Y. Chen, An extended Pythagorean fuzzy VIKOR method with risk preference and a novel generalized distance measure for multicriteria decision-making problems, Neural Comput. Applic., 33 (2021), 11821–11844. https://doi.org/10.1007/s00521-021-05829-7 doi: 10.1007/s00521-021-05829-7
    [49] G. Bakioglu, A. O. Atahan, AHP integrated TOPSIS and VIKOR methods with Pythagorean fuzzy sets to prioritize risks in self-driving vehicles, Appl. Soft Comput., 99 (2021), 1–19. https://doi.org/10.1016/j.asoc.2020.106948 doi: 10.1016/j.asoc.2020.106948
    [50] A. Guleria, R. K. Bajaj, A robust decision making approach for hydrogen power plant site selection utilizing (R, S)-Norm Pythagorean Fuzzy information measures based on VIKOR and TOPSIS method, Int. J. Hydr. Energy., 45 (2020), 18802–18816. https://doi.org/10.1016/j.ijhydene.2020.05.091 doi: 10.1016/j.ijhydene.2020.05.091
    [51] M. Gul, Application of Pythagorean fuzzy AHP and VIKOR methods in occupational health and safety risk assessment: the case of a gun and rifle barrel external surface oxidation and colouring unit, Int. J. Occup. Safety Ergon., 26 (2020), 705–718. https://doi.org/10.1080/10803548.2018.1492251 doi: 10.1080/10803548.2018.1492251
    [52] M. Kirisci, I. Demir, N. Simsek, N. Topa, M. Bardak, The novel VIKOR methods for generalized Pythagorean fuzzy soft sets and its application to children of early childhood in COVID-19 quarantine, Neural Comput. Applic., 34 (2021), 1877–1903. https://doi.org/10.1007/s00521-021-06427-3 doi: 10.1007/s00521-021-06427-3
    [53] S. Dalapati, S. Pramanik, A revisit to NC-VIKOR based MAGDM strategy in neutrosophic cubic set environment, Neutrosophic Sets Sy., 21 (2018), 131–141. https://doi.org/10.20944/preprints201803.0230.v1 doi: 10.20944/preprints201803.0230.v1
    [54] S. Pramanik, S. Dalapati, S. Alam, T. K. Roy, NC-VIKOR based MAGDM strategy under neutrosophic cubic set environment, Neutrosophic Sets Sy., 20 (2018), 95–108. https://doi.org/10.20944/preprints201803.0230.v1 doi: 10.20944/preprints201803.0230.v1
    [55] S. Pramanik, S. Dalapati, S. Alam, T. K. Roy, VIKOR based MAGDM strategy under bipolar neutrosophic set environment, Neutrosophic Sets Sy., 19 (2018), 57–69. https://doi.org/10.20944/preprints201801.0006.v1 doi: 10.20944/preprints201801.0006.v1
    [56] L. Wang, H. Y. Zhang, J. Q. Wang, L. Li, Picture fuzzy normalized projection-based VIKOR method for the risk evaluation of construction project, Appl. Soft Comput., 64 (2018), 216–226. https://doi.org/10.1016/j.asoc.2017.12.014 doi: 10.1016/j.asoc.2017.12.014
    [57] V. Arya, S. Kumar, A picture fuzzy multiple criteria decision-making approach based on the combined TODIM-VIKOR and entropy weighted method, Cogn. Comput., 13 (2021), 1172–1184. https://doi.org/10.1007/s12559-021-09892-z doi: 10.1007/s12559-021-09892-z
    [58] R. Joshi, A novel decision-making method using R-Norm concept and VIKOR approach under picture fuzzy environment, Expert Syst. Applic., 147 (2020), 1–12. https://doi.org/10.1016/j.eswa.2020.113228 doi: 10.1016/j.eswa.2020.113228
    [59] V. Arya, S. Kumar, A new picture fuzzy information measure based on shannon entropy with applications in opinion polls using extended VIKOR-TODIM approach, Comp. Appl. Math., 39 (2020), 1–24. https://doi.org/10.1007/s40314-020-01228-1 doi: 10.1007/s40314-020-01228-1
    [60] M. J. Khan, P. Kumam, W. Kumam, A. N. A. Kenani, Picture fuzzy soft robust VIKOR method and its applications in decision-making, Fuzzy Inf. Eng., 13 (2021), 296–322. https://doi.org/10.1080/16168658.2021.1939632. doi: 10.1080/16168658.2021.1939632
    [61] C. Yue, Picture fuzzy normalized projection and extended VIKOR approach to software reliability assessment, Appl. Soft Comput., 88 (2020), 1–13. https://doi.org/10.1016/j.asoc.2019.106056. doi: 10.1016/j.asoc.2019.106056
    [62] P. Meksavang, H. Shi, S. M. Lin, H. C. Liu, An extended picture fuzzy VIKOR approach for sustainable supplier management and its application in the beef industry, Symmetry., 11 (2019), 1–19. https://doi.org/10.3390/sym11040468. doi: 10.3390/sym11040468
    [63] A. Singh, S. Kumar, Picture fuzzy Choquet integral-based VIKOR for multicriteria group decision-making problems, Gran. Comput., 6 (2021), 587–601. https://doi.org/10.1007/s41066-020-00218-2. doi: 10.1007/s41066-020-00218-2
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2318) PDF downloads(82) Cited by(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog