[1]
|
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
|
[2]
|
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1007/978-3-7908-1870-3
|
[3]
|
R. R. Yager, Pythagorean fuzzy subsets, IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint, Edmonton, Canada, IEEE, (2013), 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
|
[4]
|
R. R. Yager, Pythagorean membership grades in multi-criteria decision-making, IEEE T. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989
|
[5]
|
R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2017), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005
|
[6]
|
M. J. Khan, P. Kumam, M. Shutayw, W. Kumam, Improved knowledge measures for q-rung orthopair fuzzy sets, Int. J. Comput. Intell. Syst., 14 (2021), 1700–1713. https://doi.org/10.2991/ijcis.d.210531.002
|
[7]
|
M. J. Khan, P. Kumam, M. Shutayw, Knowledge measure for the q-rung orthopair fuzzy sets, Int. J. Intell. Syst., 36 (2021), 628–655. https://doi.org/10.1002/int.22313
|
[8]
|
M. J. Khan, M. I. Ali, P. Kumam, W. Kumam, A. N. Al-Kenani, q-Rung orthopair fuzzy modified dissimilarity measure based robust VIKOR method and its applications in mass vaccination campaigns in the context of covid-19, IEEE Access, 9 (2021), 93497–93515. https://doi.org/10.1109/ACCESS.2021.3091179
|
[9]
|
M. J. Khan, P. Kumam, N. A. Alreshidi, W. Kumam, Improved cosine and cotangent function-based similarity measures for q-rung orthopair fuzzy sets and TOPSIS method, Complex Intell. Syst., 7 (2021), 2679–2696. https://doi.org/10.1007/s40747-021-00425-7
|
[10]
|
M. Riaz, M. R. Hashmi, Linear Diophantine fuzzy set, its applications towards multi-attribute decision making problems, J. Intell. Fuzzy Syst., 37 (2019), 5417–5439. https://doi.org/10.3233/JIFS-190550
|
[11]
|
J. J. Peng, J. Q. Wang, J. Wang, H. Y. Zhang, Z. H. Chen, Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems, Int. J. Syst. Sci., 47 (2016), 2342–2358. https://doi.org/10.1080/00207721.2014.994050 doi: 10.1080/00207721.2014.994050
|
[12]
|
Nancy, H. Garg, Novel single-valued neutrosophic decision making operators under Frank norm operations and its application, Int. J. Uncertain. Quan., 6 (2016), 361–375. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2016018603 doi: 10.1615/Int.J.UncertaintyQuantification.2016018603
|
[13]
|
P. Liu, Y. Chu, Y. Li, Y. Chen, Some generalized neutrosophic number Hamacher aggregation operators and their application to group decision making, Int. J. Fuzzy Syst., 16 (2014), 242–255.
|
[14]
|
H. Y. Zhang, J. Q. Wang, X. H. Chen, Interval neutrosophic sets and their application in multicriteria decision making problems, The Scientific World J., (2014), 645953. https://doi.org/10.1155/2014/645953
|
[15]
|
X. H. Wu, J. Q. Wang, J. J. Peng, X. H. Chen, Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems, Int. J. Fuzzy Syst., 18 (2016), 1104–1116. https://doi.org/10.1007/s40815-016-0180-2 doi: 10.1007/s40815-016-0180-2
|
[16]
|
Z. S. Xu, Intuitionistic fuzzy aggregation operators, IEEE T. Fuzzy Syst., 15 (2007), 1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678 doi: 10.1109/TFUZZ.2006.890678
|
[17]
|
Z. S. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. General Syst., 35 (2006), 417–433. https://doi.org/10.1080/03081070600574353 doi: 10.1080/03081070600574353
|
[18]
|
T. Mahmood, F. Mehmood, Q. Khan, Some generalized aggregation operators for cubic hesitant fuzzy sets and their application to multi-criteria decision making, Punjab Univ. J. Math., 49 (2017), 31–49.
|
[19]
|
G. Wei, H. Wang, X. Zhao, R. Lin, Hesitant triangular fuzzy information aggregation in multiple attribute decision making, J. Intell. Fuzzy Syst., 26 (2014), 1201–1209. https://doi.org/10.3233/IFS-130806 doi: 10.3233/IFS-130806
|
[20]
|
M. Akram, U. Amjad, J. C. R. Alcantud, G. S. Garc??a, Complex Fermatean fuzzy N-soft sets: A new hybrid model with applications, J. Amb. Intell. Hum. Comp., (2022). https://doi.org/10.1007/s12652-021-03629-4
|
[21]
|
F. Feng, Y. Zheng, B. Sun, M. Akram, Novel score functions of generalized orthopair fuzzy membership grades with application to multiple attribute decision making, Granular Comput., 7 (2022), 95–111. https://doi.org/10.1007/s41066-021-00253-7 doi: 10.1007/s41066-021-00253-7
|
[22]
|
W. Wang, X. Liu, Intuitionistic fuzzy information aggregation using Einstein operators, IEEE T. Fuzzy Syst., 20 (2012), 923–938. https://doi.org/10.1109/TFUZZ.2012.2189405 doi: 10.1109/TFUZZ.2012.2189405
|
[23]
|
H. Garg, A new generalized Pythagorean fuzzy information aggregation using Einstein operators and its applications to decision-making, Int. J. Intell. Syst., 31 (2016), 886–920. https://doi.org/10.1002/int.21809 doi: 10.1002/int.21809
|
[24]
|
L. Wang, H. Garg, N. Li, Pythagorean fuzzy interactive Hamacher power aggregation operators for assessment of express service quality with entropy weight, Soft Comput., 25 (2021), 973–993. https://doi.org/10.1007/s00500-020-05193-z doi: 10.1007/s00500-020-05193-z
|
[25]
|
L. Wang, N. Li, Pythagorean fuzzy interaction power Bonferroni mean aggregation operators in multiple attribute decision making, J. Intell. Fuzzy Syst., 35 (2020), 150–183. https://doi.org/10.1002/int.22204 doi: 10.1002/int.22204
|
[26]
|
M. Riaz, H. M. A. Farid, M. Aslam, D. Pamucar, D. Bozanic, Novel approach for third-party reverse logistic provider selection process under linear Diophantine fuzzy prioritized aggregation operators, Symmetry, 13 (2021), 1152. https://doi.org/10.3390/sym13071152 doi: 10.3390/sym13071152
|
[27]
|
A. Iampan, G. S. Garcia, M. Riaz, H. M. A. Farid, R. Chinram, Linear Diophantine fuzzy Einstein aggregation operators for multi-criteria decision-making problems, J. Math., (2021), 5548033. https://doi.org/10.1155/2021/5548033
|
[28]
|
M. Riaz, W. Salabun, H. M. A. Farid, N. Ali, J. Watróbski, A robust q-rung orthopair fuzzy information aggregation using Einstein operations with application to sustainable energy planning decision management, Energies, 13 (2020), 2125. https://doi.org/10.3390/en13092155 doi: 10.3390/en13092155
|
[29]
|
M. Riaz, D. Pamucar, H. M. A. Farid, M. R. Hashmi, q-Rung orthopair fuzzy prioritized aggregation operators and their application towards green supplier chain management, Symmetry, 12 (2020), 976. https://doi.org/10.3390/sym12060976 doi: 10.3390/sym12060976
|
[30]
|
M. Riaz, H. M. A. Farid, H. Kalsoom, D. Pamucar, Y. M. Chu, A Robust q-rung orthopair fuzzy Einstein prioritized aggregation operators with application towards MCGDM, Symmetry, 12 (2020), 1058. https://doi.org/10.3390/sym12061058 doi: 10.3390/sym12061058
|
[31]
|
H. M. A. Farid, M. Riaz, Some generalized q-rung orthopair fuzzy Einstein interactive geometric aggregation operators with improved operational laws, Int. J. Intell. Syst., 36 (2021), 7239–7273. https://doi.org/10.1002/int.22587 doi: 10.1002/int.22587
|
[32]
|
M. Riaz, M. T. Hamid, H. M. A. Farid, D. Afzal, TOPSIS, VIKOR and aggregation operators based on q-rung orthopair fuzzy soft sets and their applications, J. Intell. Fuzzy Syst., 39 (2020), 6903–6917. https://doi.org/10.3233/JIFS-192175 doi: 10.3233/JIFS-192175
|
[33]
|
P. Liu, J. Liu, Some q-rung orthopai fuzzy Bonferroni mean operators and their application to multi-attribute group decision making, Int. J. Intell. Syst., 33 (2018), 315–347. https://doi.org/10.1002/int.21933 doi: 10.1002/int.21933
|
[34]
|
M. Riaz, H. Garg, H. M. A. Farid, R. Chinram, Multi-criteria decision making based on bipolar picture fuzzy operators and new distance measures, Comp. Model. Eng., 127 (2021), 771–800. https://doi.org/10.32604/cmes.2021.014174 \newpage doi: 10.32604/cmes.2021.014174
|
[35]
|
Z. Liu, S. Wang, P. Liu, Multiple attribute group decision making based on q-rung orthopair fuzzy Heronianmean operators, Int. J. Intell. Syst., 33 (2018), 2341–2363. https://doi.org/10.1002/int.22032 doi: 10.1002/int.22032
|
[36]
|
F. B. Mesa, E. L. Castro, J. M. Merigo, A bibliometric analysis of aggregation operators, Appl. Soft Comput., 81 (2019), 105488. https://doi.org/10.1016/j.asoc.2019.105488 doi: 10.1016/j.asoc.2019.105488
|
[37]
|
F. B. Mesa, J. M. Merigo, A. M. G. Lafuente, Fuzzy decision making: A bibliometric-based review, J. Intell. Fuzzy Syst., 32 (2017), 2033–2050. https://doi.org/10.3233/JIFS-161640 doi: 10.3233/JIFS-161640
|
[38]
|
R. R. Yager, Prioritized aggregation operators, Int. J. Approx. Reason., 48 (2008) 263–274. https://doi.org/10.1016/j.ijar.2007.08.009
|
[39]
|
H. Gao, Pythagorean fuzzy Hamacher prioritized aggregation operators in multiple attribute decision making, J. Intell. Fuzzy Syst., 35 (2018), 2229–2245. https://doi.org/10.3233/JIFS-172262 doi: 10.3233/JIFS-172262
|
[40]
|
E. L. Castro, F. B. Mesa, A. M. R. Serrano, M. V. Cazares, The ordered weighted average human development index, Axioms, 10 (2021), 87. https://doi.org/10.3390/axioms10020087 doi: 10.3390/axioms10020087
|
[41]
|
L. A. P. Arellano, E. L. Castro, E. A. Ochoa, J. M. Merigo, Prioritized induced probabilistic operator, its application in group decision making, Int. J. Mach. Learn. Cyb., 10 (2019), 451–462.
|
[42]
|
L. A. P. Arellano, E. L. Castro, F. B. Mesa, G. F. Cifuentes, The ordered weighted government transparency average: Colombia case, J. Intell. Fuzzy Syst., 40 (2021), 1837–1849. https://doi.org/10.3233/JIFS-189190 doi: 10.3233/JIFS-189190
|
[43]
|
J. Ye, Interval-valued hesitant fuzzy prioritized weighted aggregation operators for multiple attribute decision making, J. Algorithms Comput., 8 (2014), 179–192. https://doi.org/10.1260/1748-3018.8.2.179 doi: 10.1260/1748-3018.8.2.179
|
[44]
|
S. Khan, H. F. Ashraf, Analysis of Pakistan's electric power sector, Blekinge Institute of Technology, Department of Electrical Engineering, (2015).
|
[45]
|
D. Anderson, F. Britt, D. Favre, The seven principles of supply chain management, Supply Chain Management Rev., 1 (1997), 21–31.
|
[46]
|
X. Y. Deng, Y. Hu, Y. Deng, S. Mahadevan, Supplier selection using AHP methodology extended by D numbers, Expert Syst. Appl., 41 (2014), 156–167. https://doi.org/10.1016/j.eswa.2013.07.018 doi: 10.1016/j.eswa.2013.07.018
|
[47]
|
G. W. Dickson, An analysis of vendor selection: Aystems and decisions, J. Purch., 1 (1966), 5–17. https://doi.org/10.1111/j.1745-493X.1966.tb00818.x doi: 10.1111/j.1745-493X.1966.tb00818.x
|
[48]
|
Y. Wind, P. E. Green, P. J. Robinson, The determinants of vendor selection: the evaluation function approach, J. Purch., 8 (1968), 29–41. https://doi.org/10.1111/j.1745-493X.1968.tb00592.x doi: 10.1111/j.1745-493X.1968.tb00592.x
|
[49]
|
W. Ho, X. Xu, P. K. Dey, Multi-criteria decision making approaches for supplier evaluation and selection: a literature review, Eur. J. Oper. Res., 202 (2010), 16–24. https://doi.org/10.1016/j.ejor.2009.05.009 doi: 10.1016/j.ejor.2009.05.009
|
[50]
|
C. A. Weber, J. R. Current, W. C. Benton, Vendor selection criteria and methods, Eur. J. Oper. Res., 50 (1991), 2–18. https://doi.org/10.1016/0377-2217(91)90033-R doi: 10.1016/0377-2217(91)90033-R
|
[51]
|
A. Amid, S. H. Ghodsypour, C. Brien, A weighted max-min model for fuzzy multi-objective supplier selection in a supply chain, Int. J. Prod. Econ., 131 (2011), 139–145. https://doi.org/10.1016/j.ijpe.2010.04.044 doi: 10.1016/j.ijpe.2010.04.044
|
[52]
|
F. Jolai, S. A. Yazdian, K. Shahanaghi, M. A. Khojasteh, Integrating fuzzy TOPSIS and multiperiod goal programming for purchasing multiple products from multiple suppliers, J. Purch. Supply Manag., 17 (2011), 42–53. https://doi.org/10.1016/j.pursup.2010.06.004 doi: 10.1016/j.pursup.2010.06.004
|
[53]
|
M. Sevkli, S. C. L. Koh, S. Zaim, M. Demirbag, E. Tatoglu, Hybrid analytical hierarchy process model for supplier selection, Ind. Manage. Data Syst., 108 (2008), 122–142. https://doi.org/10.1108/02635570810844124 doi: 10.1108/02635570810844124
|
[54]
|
A. Anastasiadis, S. Konstantinopoulos, G. Kondylis, G. A. Vokas, M. J. Salame, Carbon tax, system marginal price and environmental policies on smart microgrid operation, Manag. Environ. Qual., 29 (2018), 76–88. https://doi.org/10.1108/MEQ-11-2016-0086 doi: 10.1108/MEQ-11-2016-0086
|
[55]
|
K. Govindan, R. Sivakumar, Green supplier selection and order allocation in a lowcarbon paper industry: integrated multi-criteria heterogeneous decision-making and multiobjective linear programming approaches, Ann. Oper. Res., 238 (2016), 243–276. https://doi.org/10.1007/s10479-015-2004-4 doi: 10.1007/s10479-015-2004-4
|
[56]
|
J. D. Qin, X. W. Liu, W. Pedrycz, An extended TODIM multi-criteria group decision making method for green supplier selection in interval type-2 fuzzy environment, Eur. J. Oper. Res., 258 (2017), 626–638. https://doi.org/10.1016/j.ejor.2016.09.059 doi: 10.1016/j.ejor.2016.09.059
|
[57]
|
M. Davood, H. G. Seyed, H. Ashkan, A game theoretic analysis in capacity-constrained supplier-selection and cooperation by considering the total supply chain inventory costs, Int. J. Prod. Econ., 181 (2016), 87–97. https://doi.org/10.1016/j.ijpe.2015.11.016 doi: 10.1016/j.ijpe.2015.11.016
|
[58]
|
X. Tong, Z. J. Wang, A group decision framework with intuitionistic preference relations and its application to low carbon supplier selection, Int. J. Environ. Res. Public Heal., 13 (2016), 923. https://doi.org/10.3390/ijerph13090923 doi: 10.3390/ijerph13090923
|
[59]
|
S. Zeng, X. Peng, T. BaleAzentis, D. Streimikiene, Prioritization of low-carbon suppliers based on Pythagorean fuzzy group decision making with self-confidence level, Economic Research-Ekonomska Istraazivanja, 32 (2019), 1073–1087. https://doi.org/10.1080/1331677X.2019.1615971 doi: 10.1080/1331677X.2019.1615971
|
[60]
|
Z. S. Xu, Intuitionistic fuzzy aggregation operators, IEEE T. Fuzzy Syst., 15 (2007), 1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678 doi: 10.1109/TFUZZ.2006.890678
|
[61]
|
Z. S. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. General Syst., 35 (2006), 417–433. https://doi.org/10.1080/03081070600574353 doi: 10.1080/03081070600574353
|
[62]
|
Z. S. Xu, R. R. Yager, Intuitionistic fuzzy Bonferroni means, IEEE T. Syst., 41 (2011), 568–578. https://doi.org/10.1109/TSMCB.2010.2072918 doi: 10.1109/TSMCB.2010.2072918
|
[63]
|
H. Zhao, Z. S. Xu, M. F. Ni, Generalized aggregation operators for intuitionistic fuzzy sets, Int. J. Intell. Syst., 25 (2010), 1–30. https://doi.org/10.1002/int.20386 doi: 10.1002/int.20386
|
[64]
|
Z. S. Xu, M. M. Xia, Induced generalized intuitionistic fuzzy operators, Knowl-Based Syst., 24 (2011), 197–209. https://doi.org/10.1016/j.knosys.2010.04.010 doi: 10.1016/j.knosys.2010.04.010
|