In this paper, we introduce the class of generalized strongly convex functions using Raina's function. We derive two new general auxiliary results involving first and second order (p,q)-differentiable functions and Raina's function. Essentially using these identities and the generalized strongly convexity property of the functions, we also found corresponding new generalized post-quantum analogues of Dragomir-Agarwal's inequalities. We discuss some special cases about generalized convex functions. To support our main results, we offer applications to special means, to hypergeometric functions, to Mittag-Leffler functions and also to (p,q)-differentiable functions of first and second order that are bounded in absolute value.
Citation: Miguel Vivas-Cortez, Muhammad Zakria Javed, Muhammad Uzair Awan, Artion Kashuri, Muhammad Aslam Noor. Generalized (p,q)-analogues of Dragomir-Agarwal's inequalities involving Raina's function and applications[J]. AIMS Mathematics, 2022, 7(6): 11464-11486. doi: 10.3934/math.2022639
[1] | Hao Wang, Zhijuan Wu, Xiaohong Zhang, Shubo Chen . Certain exponential type m-convexity inequalities for fractional integrals with exponential kernels. AIMS Mathematics, 2022, 7(4): 6311-6330. doi: 10.3934/math.2022351 |
[2] | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Ibrahim Slimane, Kamsing Nonlaopon, Y. S. Hamed . Some new (p, q)-Dragomir–Agarwal and Iyengar type integral inequalities and their applications. AIMS Mathematics, 2022, 7(4): 5728-5751. doi: 10.3934/math.2022317 |
[3] | Miguel Vivas-Cortez, Pshtiwan O. Mohammed, Y. S. Hamed, Artion Kashuri, Jorge E. Hernández, Jorge E. Macías-Díaz . On some generalized Raina-type fractional-order integral operators and related Chebyshev inequalities. AIMS Mathematics, 2022, 7(6): 10256-10275. doi: 10.3934/math.2022571 |
[4] | Gültekin Tınaztepe, Sevda Sezer, Zeynep Eken, Sinem Sezer Evcan . The Ostrowski inequality for s-convex functions in the third sense. AIMS Mathematics, 2022, 7(4): 5605-5615. doi: 10.3934/math.2022310 |
[5] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[6] | Alper Ekinci, Erhan Set, Thabet Abdeljawad, Nabil Mlaiki . Generalizations of Ostrowski type inequalities via F-convexity. AIMS Mathematics, 2022, 7(4): 7106-7116. doi: 10.3934/math.2022396 |
[7] | Humaira Kalsoom, Muhammad Amer Latif, Muhammad Idrees, Muhammad Arif, Zabidin Salleh . Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions. AIMS Mathematics, 2021, 6(12): 13291-13310. doi: 10.3934/math.2021769 |
[8] | Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989 |
[9] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[10] | Da Shi, Ghulam Farid, Abd Elmotaleb A. M. A. Elamin, Wajida Akram, Abdullah A. Alahmari, B. A. Younis . Generalizations of some q-integral inequalities of Hölder, Ostrowski and Grüss type. AIMS Mathematics, 2023, 8(10): 23459-23471. doi: 10.3934/math.20231192 |
In this paper, we introduce the class of generalized strongly convex functions using Raina's function. We derive two new general auxiliary results involving first and second order (p,q)-differentiable functions and Raina's function. Essentially using these identities and the generalized strongly convexity property of the functions, we also found corresponding new generalized post-quantum analogues of Dragomir-Agarwal's inequalities. We discuss some special cases about generalized convex functions. To support our main results, we offer applications to special means, to hypergeometric functions, to Mittag-Leffler functions and also to (p,q)-differentiable functions of first and second order that are bounded in absolute value.
A set C⊆R is said to be convex, if
(1−τ)υ1+τυ2∈C,∀υ1,υ2∈C,τ∈[0,1]. |
Similarly, a function Ψ:C→R is said to be convex, if
Ψ((1−τ)υ1+τυ2)≤(1−τ)Ψ(υ1)+τΨ(υ2),∀υ1,υ2∈C,τ∈[0,1]. |
In recent years, the classical concepts of convexity has been extended and generalized in different directions using novel and innovative ideas.
Let us recall first Raina's function Rσρ,λ(z) that it's defined as follows:
Rσρ,λ(z)=Rσ(0),σ(1),…ρ,λ(z):=∞∑k=0σ(k)Γ(ρk+λ)zk,z∈C, | (1.1) |
where ρ,λ>0, with bounded modulus |z|<M, and σ={σ(0),σ(1),…,σ(k),…} is a bounded sequence of positive real numbers. For details, see [1].
Cortez et al. [2] presented a new generalization of convexity class as follows:
Definition 1. [2] Let ρ,λ>0 and σ=(σ(0),…,σ(k),…) be a bounded sequence of positive real numbers. A non-empty set I⊆R is said to be generalized convex, if
υ1+τRσρ,λ(υ2−υ1)∈I,∀υ1,υ2∈I,τ∈[0,1]. |
Definition 2. [2] Let ρ,λ>0 and σ=(σ(0),…,σ(k),…) be a bounded sequence of positive real numbers. A function Ψ:I⊆R→R is said to be generalized convex, if
Ψ(υ1+τRσρ,λ(υ2−υ1))≤(1−τ)Ψ(υ1)+τΨ(υ2),∀υ1,υ2∈I,τ∈[0,1]. |
Quantum calculus is the branch of mathematics (often known as calculus without limits) in which we obtain q-analogues of mathematical objects which can be recaptured by taking q→1−. Interested readers may find very useful details on quantum calculus in [3]. Recently, quantum calculus has been extended to post quantum calculus. In quantum calculus we deal with q-number with one base q however post quantum calculus includes p and q-numbers with two independent variables p and q. This was first considered by Chakarabarti and Jagannathan [4]. Tunç and Gov [5] introduced the concepts of (p,q)-derivatives and (p,q)-integrals on finite intervals as:
Definition 3. [5] Let K⊆R be a non-empty set such that υ1∈K, 0<q<p≤1 and Ψ:K→R be a continuous function. Then, the (p,q)-derivative υ1D(p,q)Ψ(Θ) of Ψ at Θ∈K is defined by
υ1D(p,q)Ψ(Θ)=Ψ(pΘ+(1−p)υ1)−Ψ(qΘ+(1−q)υ1)(p−q)(Θ−υ1),(Θ≠υ1). |
Note that, if we take p=1 in Definition 3, then we get the definition of q-derivative introduced and studied by Tariboon et al. [6].
Definition 4. [5] Let K⊆R be a non-empty set such that υ1∈K, 0<q<p≤1 and Ψ:K→R be a continuous function. Then, the (p,q)-integral on K is defined by
Θ∫υ1Ψ(τ)υ1d(p,q)τ=(p−q)(Θ−υ1)∞∑n=0qnpn+1Ψ(qnpn+1Θ+(1−qnpn+1)υ1) |
for all Θ∈K.
Note that, if we take p=1 in Definition 4, then we get the definition of q-integral on finite interval introduced and studied by Tariboon et al. [6].
Theory of convexity has played very important role in the development of theory of inequalities. A wide class of inequalities can easily be obtained using the convexity property of the functions. In this regard Hermite-Hadamard's inequality is one of the most studied result. It provides us an equivalent property for convexity. This famous result of Hermite and Hadamard reads as: Let Ψ:[υ1,υ2]⊆R→R be a convex function, then
Ψ(υ1+υ22)≤1υ2−υ1υ2∫υ1Ψ(Θ)dΘ≤Ψ(υ1)+Ψ(υ2)2. |
In recent years, several new extensions and generalizations of this classical result have been obtained in the literature. In [7] Dragomir and Agarwal have obtained a new integral identity using the first order differentiable functions:
Lemma 1. [7] Let Ψ:X=[υ1,υ2]⊆R→R be a differentiable function on X∘ (the interior set of X), then
Ψ(υ1)+Ψ(υ2)2−1υ2−υ1∫υ2υ1Ψ(Θ)dΘ=υ2−υ12∫10(1−2τ)Ψ′(τυ1+(1−τ)υ2)dτ. |
Using this identity authors have obtained some new right estimates for Hermite-Hadamard's inequality essentially using the class of first order differentiable convex functions. This idea of Dragomir and Agarwal has inspired many researchers and consequently a variety of new identities and corresponding inequalities have been obtained in the literature using different techniques. Sudsutad et al. [8] and Noor et al. [9] obtained the quantum counterpart of this result and obtained associated q-analogues of trapezium like inequalities. Liu and Zhuang [10] obtained another quantum version of this identity via twice q-differentiable functions and obtained associated q-integral inequalities. Awan et al. [11] extended the results of Dragomir and Agarwal by obtaining a new post-quantum integral identity involving twice (p,q)-differentiable functions and twice (p,q)-differentiable preinvex functions. Du et al. [12] obtained certain quantum estimates on the parameterized integral inequalities and established some applications. Zhang et al. [13] found different types of quantum integral inequalities via (α,m)-convexity. Cortez et al. [14,15] derived some inequalities using generalized convex functions in quantum analysis.
The main objective of this paper is to introduce the notion of generalized strongly convex functions using Raina's function. We derive two new general auxiliary results involving first and second order (p,q)-differentiable functions and Raina's function. Essentially using these identities and the generalized strongly convexity property of the functions, we also derive corresponding new generalized post-quantum analogues of Dragomir-Agarwal's inequalities. In order to discuss the relation with other results, we also discuss some special cases about generalized convex functions. To support our main results, we give applications to special means, to hypergeometric functions, to Mittag-Leffler functions and also to (p,q)-differentiable functions of first and second order that are bounded in absolute value. Finally, some conclusions and future research are provided as well. We hope that the ideas and techniques of this paper will inspire interested readers working in this field.
In this section, we discuss our main results. First, we introduce the class of generalized strongly convex function involving Raina's function.
Definition 5. Let ρ,λ>0 and σ=(σ(0),…,σ(k),…) be a bounded sequence of positive real numbers. A function Ψ:I⊆R→R is called generalized strongly convex, if
Ψ(υ1+τRσρ,λ(υ2−υ1))≤(1−τ)Ψ(υ1)+τΨ(υ2)−cτ(1−τ)(Rσρ,λ(υ2−υ1))2, |
∀c>0,τ∈[0,1] and υ1,υ2∈I.
In this section, we derive two new post-quantum integral identities that will be used in a sequel.
Lemma 2. Let Ψ:X=[υ1,υ1+Rσρ,λ(υ2−υ1)]⊆R→R be a differentiable function and 0<q<p≤1. If υ1D(p,q)Ψ is integrable function on X∘, then
1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q=qRσρ,λ(υ2−υ1)p+q∫10(1−(p+q)τ)υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))0d(p,q)τ. | (2.1) |
Proof. Using the right hand side of (3.3), we have
I:=qRσρ,λ(υ2−υ1)p+qI1, |
and from the definitions of υ1D(p,q), and (p,q)-integral, we get
I1:=∫10(1−(p+q)τ)υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))0d(p,q)τ=∫10(1−(p+q)τ)Ψ(υ1+τpRσρ,λ(υ2−υ1))−Ψ(υ1+qτRσρ,λ(υ2−υ1))(p−q)τRσρ,λ(υ2−υ1)0d(p,q)τ=1Rσρ,λ(υ2−υ1)[∞∑n=0Ψ(υ1+qnpnRσρ,λ(υ2−υ1))−Ψ(υ1+qn+1pn+1Rσρ,λ(υ2−υ1))]−p+qRσρ,λ(υ2−υ1)[∞∑n=0qnpn+1Ψ(υ1+qnpnRσρ,λ(υ2−υ1))−∞∑n=0qnpn+1Ψ(υ1+qn+1pn+1Rσρ,λ(υ2−υ1))]=Ψ(υ1+Rσρ,λ(υ2−υ1))−Ψ(υ1)Rσρ,λ(υ2−υ1)−p+qRσρ,λ(υ2−υ1)[∞∑n=0qnpn+1Ψ(υ1+qnpnRσρ,λ(υ2−υ1))−1q∞∑n=1qnpnΨ(υ1+qnpnRσρ,λ(υ2−υ1))]=Ψ(υ1+Rσρ,λ(υ2−υ1))−Ψ(υ1)Rσρ,λ(υ2−υ1)−p+qqRσρ,λ(υ2−υ1)Ψ(υ1+Rσρ,λ(υ2−υ1))−p+qRσρ,λ(υ2−υ1)∞∑n=0qnpn+1Ψ(υ1+qnpnRσρ,λ(υ2−υ1))+p(p+q)qRσρ,λ(υ2−υ1)∞∑n=0qnpn+1Ψ(υ1+qnpnRσρ,λ(υ2−υ1))=−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)qRσρ,λ(υ2−υ1)+p+qpq(Rσρ,λ(υ2−υ1))2∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)0d(p,q)τ. |
This completes the proof.
The second identity for twice (p,q)-differentiable functions states as follows:
Lemma 3. Let Ψ:X=[υ1,υ1+Rσρ,λ(υ2−υ1)]⊆R→R be a twice differentiable function and 0<q<p≤1. If υ1D2(p,q)Ψ is integrable function on X∘, then
p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ=pq2(Rσρ,λ(υ2−υ1))2p+q∫10τ(1−qτ)υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))0d(p,q)τ. | (2.2) |
Proof. Firstly, applying the definition of υ1D2(p,q) differentiability, we have
υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))=υ1D(p,q)(υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1)))=qΨ(υ1+τp2Rσρ,λ(υ2−υ1))−(p+q)Ψ(υ1+pqτRσρ,λ(υ2−υ1))+pΨ(υ1+τq2Rσρ,λ(υ2−υ1))pq(p−q)2τ2(Rσρ,λ(υ2−υ1))2. |
Now, using the notion of (p,q)-integration, we get
![]() |
After multiplying both sides by pq2(Rσρ,λ(υ2−υ1))2p+q, we obtain our required identity.
We now derive some (p,q)-analogues of Dragomir-Agarwal like inequalities using first order and second order (p,q)-differentiable functions via generalized strongly convex function with modulus c>0. Let us recall the following notion that will be used in the sequel.
[n](p,q):=pn−qnp−q,n∈N,0<q<p≤1. |
Theorem 1. Suppose that all the assumptions of Lemma 2 are satisfied and |υ1D(p,q)Ψ| is generalized strongly convex function, then
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+q[S1|υ1D(p,q)Ψ(υ1)|+S2|υ1D(p,q)Ψ(υ2)|−cS3(Rσρ,λ(υ2−υ1))2], |
where
S1:=2−p−qp+q+(p+q)3−2(p+q)−2+(p+q)2(p+q)2[2](p,q), | (2.3) |
S2:=2−(p+q)2(p+q)2[2](p,q)+(p+q)3−2(p+q)2[3](p,q), | (2.4) |
and
S3:=2−(p+q)2(p+q)2[2](p,q)+(p+q)3+p+q−2−(p+q)4(p+q)3[3](p,q)+(p+q)4−1(p+q)4[4](p,q). | (2.5) |
Proof. From Lemma 2, properties of modulus and using the generalized strongly convexity of |υ1D(p,q)Ψ|, we have
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+q∫10|(1−(p+q)τ)||υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|0d(p,q)τ≤qσρ,λ(υ2−υ1)p+q[∫1p+q0(1−(p+q)τ)|υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|0d(p,q)τ+∫11p+q((p+q)τ−1)|υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|0d(p,q)τ]≤qRσρ,λ(υ2−υ1)p+q[∫1p+q0(1−(p+q)τ)[(1−τ)|υ1D(p,q)Ψ(υ1)|+τ|υ1D(p,q)Ψ(υ2)|−cτ(1−τ)(Rσρ,λ(υ2−υ1))2]0d(p,q)τ+∫11p+q((p+q)τ−1)[(1−τ)|υ1D(p,q)Ψ(υ1)|+τ|υ1D(p,q)Ψ(υ2)|−cτ(1−τ)(Rσρ,λ(υ2−υ1))2]0d(p,q)τ]. |
After simplification, we obtain our required result.
Corollary 1. Letting c→0+ in Theorem 1, then
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+q[S1|υ1D(p,q)Ψ(υ1)|+S2|υ1D(p,q)Ψ(υ2)|]. |
Theorem 2. Suppose that all the assumptions of Lemma 2 are satisfied and |υ1D(p,q)Ψ|m is generalized strongly convex function with m≥1, then
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+qS1−1m4[S1|υ1D(p,q)Ψ(υ1)|m+S2|υ1D(p,q)Ψ(υ2)|m−cS3(Rσρ,λ(υ2−υ1))2]1m, |
where S1,S2 and S3 are given by (2.3)–(2.5), respectively, and
S4:=2−(p+q)p+q+(p+q)((p+q)2−2)(p+q)2[2](p,q). | (2.6) |
Proof. From Lemma 2, properties of modulus, power-mean inequality and using the generalized strongly convexity of |υ1D(p,q)Ψ|m, we have
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+q(∫10|(1−(p+q)τ)|0d(p,q)τ)1−1m×(∫10|(1−(p+q)τ)||υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ)1m=qRσρ,λ(υ2−υ1)p+qS1−1m4[∫1p+q0(1−(p+q)τ)|υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ+∫11p+q((p+q)τ−1)|υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ]1m≤qRσρ,λ(υ2−υ1)p+qS1−1m4[∫1p+q0(1−(p+q)τ)[(1−τ)|υ1D(p,q)Ψ(υ1)|m+τ|υ1D(p,q)Ψ(υ2)|m−cτ(1−τ)(Rσρ,λ(υ2−υ1))2]0d(p,q)τ+∫11p+q((p+q)τ−1)[(1−τ)|υ1D(p,q)Ψ(υ1)|m+τ|υ1D(p,q)Ψ(υ2)|m−cτ(1−τ)(Rσρ,λ(υ2−υ1))2]0d(p,q)τ]1m. |
After simplification, we obtain our required result.
Corollary 2. Letting c→0+ in Theorem 2, then
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+qS1−1m4[S1|υ1D(p,q)Ψ(υ1)|m+S2|υ1D(p,q)Ψ(υ2)|m]1m. |
Theorem 3. Suppose that all the assumptions of Lemma 2 are satisfied and |υ1D(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+qS1l5[p+q−1p+q|υ1D(p,q)Ψ(υ1)|m+1p+q|υ1D(p,q)Ψ(υ2)|m−c(1p+q−1p2+pq+q2)(Rσρ,λ(υ2−υ1))2]1m, |
where
S5:=(p−q)1+q∞∑n=0[(1−(p+q)qnpn+1)l+q((p+q)qnpn+1−1)l]. | (2.7) |
Proof. From Lemma 2, properties of modulus, Hölder's inequality and using the generalized strongly convexity of |υ1D(p,q)Ψ|m, we have
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+q(∫10|(1−(p+q)τ)|l0d(p,q)τ)1l×(∫10|υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ)1m≤qRσρ,λ(υ2−υ1)p+qS1l5[∫10[(1−τ)|υ1D(p,q)Ψ(υ1)|m+τ|υ1D(p,q)Ψ(υ2)|m−cτ(1−τ)(Rσρ,λ(υ2−υ1))2]0d(p,q)τ]1m. |
After simplification, we obtain our required result.
Corollary 3. Letting c→0+ in Theorem 3, then
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+qS1l5[p+q−1p+q|υ1D(p,q)Ψ(υ1)|m+1p+q|υ1D(p,q)Ψ(υ2)|m]1m. |
Theorem 4. Suppose that all the assumptions of Lemma 3 are satisfied and |υ1D2(p,q)Ψ| is generalized strongly convex function, then
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q[S6|υ1D2(p,q)Ψ(υ1)|+S7|υ1D2(p,q)Ψ(υ2)|−cS8(Rσρ,λ(υ2−υ1))2], |
where
S6:=p2−p−q(p+q)(p2+pq+q2)+qp3+pq(p+q)+q3, | (2.8) |
S7:=p3(p2+pq+q2)(p3+pq(p+q)+q3), | (2.9) |
and
S8:=1p+q−1+qp3+pq(p+q)+q3+q[5](p,q). | (2.10) |
Proof. From Lemma 3, properties of modulus and using the generalized strongly convexity of |υ1D2(p,q)Ψ|, we have
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q∫10|τ(1−qτ)||υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|0d(p,q)τ≤pq2(Rσρ,λ(υ2−υ1))2p+q[∫10τ(1−qτ)[(1−τ)|υ1D2(p,q)Ψ(υ1)|+τ|υ1D2(p,q)Ψ(υ2)|−cτ(1−τ)(Rσρ,λ(υ2−υ1))2]0d(p,q)τ]. |
This completes the proof.
Corollary 4. Letting c→0+ in Theorem 4, then
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q[S6|υ1D2(p,q)Ψ(υ1)|+S7|υ1D2(p,q)Ψ(υ2)|]. |
Theorem 5. Suppose that all the assumptions of Lemma 3 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with m≥1, then
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+qS1−1m9[S6|υ1D2(p,q)Ψ(υ1)|m+S7|υ1D2(p,q)Ψ(υ2)|m−cS8(Rσρ,λ(υ2−υ1))2]1m, |
where S6, S7 and S8 are given by (2.8)–(2.10), respectively, and
S9:=p2(p+q)(p2+pq+q2). | (2.11) |
Proof. From Lemma 3, properties of modulus, power-mean inequality and using the generalized strongly convexity of |υ1D2(p,q)Ψ|m, we have
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q(∫10|τ(1−qτ)|0d(p,q)τ)1−1m×(∫10|τ(1−qτ)||υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ)1m=pq2(Rσρ,λ(υ2−υ1))2p+qS1−1m9[∫10τ(1−qτ)|υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ]1m≤pq2(Rσρ,λ(υ2−υ1))2p+qS1−1m9[∫10τ(1−qτ)[(1−τ)|υ1D2(p,q)Ψ(υ1)|m+τ|υ1D2(p,q)Ψ(υ2)|m−cτ(1−τ)(Rσρ,λ(υ2−υ1))2]0d(p,q)τ]1m. |
This completes the proof.
Corollary 5. Letting c→0+ in Theorem 5, then
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+qS1−1m9[S6|υ1D2(p,q)Ψ(υ1)|m+S7|υ1D2(p,q)Ψ(υ2)|m]1m. |
Theorem 6. Suppose that all the assumptions of Lemma 3 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+qS1l10[p+q−1p+q|υ1D2(p,q)Ψ(υ1)|m+1p+q|υ1D2(p,q)Ψ(υ2)|m−c(1p+q−1p2+pq+q2)(Rσρ,λ(υ2−υ1))2]1m, |
where
S10:=(p−q)∞∑n=0qnpn+1(qnpn+1−q2n+1p2n+2)l. | (2.12) |
Proof. From Lemma 3, properties of modulus, Hölder's inequality and using the generalized strongly convexity of |υ1D2(p,q)Ψ|m, we have
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q(∫10|τ(1−qτ)|l0d(p,q)τ)1l×(∫10|υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ)1m=pq2(Rσρ,λ(υ2−υ1))2p+qS1l10[∫10|υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ]1m≤pq2(Rσρ,λ(υ2−υ1))2p+qS1l10[∫10[(1−τ)|υ1D2(p,q)Ψ(υ1)|m+τ|υ1D2(p,q)Ψ(υ2)|m−cτ(1−τ)(Rσρ,λ(υ2−υ1))2]0d(p,q)τ]1m. |
This completes the proof.
Corollary 6. Letting c→0+ in Theorem 22, then
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+qS1l10[p+q−1p+q|υ1D2(p,q)Ψ(υ1)|m+1p+q|υ1D2(p,q)Ψ(υ2)|m]1m. |
Theorem 7. Suppose that all the assumptions of Lemma 3 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+qS1l11[(1[m+1](p,q)−1[m+2](p,q))|υ1D2(p,q)Ψ(υ1)|m+1[m+2](p,q)|υ1D2(p,q)Ψ(υ2)|m−c(1[m+2](p,q)−1[m+3](p,q))(Rσρ,λ(υ2−υ1))2]1l, |
where
S11:=(p−q)∞∑n=0qnpn+1(1−qn+1pn+1)l. | (2.13) |
Proof. From Lemma 3, properties of modulus, Hölder's inequality and using the generalized strongly convexity of |υ1D2(p,q)Ψ|m, we have
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q(∫10|(1−qτ)|l0d(p,q)τ)1l×(∫10τm|υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ)1m=pq2(Rσρ,λ(υ2−υ1))2p+qS1l11[∫10τm|υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ]1m≤pq2(Rσρ,λ(υ2−υ1))2p+qS1l11[∫10τm[(1−τ)|υ1D2(p,q)Ψ(υ1)|m+τ|υ1D2(p,q)Ψ(υ2)|m−cτ(1−τ)(Rσρ,λ(υ2−υ1))2]0d(p,q)τ]1m. |
This completes the proof.
Corollary 7. Letting c→0+ in Theorem 7, then
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+qS1l11[(1[m+1](p,q)−1[m+2](p,q))|υ1D2(p,q)Ψ(υ1)|m+1[m+2](p,q)|υ1D2(p,q)Ψ(υ2)|m]1l. |
Theorem 8. Suppose that all the assumptions of Lemma 3 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q(1[l+1](p,q))1l[S12|υ1D2(p,q)Ψ(υ1)|m+S13|υ1D2(p,q)Ψ(υ2)|m−cS14(Rσρ,λ(υ2−υ1))2]1m, |
where
S12:=p+q−1p+q∞∑n=0(1−qn+1pn+1)m, | (2.14) |
S13:=(p−q)∞∑n=0q2np2n+2(1−qn+1pn+1)m, | (2.15) |
and
S14:=p2+pq+q2−(p+q)(p+q)(p2+pq+q2)∞∑n=0(1−qn+1pn+1)m. | (2.16) |
Proof. From Lemma 3, properties of modulus, Hölder's inequality and using the generalized strongly convexity of |υ1D2(p,q)Ψ|m, we have
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q(∫10τl0d(p,q)τ)1l×(∫10(1−qτ)m|υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ)1m=pq2(Rσρ,λ(υ2−υ1))2p+q(1[l+1](p,q))1l(∫10(1−qτ)m|υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ)1m≤pq2(Rσρ,λ(υ2−υ1))2p+q(1[l+1](p,q))1l[∫10(1−qτ)m[(1−τ)|υ1D2(p,q)Ψ(υ1)|m+τ|υ1D2(p,q)Ψ(υ2)|m−cτ(1−τ)(Rσρ,λ(υ2−υ1))2]0d(p,q)τ]1m. |
This completes the proof.
Corollary 8. Letting c→0+ in Theorem 8, then
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q(1[l+1](p,q))1l[S12|υ1D2(p,q)Ψ(υ1)|m+S13|υ1D2(p,q)Ψ(υ2)|m]1m. |
In this section, we discuss some applications of our main results.
First of all, we recall some previously known concepts regarding special means. For different real numbers υ1<υ2, we have
(1) The arithmetic mean: A(υ1,υ2)=υ1+υ22.
(2) The generalized logarithmic mean: Ln(υ1,υ2)=[υ2n+1−υ1n+1(υ2−υ1)(n+1)]1n,n∈Z∖{−1,0}.
Proposition 1. Assume that all the assumptions of Theorem 1 are satisfied, then the following inequality holds
|2A(pυ2n,qυ1n)p+q−1[n](p,q)Lnn(υ1+p(υ2−υ1),υ1)|≤q(υ2−υ1)p+q[S1|(pυ2+(1−p)υ1)n−(qυ2+(1−q)υ1)n(p−q)(υ2−υ1)|+S2|[n](p,q)υ1n−1|], |
where S1 and S2 are given by (2.3) and (2.4), respectively.
Proof. If we choose υ1D2(p,q)Ψ(x)=xn,Rσρ,λ(υ2−υ1)=υ2−υ1 and c=0 in Theorem 1, we obtain our required result.
Example 1. If we take n=2,υ1=2,υ2=4, p=12 and q=13 in Proposition 1, then we have 0.4<9.42, which shows the validity of the result.
Proposition 2. Assume that all the assumption of Theorem 2 are satisfied, then the following inequality holds
|2A(pυ2n,qυ1n)p+q−1[n](p,q)Lnn(υ1+p(υ2−υ1),υ1)|≤q(υ2−υ1)p+qS1−1m4[S1|(pυ2+(1−p)υ1)n−(qυ2+(1−q)υ1)n(p−q)(υ2−υ1)|m+S2|[n](p,q)υ1n−1|m]1m, |
where S1 and S2 are given by (2.3), (2.4), and S4 is given by (2.6), respectively.
Proof. If we choose υ1D2(p,q)Ψ(x)=xn,Rσρ,λ(υ2−υ1)=υ2−υ1 and c=0 in Theorem 2, then we obtain our required result.
Example 2. If we take n=2,m=2,υ1=2,υ2=4, p=12 and q=13 in Proposition 2, then we have 0.4<11.39, which shows the validity of the result.
From relation (1.1), if we set ρ=1,λ=0 and σ(k)=(ϕ)k(ψ)k(η)k≠0, where ϕ,ψ and η are parameters may be real or complex values and (m)k is defined as (m)k=Γ(m+k)Γ(m) and its domain is restricted as |x|≤1, then we have the following hypergeometric function
R(ϕ,ψ;η,x):=∞∑k=0(ϕ)k(ψ)kk!(η)kxk. |
So using above notations and all the results obtained in this paper, we have the following forms.
Lemma 4. Let Ψ:X=[υ1,υ1+R(ϕ,ψ;η;υ2−υ1)]⊆R→R be a differentiable function and 0<q<p≤1. If υ1D(p,q)Ψ is integrable function on X∘, then
1pR(ϕ,ψ;η;υ2−υ1)∫υ1+pR(ϕ,ψ;η;υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+R(ϕ,ψ;η;υ2−υ1))+qΨ(υ1)p+q=qR(ϕ,ψ;η;υ2−υ1)p+q∫10(1−(p+q)τ)υ1D(p,q)Ψ(υ1+τR(ϕ,ψ;η;υ2−υ1))0d(p,q)τ. | (3.1) |
The second identity for twice (p,q)-differentiable functions states as follows:
Lemma 5. Let Ψ:X=[υ1,υ1+R(ϕ,ψ;η;υ2−υ1)]⊆R→R be a twice differentiable function and 0<q<p≤1. If υ1D2(p,q)Ψ is integrable function on X∘, then
![]() |
(3.2) |
Theorem 9. Suppose that all the assumptions of Lemma 4 are satisfied and |υ1D(p,q)Ψ| is generalized strongly convex function, then
|1pR(ϕ,ψ;η;υ2−υ1)∫υ1+pR(ϕ,ψ;η;υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+R(ϕ,ψ;η;υ2−υ1))+qΨ(υ1)p+q|≤qR(ϕ,ψ;η;υ2−υ1)p+q[S1|υ1D(p,q)Ψ(υ1)|+S2|υ1D(p,q)Ψ(υ2)|−cS3(R(ϕ,ψ;η;υ2−υ1))2], |
where S1,S2 and S3 are given by (2.3)–(2.5).
Theorem 10. Suppose that all the assumptions of Lemma 4 are satisfied and |υ1D(p,q)Ψ|m is generalized strongly convex function with m≥1, then
![]() |
where S1,S2 S3 and S4 are given by (2.3)–(2.6), respectively.
Theorem 11. Suppose that all the assumptions of Lemma 4 are satisfied and |υ1D(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|1pR(ϕ,ψ;η;υ2−υ1)∫υ1+pR(ϕ,ψ;η;υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+R(ϕ,ψ;η;υ2−υ1))+qΨ(υ1)p+q|≤qR(ϕ,ψ;η;υ2−υ1)p+qS1l5[p+q−1p+q|υ1D(p,q)Ψ(υ1)|m+1p+q|υ1D(p,q)Ψ(υ2)|m−c(1p+q−1p2+pq+q2)(R(ϕ,ψ;η;υ2−υ1))2]1m, |
where S5 is given by (2.7).
Theorem 12. Suppose that all the assumptions of Lemma 5 are satisfied and |υ1D2(p,q)Ψ| is generalized strongly convex function, then
|p2Ψ(υ1+R(ϕ,ψ;η;υ2−υ1))+qΨ(υ1)p+q−1p2R(ϕ,ψ;η;υ2−υ1)∫υ1+p2R(ϕ,ψ;η;υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(R(ϕ,ψ;η;υ2−υ1))2p+q[S6|υ1D2(p,q)Ψ(υ1)|+S7|υ1D2(p,q)Ψ(υ2)|−cS8(R(ϕ,ψ;η;υ2−υ1))2], |
where S6,S7 and S8 are given as (2.8)–(2.10).
Theorem 13. Suppose that all the assumptions of Lemma 5 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with m≥1, then
![]() |
where S6, S7,S8 and S9 are given by (2.8)–(2.11), respectively.
Theorem 14. Suppose that all the assumptions of Lemma 5 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|p2Ψ(υ1+R(ϕ,ψ;η;υ2−υ1))+qΨ(υ1)p+q−1p2R(ϕ,ψ;η;υ2−υ1)∫υ1+p2R(ϕ,ψ;η;υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(R(ϕ,ψ;η;υ2−υ1))2p+qS1l10[p+q−1p+q|υ1D2(p,q)Ψ(υ1)|m+1p+q|υ1D2(p,q)Ψ(υ2)|m−c(1p+q−1p2+pq+q2)(R(ϕ,ψ;η;υ2−υ1))2]1m. |
Theorem 15. Suppose that all the assumptions of Lemma 5 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|p2Ψ(υ1+R(ϕ,ψ;η;υ2−υ1))+qΨ(υ1)p+q−1p2R(ϕ,ψ;η;υ2−υ1)∫υ1+p2R(ϕ,ψ;η;υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(R(ϕ,ψ;η;υ2−υ1))2p+qS1l11[(1[m+1](p,q)−1[m+2](p,q))|υ1D2(p,q)Ψ(υ1)|m+1[m+2](p,q)|υ1D2(p,q)Ψ(υ2)|m−c(1[m+2](p,q)−1[m+3](p,q))(R(ϕ,ψ;η;υ2−υ1))2]1l, |
where S11 is given by (2.13).
Theorem 16. Suppose that all the assumptions of Lemma 5 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|p2Ψ(υ1+R(ϕ,ψ;η;υ2−υ1))+qΨ(υ1)p+q−1p2R(ϕ,ψ;η;υ2−υ1)∫υ1+p2R(ϕ,ψ;η;υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(R(ϕ,ψ;η;υ2−υ1))2p+q(1[l+1](p,q))1l[S12|υ1D2(p,q)Ψ(υ1)|m+S13|υ1D2(p,q)Ψ(υ2)|m−cS14(R(ϕ,ψ;η;υ2−υ1))2]1m, |
where S12,S13,S14 are given by (2.14)–(2.16).
Moreover if we take σ=(1,1,1,…),λ=1 and ρ=ϕ with Re(ϕ)>0 in (1.1), then we obtain well-known Mittag–Leffler function:
Rϕ(x)=∞∑k=01Γ(1+ϕk)xk. |
So using this function and all the results obtained in this paper, we have the following forms.
Lemma 6. Let Ψ:X=[υ1,υ1+Rϕ(υ2−υ1)]⊆R→R be a differentiable function and 0<q<p≤1. If υ1D(p,q)Ψ is integrable function on X∘, then
1pRϕ(υ2−υ1)∫υ1+pRϕ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rϕ(υ2−υ1))+qΨ(υ1)p+q=qRϕ(υ2−υ1)p+q∫10(1−(p+q)τ)υ1D(p,q)Ψ(υ1+τRϕ(υ2−υ1))0d(p,q)τ. | (3.3) |
The second identity for twice (p,q)-differentiable functions states as follows:
Lemma 7. Let Ψ:X=[υ1,υ1+Rϕ(υ2−υ1)]⊆R→R be a twice differentiable function and 0<q<p≤1. If υ1D2(p,q)Ψ is integrable function on X∘, then
p2Ψ(υ1+Rϕ(υ2−υ1))+qΨ(υ1)p+q−1p2Rϕ(υ2−υ1)∫υ1+p2Rϕ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ=pq2(Rϕ(υ2−υ1))2p+q∫10τ(1−qτ)υ1D2(p,q)Ψ(υ1+τRϕ(υ2−υ1))0d(p,q)τ. | (3.4) |
Theorem 17. Suppose that all the assumptions of Lemma 6 are satisfied and |υ1D(p,q)Ψ| is generalized strongly convex function, then
|1pRϕ(υ2−υ1)∫υ1+pRϕ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rϕ(υ2−υ1))+qΨ(υ1)p+q|≤qRϕ(υ2−υ1)p+q[S1|υ1D(p,q)Ψ(υ1)|+S2|υ1D(p,q)Ψ(υ2)|−cS3(Rϕ(υ2−υ1))2], |
where S1,S2 and S3 are (2.3)–(2.5).
Theorem 18. Suppose that all the assumptions of Lemma 6 are satisfied and |υ1D(p,q)Ψ|m is generalized strongly convex function with m≥1, then
|1pRϕ(υ2−υ1)∫υ1+pRϕ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rϕ(υ2−υ1))+qΨ(υ1)p+q|≤qRϕ(υ2−υ1)p+qS1−1m4[S1|υ1D(p,q)Ψ(υ1)|m+S2|υ1D(p,q)Ψ(υ2)|m−cS3(Rϕ(υ2−υ1))2]1m, |
where S1,S2 S3S4p are given by (2.3)–(2.6), respectively.
Theorem 19. Suppose that all the assumptions of Lemma 6 are satisfied and |υ1D(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|1pRϕ(υ2−υ1)∫υ1+pRϕ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rϕ(υ2−υ1))+qΨ(υ1)p+q|≤qRϕ(υ2−υ1)p+qS1l5[p+q−1p+q|υ1D(p,q)Ψ(υ1)|m+1p+q|υ1D(p,q)Ψ(υ2)|m−c(1p+q−1p2+pq+q2)(Rϕ(υ2−υ1))2]1m, |
where S5 is given by (2.7).
Theorem 20. Suppose that all the assumptions of Lemma 7 are satisfied and |υ1D2(p,q)Ψ| is generalized strongly convex function, then
|p2Ψ(υ1+Rϕ(υ2−υ1))+qΨ(υ1)p+q−1p2Rϕ(υ2−υ1)∫υ1+p2Rϕ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rϕ(υ2−υ1))2p+q[S6|υ1D2(p,q)Ψ(υ1)|+S7|υ1D2(p,q)Ψ(υ2)|−cS8(Rϕ(υ2−υ1))2], |
where S6,S7 and S8 are given (2.8)–(2.10).
Theorem 21. Suppose that all the assumptions of Lemma 7 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with m≥1, then
|p2Ψ(υ1+Rϕ(υ2−υ1))+qΨ(υ1)p+q−1p2Rϕ(υ2−υ1)∫υ1+p2Rϕ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rϕ(υ2−υ1))2p+qS1−1m9[S6|υ1D2(p,q)Ψ(υ1)|m+S7|υ1D2(p,q)Ψ(υ2)|m−cS8(Rϕ(υ2−υ1))2]1m, |
where S6, S7,S8 and S9 are given by (2.8)–(2.11), respectively.
Theorem 22. Suppose that all the assumptions of Lemma 7 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|p2Ψ(υ1+Rϕ(υ2−υ1))+qΨ(υ1)p+q−1p2Rϕ(υ2−υ1)∫υ1+p2Rϕ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rϕ(υ2−υ1))2p+qS1l10[p+q−1p+q|υ1D2(p,q)Ψ(υ1)|m+1p+q|υ1D2(p,q)Ψ(υ2)|m−c(1p+q−1p2+pq+q2)(Rϕ(υ2−υ1))2]1m. |
Theorem 23. Suppose that all the assumptions of Lemma 7 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|p2Ψ(υ1+Rϕ(υ2−υ1))+qΨ(υ1)p+q−1p2Rϕ(υ2−υ1)∫υ1+p2Rϕ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rϕ(υ2−υ1))2p+qS1l11[(1[m+1](p,q)−1[m+2](p,q))|υ1D2(p,q)Ψ(υ1)|m+1[m+2](p,q)|υ1D2(p,q)Ψ(υ2)|m−c(1[m+2](p,q)−1[m+3](p,q))(Rϕ(υ2−υ1))2]1l, |
where S11 is given by (2.13).
Theorem 24. Suppose that all the assumptions of Lemma 7 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|p2Ψ(υ1+Rϕ(υ2−υ1))+qΨ(υ1)p+q−1p2Rϕ(υ2−υ1)∫υ1+p2Rϕ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rϕ(υ2−υ1))2p+q(1[l+1](p,q))1l[S12|υ1D2(p,q)Ψ(υ1)|m+S13|υ1D2(p,q)Ψ(υ2)|m−cS14(Rϕ(υ2−υ1))2]1m, |
where S12,S13 and S14 are given by (2.14)–(2.16).
In this section, we discuss applications regarding bounded functions in absolute value of the results obtained from our main results. We suppose that the following two conditions are satisfied:
|υ1D(p,q)Ψ|≤Δ1and|υ1D2(p,q)Ψ|≤Δ2, |
and 0<q<p≤1.
Applying the above conditions, we have the following results.
Corollary 9. Under the assumptions of Theorem 1, the following inequality holds
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+q[Δ1(S1+S2)−cS3(Rσρ,λ(υ2−υ1))2]. |
Corollary 10. Under the assumptions of Theorem 2, the following inequality holds
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+qS1−1m4[Δm1(S1+S2)−cS3(Rσρ,λ(υ2−υ1))2]1m. |
Corollary 11. Under the assumptions of Theorem 3, the following inequality holds
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+qS1l5[Δm1−c(1p+q−1p2+pq+q2)(Rσρ,λ(υ2−υ1))2]1m. |
Corollary 12. Under the assumptions of Theorem 4, the following inequality holds
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q[Δ2(S6+S7)−cS8(Rσρ,λ(υ2−υ1))2]. |
Corollary 13. Under the assumptions of Theorem 5, the following inequality holds
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+qS1−1m9[Δm2(S6+S7)−cS8(Rσρ,λ(υ2−υ1))2]1m. |
Corollary 14. Under the assumptions of Theorem 22, the following inequality holds
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+qS1l10[Δm2−c(1p+q−1p2+pq+q2)(Rσρ,λ(υ2−υ1))2]1m. |
Corollary 15. Under the assumptions of Theorem 7, the following inequality holds
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+qS1l11[Δm2[m+1](p,q)−c(1[m+2](p,q)−1[m+3](p,q))(Rσρ,λ(υ2−υ1))2]1l. |
Corollary 16. Under the assumptions of Theorem 8, the following inequality holds
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q(1[l+1](p,q))1l[Δm2(S12+S13)−cS14(Rσρ,λ(υ2−υ1))2]1m. |
In this paper, we introduced the class of generalized strongly convex functions using Raina's function. We have derived two new general auxiliary results involving first and second order (p,q)-differentiable functions and Raina's function. Essentially using these identities and the generalized strongly convexity property of the functions, we also established corresponding new generalized post-quantum analogues of Dragomir-Agarwal's inequalities. We have discussed in details some special cases about generalized convex functions. The efficiency of our main results is also demonstrated with the help of application. We have offered applications to special means, to hypergeometric functions, to Mittag-Leffler functions and also to (p,q)-differentiable functions of first and second order that are bounded in absolute value. We will derive as future works several new post-quantum interesting inequalities using Chebyshev, Markov, Young and Minkowski inequalities. Since the class of generalized strongly convex functions have large applications in many mathematical areas, they can be applied to obtain several results in convex analysis, special functions, quantum mechanics, related optimization theory, and mathematical inequalities and may stimulate further research in different areas of pure and applied sciences. Studies relating convexity, partial convexity, and preinvex functions (as contractive operators) may have useful applications in complex interdisciplinary studies, such as maximizing the likelihood from multiple linear regressions involving Gauss-Laplace distribution. For more details, please see [16,17,18,19,20,21,22,23].
The authors would like to thank the editor and the anonymous reviewers for their valuable comments and suggestions. This research was funded by Dirección de Investigación from Pontificia Universidad Católica del Ecuador in the research project entitled "Some integrals inequalities and generalized convexity" (Algunas desigualdades integrales para funciones con algún tipo de convexidad generalizada y aplicaciones).
The authors declare no conflict of interest.
[1] | R. K. Raina, On generalized Wright's hypergeometric functions and fractional calculus operators, E. Asian J. Appl. Math., 21 (2015), 191–203. |
[2] |
M. Vivas-Cortez, R. Liko, A. Kashuri, J. E. H. Hernández, New quantum estimates of trapezium-type inequalities for generalized φ-convex functions, Mathematics, 7 (2019), 1047. https://doi.org/10.3390/math7111047 doi: 10.3390/math7111047
![]() |
[3] | V. Kac, P. Cheung, Quantum calculus, Springer, New York, 2002. |
[4] | R. Chakrabarti, R. Jagannathan, A (p,q)-oscillator realization of two-parameter quantum algebras, J. Phys. A, 24 (1991). https://doi.org/10.1088/0305-4470/24/13/002 |
[5] |
M. Tunç, E. Gov, Some integral inequalities via (p,q)-calculus on finite intervals, Filomat, 19 (2016), 95. https://doi.org/10.2298/FIL2105421T doi: 10.2298/FIL2105421T
![]() |
[6] |
J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 282. https://doi.org/10.1186/1687-1847-2013-282 doi: 10.1186/1687-1847-2013-282
![]() |
[7] |
S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X
![]() |
[8] |
W. Sudsutad, S. K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal., 9 (2015), 781–793. https://doi.org/10.7153/jmi-09-64 doi: 10.7153/jmi-09-64
![]() |
[9] |
M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675–679. https://doi.org/10.1016/j.amc.2014.11.090 doi: 10.1016/j.amc.2014.11.090
![]() |
[10] |
W. J. Liu, H. F. Zhuang, Some quantum estimates of Hermite-Hadamard inequalities for convex functions, J. Appl. Anal. Comput., 7 (2017), 501–522. https://doi.org/10.20944/preprints201612.0102.v1 doi: 10.20944/preprints201612.0102.v1
![]() |
[11] |
M. U. Awan, S. Talib, M. A. Noor, Y. M. Chu, K. I. Noor, On post quantum estimates of upper bounds involving twice (p,q)-differentiable preinvex function, J. Inequal. Appl., 2020 (2020), 229. https://doi.org/10.1186/s13660-020-02496-5 doi: 10.1186/s13660-020-02496-5
![]() |
[12] |
T. S. Du, C. Luo, B. Yu, Certain quantum estimates on the parameterized integral inequalities and their applications, J. Math. Inequal., 15 (2021), 201–228. https://doi.org/10.7153/jmi-2021-15-16 doi: 10.7153/jmi-2021-15-16
![]() |
[13] |
Y. Zhang, T. S. Du, H. Wang, Y. J. Shen, Different types of quantum integral inequalities via (α,m)- convexity, J. Inequal. Appl., 2018 (2018), 264. https://doi.org/10.1186/s13660-018-1860-2 doi: 10.1186/s13660-018-1860-2
![]() |
[14] |
M. Vivas-Cortez, A. Kashuri, R. Liko, J. E. H. Hernández, Quantum estimates of Ostrowski inequalities for generalized ϕ-convex functions, Symmetry, 11 (2019), 16. https://doi.org/10.3390/sym11121513 doi: 10.3390/sym11121513
![]() |
[15] |
M. Vivas-Cortez, A. Kashuri, R. Liko, J. E. H. Hernández, Some inequalities using generalized convex functions in quantum analysis, Symmetry, 11 (2019), 14. https://doi.org/10.3390/sym11111402 doi: 10.3390/sym11111402
![]() |
[16] |
X. S. Zhou, C. X. Huang, H. J. Hu, L. Liu, Inequality estimates for the boundedness of multilinear singular and fractional integral operators, J. Inequal. Appl., 2013 (2013), 303. https://doi.org/10.1186/1029-242X-2013-303 doi: 10.1186/1029-242X-2013-303
![]() |
[17] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematical Studies, Elsevier, 2006. |
[18] |
D. Baleanu, A. Fernandez, On fractional operators and their classifications, Mathematics, 7 (2019), 830. https://doi.org/10.3390/math7090830 doi: 10.3390/math7090830
![]() |
[19] | H. M. Srivastava, P. W. Karlsson, Multiple Gaussian hypergeometric series, Halsted Press, Chichester, UK, 1985. |
[20] | N. S. Barnett, P. Cerone, S. S. Dragomir, J. Roumeliotis, Some inequalities for the dispersion of a random variable whose pdf is defined on a finite interval, J. Inequal. Pure Appl. Math., 2 (2001), 1–18. |
[21] |
N. S. Barnett, S. S. Dragomir, Some elementary inequalities for the expectation and variance of a random variable whose pdf is defined on a finite interval, RGMIA Res. Rep. Collect., 2 (1999), 1–7. https://doi.org/10.7153/mia-06-03 doi: 10.7153/mia-06-03
![]() |
[22] |
P. Cerone, S. S. Dragomir, On some inequalities for the expectation and variance, Korean J. Comput. Appl. Math., 2 (2000), 357–380. https://doi.org/10.1007/BF02941972 doi: 10.1007/BF02941972
![]() |
[23] | J. E. Pečarič, F. Proschan, Y. L. Tong, Convex functions, partial ordering and statistical applications, Academic Press: New York, 1991. |
1. | Bandar Bin-Mohsin, Muhammad Zakria Javed, Muhammad Uzair Awan, Hüseyin Budak, Awais Gul Khan, Clemente Cesarano, Muhammad Aslam Noor, Unified inequalities of the q-Trapezium-Jensen-Mercer type that incorporate majorization theory with applications, 2023, 8, 2473-6988, 20841, 10.3934/math.20231062 | |
2. | Miguel Vivas-Cortez, Usama Asif, Muhammad Zakria Javed, Muhammad Uzair Awan, Yahya Almalki, Omar Mutab Alsalami, A new approach to error inequalities: From Euler-Maclaurin bounds to cubically convergent algorithm, 2024, 9, 2473-6988, 35885, 10.3934/math.20241701 |