We suggest a Jacobi form over a number field Q(√5,i); for obtaining this, we use a linear code C over R:=F4+uF4, where u2=0. We introduce MacWilliams identities for both complete weight enumerator and symmetrized weight enumerator in higher genus g≥1 of a linear code over R. Finally, we give invariants via a self-dual code of even length over R.
Citation: Boran Kim, Chang Heon Kim, Soonhak Kwon, Yeong-Wook Kwon. Jacobi forms over number fields from linear codes[J]. AIMS Mathematics, 2022, 7(5): 8235-8249. doi: 10.3934/math.2022459
[1] | Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2024, 11(3): 380-380. doi: 10.3934/environsci.2024018 |
[2] | Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2025, 12(2): 252-252. doi: 10.3934/environsci.2025011 |
[3] | Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2021, 8(2): 100-100. doi: 10.3934/environsci.2021007 |
[4] | Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2023, 10(2): 245-245. doi: 10.3934/environsci.2023014 |
[5] | Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2018, 5(1): 64-66. doi: 10.3934/environsci.2018.1.64 |
[6] | Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2016, 3(1): 140-140. doi: 10.3934/environsci.2016.1.140 |
[7] | Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2019, 6(4): 262-264. doi: 10.3934/environsci.2019.4.262 |
[8] | Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2020, 7(2): 153-155. doi: 10.3934/environsci.2020009 |
[9] | Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2017, 4(2): 287-288. doi: 10.3934/environsci.2017.2.287 |
[10] | Rukhsana Kokkadan, Resha Neznin, Praseeja Cheruparambath, Jerisa Cabilao, Salma Albouchi . A Study of Infaunal Abundance, Diversity and Distribution in Chettuva Mangrove, Kerala, India. AIMS Environmental Science, 2023, 10(1): 82-92. doi: 10.3934/environsci.2023005 |
We suggest a Jacobi form over a number field Q(√5,i); for obtaining this, we use a linear code C over R:=F4+uF4, where u2=0. We introduce MacWilliams identities for both complete weight enumerator and symmetrized weight enumerator in higher genus g≥1 of a linear code over R. Finally, we give invariants via a self-dual code of even length over R.
Dear Editorial Board Members and Readers:
It is my pleasure to share with you the year-end report for AIMS Environmental Science for 2021. The journal continues to improve its quality as indicated by steady increases in the number of manuscripts received and the number of articles published over the past three years. We have received 202 submissions with 40 published online. The top read article received more than 15980 downloads.
I would like to thank all the board members for serving on the Editorial Board and their dedication and contribution to the journal. The goal for 2022 is to solicit more papers and increase paper citations. We will try our best to reduce the processing time and supply with a better experience for publication. To recognize the contribution of the Editorial Board members and authors during the years, we will offer that (1) for authors invited the article processing charge (APC) is automatically waived and (2) each editorial board member is entitled for some waivers. I am looking forward to continuing working with you to make the AIMS Environmental Science a sustainable and impactful journal. Please don't hesitate to send me e-mails if you have new ideas and suggestions to help us to achieve this goal.
![]() |
Yifeng Wang, Ph.D.
Editor in Chief, AIMS Environmental Science
[1] |
E. Bannai, S. T. Dougherty, M. Harada, M. Oura, Type Ⅱ codes, even unimodular lattices, and invariant rings, IEEE T. Inform. Theory, 45 (1999), 1194–1205. https://doi.org/10.1109/18.761269 doi: 10.1109/18.761269
![]() |
[2] |
E. Bannai, M. Harada, T. Ibukiyama, A. Munemasa, M. Oura, Type Ⅱ codes over F2+uF2 and applications to Hermitian modular forms, Abh. Math. Sem. Univ. Hamburg, 73 (2003), 13–42. https://doi.org/10.1007/BF02941267 doi: 10.1007/BF02941267
![]() |
[3] |
K. Betsumiya, Y. Choie, Jacobi forms over totally real fields and type II codes over Galois rings GR(2m,f), European J. Combin., 25 (2004), 475–486. https://doi.org/10.1016/j.ejc.2003.01.001 doi: 10.1016/j.ejc.2003.01.001
![]() |
[4] |
K. Betsumiya, Y. Choie, Codes over F4, Jacobi forms and Hilbert-Siegel modular forms over Q(√5), European J. Combin., 26 (2005), 629–650. https://doi.org/10.1016/j.ejc.2004.04.010 doi: 10.1016/j.ejc.2004.04.010
![]() |
[5] |
K. Betsumiya, S. Ling, F. R. Nemenzo, Type Ⅱ codes over F2m+uF2m, Discrete Math., 275 (2004), 43–65. https://doi.org/10.1016/S0012-365X(03)00097-9 doi: 10.1016/S0012-365X(03)00097-9
![]() |
[6] |
M. Broué, M. Enguehard, Polynômes des poids de certains codes et fonctions thêta de certains réseaux, Ann. Sci. École Norm. Sup., 5 (1972), 157–181. https://doi.org/10.24033/asens.1223 doi: 10.24033/asens.1223
![]() |
[7] |
Y. Choie, S. T. Dougherty, Codes over Σ2m and Jacobi forms over the quaternions, Appl. Algebra Engrg. Comm. Comput., 15 (2004), 129–147. https://doi.org/10.1007/s00200-004-0153-9 doi: 10.1007/s00200-004-0153-9
![]() |
[8] |
Y. Choie, S. T. Dougherty, Codes over rings, complex lattices and Hermitian modular forms, European J. Combin., 26 (2005), 145–165. https://doi.org/10.1016/j.ejc.2004.04.002 doi: 10.1016/j.ejc.2004.04.002
![]() |
[9] |
Y. Choie, H. Kim, Codes over Z2m and Jacobi forms of genus n, J. Combin. Theory Ser. A, 95 (2001), 335–348. https://doi.org/10.1006/jcta.2000.3168 doi: 10.1006/jcta.2000.3168
![]() |
[10] |
Y. Choie, N. Kim, The complete weight enumerator of Type Ⅱ codes over Z2m and Jacobi forms, IEEE T. Inform. Theory, 47 (2001), 396–399. https://doi.org/10.1109/18.904543 doi: 10.1109/18.904543
![]() |
[11] |
Y. Choie, E. Jeong, Jacobi forms over totally real fields and codes over Fp, Illinois J. Math., 46 (2002), 627–643. https://doi.org/10.1215/ijm/1258136214 doi: 10.1215/ijm/1258136214
![]() |
[12] |
Y. Choie, P. Solé, Ternary codes and Jacobi forms, Discrete Math., 282 (2004), 81–87. https://doi.org/10.1016/j.disc.2003.12.002 doi: 10.1016/j.disc.2003.12.002
![]() |
[13] | S. T. Dougherty, Algebraic coding theory over finite commutative rings, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-59806-2 |
[14] |
S. T. Dougherty, T. A. Gulliver, M. Harada, Type Ⅱ self-dual codes over finite rings and even unimodular lattices, J. Algebraic Combin., 9 (1999), 233–250. https://doi.org/10.1023/A:1018696102510 doi: 10.1023/A:1018696102510
![]() |
[15] |
I. Duursma, Extremal weight enumerators and ultraspherical polynomials, Discrete Math., 268 (2003), 103–127. https://doi.org/10.1016/S0012-365X(02)00683-0 doi: 10.1016/S0012-365X(02)00683-0
![]() |
[16] | M. Eighler, D. Zagier, The theory of Jacobi forms, Birkhäuser, Boston, MA, 1985. https://doi.org/10.1007/978-1-4684-9162-3 |
[17] | A. M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities, In: Actes du Congrès International des Mathématiciens, Gauthier-Villars, 1971. |
[18] |
N. Han, B. Kim, B. Kim, Y. Lee, Infinite families of MDR cyclic codes over Z4 via constacyclic codes over Z4[u]/⟨u2−1⟩, Discrete Math., 343 (2020), 111771. https://doi.org/10.1016/j.disc.2019.111771 doi: 10.1016/j.disc.2019.111771
![]() |
[19] |
B. Kim, Y. Lee, The minimum weights of two-point AG codes on norm-trace curves, Finite Fields Th. App., 53 (2018), 113–139. https://doi.org/10.1016/j.ffa.2018.06.005 doi: 10.1016/j.ffa.2018.06.005
![]() |
[20] |
B. Kim, Y. Lee, J. Doo, Classification of cyclic codes over a non-Galois chain ring Zp[u]/⟨u3⟩, Finite Fields Th. App., 59 (2019), 208–237. https://doi.org/10.1016/j.ffa.2019.06.003 doi: 10.1016/j.ffa.2019.06.003
![]() |
[21] |
S. Ling, P. Solé, Type Ⅱ codes over F4+uF4, European J. Combin., 22 (2001), 983–997. https://doi.org/10.1006/eujc.2001.0509 doi: 10.1006/eujc.2001.0509
![]() |
[22] |
O. K. Richter, H. Skogman, Jacobi theta functions over number field, Monatsh. Math., 141 (2004), 219–235. https://doi.org/10.1007/s00605-003-0037-2 doi: 10.1007/s00605-003-0037-2
![]() |
[23] |
A. Sharma, A. K. Sharma, Construction of self-dual codes over Z2m, Cryptogr. Commun., 8 (2016), 83–101. https://doi.org/10.1007/s12095-015-0139-4 doi: 10.1007/s12095-015-0139-4
![]() |
[24] | H. Skogman, Jacobi forms over number fields, University of California, San Diego, 1999. |
[25] |
H. Skogman, Jacobi forms over totally real number fields, Results Math., 39 (2001), 169–182. https://doi.org/10.1007/BF03322682 doi: 10.1007/BF03322682
![]() |
[26] |
K. Suzuki, Complete m-spotty weight enumerators of binary codes, Jacobi forms, and partial Epstein zeta functions, Discrete Math., 312 (2012), 265–278. https://doi.org/10.1016/j.disc.2011.09.002 doi: 10.1016/j.disc.2011.09.002
![]() |
[27] |
K. Suzuki, Complete m-spotty weight enumerators of binary codes, Jacobi forms, and partial Epstein zeta functions, Discrete Math., 312 (2012), 265–278. https://doi.org/10.1016/j.disc.2011.09.002 doi: 10.1016/j.disc.2011.09.002
![]() |
[28] |
J. A. Wood, Duality for modules over finite rings and applications to coding theory, Am. J. Math., 121 (1999), 555–575. https://doi.org/10.1353/ajm.1999.0024 doi: 10.1353/ajm.1999.0024
![]() |