This paper deals with unsteady flow of fractional Casson fluid in the existence of bioconvection. The governing equations are modeled with fractional derivative which is transformed into dimensionless form by using dimensionless variables. The analytical solution is attained by applying Laplace transform technique. Some graphs are made for involved parameters. As a result, it is found that temperature, bioconvection are maximum away from the plate for large time and vice versa and showing dual behavior in their boundary layers respectively. Further recent literature is recovered from the present results and obtained good agreement.
Citation: Muhammad Imran Asjad, Muhammad Haris Butt, Muhammad Armaghan Sadiq, Muhammad Danish Ikram, Fahd Jarad. Unsteady Casson fluid flow over a vertical surface with fractional bioconvection[J]. AIMS Mathematics, 2022, 7(5): 8112-8126. doi: 10.3934/math.2022451
[1] | Shuhai Li, Lina Ma, Huo Tang . Meromorphic harmonic univalent functions related with generalized (p, q)-post quantum calculus operators. AIMS Mathematics, 2021, 6(1): 223-234. doi: 10.3934/math.2021015 |
[2] | Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif . On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185 |
[3] | Ying Yang, Jin-Lin Liu . Some geometric properties of certain meromorphically multivalent functions associated with the first-order differential subordination. AIMS Mathematics, 2021, 6(4): 4197-4210. doi: 10.3934/math.2021248 |
[4] | Hari Mohan Srivastava, Muhammad Arif, Mohsan Raza . Convolution properties of meromorphically harmonic functions defined by a generalized convolution q-derivative operator. AIMS Mathematics, 2021, 6(6): 5869-5885. doi: 10.3934/math.2021347 |
[5] | Tao He, Shu-Hai Li, Li-Na Ma, Huo Tang . Closure properties of generalized λ-Hadamard product for a class of meromorphic Janowski functions. AIMS Mathematics, 2021, 6(2): 1715-1726. doi: 10.3934/math.2021102 |
[6] | Zhuo Wang, Weichuan Lin . The uniqueness of meromorphic function shared values with meromorphic solutions of a class of q-difference equations. AIMS Mathematics, 2024, 9(3): 5501-5522. doi: 10.3934/math.2024267 |
[7] | Pinhong Long, Xing Li, Gangadharan Murugusundaramoorthy, Wenshuai Wang . The Fekete-Szegö type inequalities for certain subclasses analytic functions associated with petal shaped region. AIMS Mathematics, 2021, 6(6): 6087-6106. doi: 10.3934/math.2021357 |
[8] | Ekram E. Ali, Nicoleta Breaz, Rabha M. El-Ashwah . Subordinations and superordinations studies using q-difference operator. AIMS Mathematics, 2024, 9(7): 18143-18162. doi: 10.3934/math.2024886 |
[9] | Erhan Deniz, Hatice Tuǧba Yolcu . Faber polynomial coefficients for meromorphic bi-subordinate functions of complex order. AIMS Mathematics, 2020, 5(1): 640-649. doi: 10.3934/math.2020043 |
[10] | Huo Tang, Muhammad Arif, Khalil Ullah, Nazar Khan, Bilal Khan . Majorization results for non vanishing analytic functions in different domains. AIMS Mathematics, 2022, 7(11): 19727-19738. doi: 10.3934/math.20221081 |
This paper deals with unsteady flow of fractional Casson fluid in the existence of bioconvection. The governing equations are modeled with fractional derivative which is transformed into dimensionless form by using dimensionless variables. The analytical solution is attained by applying Laplace transform technique. Some graphs are made for involved parameters. As a result, it is found that temperature, bioconvection are maximum away from the plate for large time and vice versa and showing dual behavior in their boundary layers respectively. Further recent literature is recovered from the present results and obtained good agreement.
Let ∑ denote the class of meromorphic function of the form:
λ(ω)=1ω+∞∑t=0atωt, | (1.1) |
which are analytic in the punctured open unit disc U∗={ω:ω∈C and 0<|ω|<1}=U−{0}, where U=U∗∪{0}. Let δ(ω)∈∑, be given by
δ(ω)=1ω+∞∑t=0btωt, | (1.2) |
then the Convolution (Hadamard product) of λ(ω) and δ(ω) is denoted and defined as:
(λ∗δ)(ω)=1ω+∞∑t=0atbtωt. |
In 1967, MacGregor [17] introduced the concept of majorization as follows.
Definition 1. Let λ and δ be analytic in U∗. We say that λ is majorized by δ in U∗ and written as λ(ω)≪δ(ω)ω∈U∗, if there exists a function φ(ω), analytic in U∗, satisfying
|φ(ω)|≤1, and λ(ω)=φ(ω)δ(ω), ω∈U∗. | (1.3) |
In 1970, Robertson [19] gave the idea of quasi-subordination as:
Definition 2. A function λ(ω) is subordinate to δ(ω) in U and written as: λ(ω)≺δ(ω), if there exists a Schwarz function k(ω), which is holomorphic in U∗ with |k(ω)|<1, such that λ(ω)=δ(k(ω)). Furthermore, if the function δ(ω) is univalent in U∗, then we have the following equivalence (see [16]):
λ(ω)≺δ(ω)andλ(U)⊂δ(U). | (1.4) |
Further, λ(ω) is quasi-subordinate to δ(ω) in U∗ and written is
λ(ω)≺qδ(ω) ( ω∈U∗), |
if there exist two analytic functions φ(ω) and k(ω) in U∗ such that λ(ω)φ(ω) is analytic in U∗ and
|φ(ω)|≤1 and k(ω)≤|ω|<1 ω∈U∗, |
satisfying
λ(ω)=φ(ω)δ(k(ω)) ω∈U∗. | (1.5) |
(ⅰ) For φ(ω)=1 in (1.5), we have
λ(ω)=δ(k(ω)) ω∈U∗, |
and we say that the λ function is subordinate to δ in U∗, denoted by (see [20])
λ(ω)≺δ(ω) ( ω∈U∗). |
(ⅱ) If k(ω)=ω, the quasi-subordination (1.5) becomes the majorization given in (1.3). For related work on majorization see [1,4,9,21].
Let us consider the second order linear homogenous differential equation (see, Baricz [6]):
ω2k′′(ω)+αωk′(ω)+[βω2−ν2+(1−α)]k(ω)=0. | (1.6) |
The function kν,α,β(ω), is known as generalized Bessel's function of first kind and is the solution of differential equation given in (1.6)
kν,α,β(ω)=∞∑t=0(−β)tΓ(t+1)Γ(t+ν+1+α+12)(ω2)2t+ν. | (1.7) |
Let us denote
Lν,α,βλ(ω)=2νΓ(ν+α+12)ων2+1kν,α,β(ω12), =1ω+∞∑t=0(−β)t+1Γ(ν+α+12)4t+1Γ(t+2)Γ(t+ν+1+α+12)(ω)t, |
where ν,α and β are positive real numbers. The operator Lν,α,β is a variation of the operator introduced by Deniz [7] (see also Baricz et al. [5]) for analytic functions. By using the convolution, we define the operator Lν,α,β as follows:
( Lν,α,βλ)(ω)=Lν,α,β(ω)∗λ(ω),=1ω+∞∑t=0(−β)t+1Γ(ν+α+12)4t+1Γ(t+2)Γ(t+ν+1+α+12)at(ω)t. | (1.8) |
The operator Lν,α,β was introduced and studied by Mostafa et al. [15] (see also [2]). From (1.8), we have
ω(Lν,α,βλ(ω))j+1=(ν−1+α+12)(Lν−1,α,βλ(ω))j−(ν+α+12)(Lν,α,βλ(ω))j. | (1.9) |
By taking α=β=1, the above operator reduces to ( Lνλ)(ω) studied by Aouf et al. [2].
Definition 3. Let −1≤B<A≤1,η∈C−{0},j∈W and ν,α,β>0. A function λ∈∑ is said to be in the class Mν,jα,β(η,ϰ;A,B) of meromorphic functions of complex order η≠0 in U∗ if and only if
1−1η(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+ν+j)−ϰ|−1η(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+ν+j)|≺1+Aω1+Bω. | (1.10) |
Remark 1.
(i). For A=1,B=−1 and ϰ=0, we denote the class
Mν,jα,β(η,0;1,−1)=Mν,jα,β(η). |
So, λ∈Mν,jα,β(η,ϰ;A,B) if and only if
ℜ[1−1η(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+ν+j)]>0. |
(ii). For α=1,β=1, Mν,j1,1(η,0;1,−1) reduces to the class Mν,j(η).
ℜ[1−1η(ω(Lνλ(ω))j+1(Lνλ(ω))j+ν+j)]>0. |
Definition 4. A function λ∈∑ is said to be in the class Nν,jα,β(θ,b;A,B) of meromorphic spirllike functions of complex order b≠0 in U∗, if and only if
1−eiθbcosθ(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+j+1)≺1+Aω1+Bω, | (1.11) |
where,
(−π2<θ<π2, −1≤β<A≤1,η∈C−{0}, j∈W, ν,α,β>0andω∈U∗ ). |
(i). For A=1 and B=−1, we set
Nν,jα,β(θ,b;1,−1)=Nν,jα,β(θ,b), |
where Nν,jα,β(θ,b) denote the class of functions λ∈∑ satisfying the following inequality:
ℜ[eiθbcosθ(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+j+1)]<1. |
(ii). For θ=0 and α=β=1 we write
Nν,j1,1(0,b;1,−1)=Nν,j(b), |
where Nν,j(b) denote the class of functions λ∈∑ satisfying the following inequality:
ℜ[1b(ω(Lνλ(ω))j+1(Lνλ(ω))j+j+1)]<1. |
A majorization problem for the normalized class of starlike functions has been examined by MacGregor [17] and Altintas et al. [3,4]. Recently, Eljamal et al. [8], Goyal et al. [12,13], Goswami et al. [10,11], Li et al. [14], Tang et al. [21,22] and Prajapat and Aouf [18] generalized these results for different classes of analytic functions.
The objective of this paper is to examined the problems of majorization for the classes Mν,jα,β(η,ϰ;A,B) and Nν,jα,β(θ,b;A,B).
In Theorem 1, we prove majorization property for the class Mν,jα,β(η,ϰ;A,B).
Theorem 1. Let the function λ∈∑ and suppose that δ∈Mν,jα,β(η,ϰ;A,B). If (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U∗, then
|(Lν,α,βλ(ω))j+1|≤|(Lν,α,βδ(ω))j+1|,(|ω|<r0), | (2.1) |
where r0=r0(η,ϰ,ν,α,β,A,B) is the smallest positive roots of the equation
−ρ(ν−1+α+12)[(A−B)|η|1−ϰ−(α+12)|B|]r3−(ν−1+α+12)[ρ(α+12)+ρ2|B|−|B|]r2−(ν−1+α+12)[(A−B)|η|1−ϰ−(α+12)|B|+ρ2|B|−1]r+ρ(ν−1+α+12)(α+12)=0. | (2.2) |
Proof. Since δ∈Mν,jα,β(η,ϰ;A,B), we have
1−1η(ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j+ν+j)−ϰ|−1η(ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j+ν+j)|=1+Ak(ω)1+Bk(ω), | (2.3) |
where k(ω)=c1ω+c2ω2+..., is analytic and bounded functions in U∗ with
|k(ω)|≤|ω| (ω∈U∗). | (2.4) |
Taking
§(ω)=1−1η(ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j+ν+j), | (2.5) |
In (2.3), we have
§(ω)−ϰ|§(ω)−1|=1+Ak(ω)1+Bk(ω), |
which implies
§(ω)=1+(A−Bϰe−iθ1−ϰe−iθ)k(ω)1+Bk(ω). | (2.6) |
Using (2.6) in (2.5), we get
ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j=−ν+j+[(A−B)η1−ϰe−iθ+(ν+j)B]k(ω)1+Bk(ω). | (2.7) |
Application of Leibnitz's Theorem on (1.9) gives
ω(Lν,α,βδ(ω))j+1=(ν−1+α+12)(Lν−1,α,βδ(ω))j−(ν+j+α+12)(Lν,α,βδ(ω))j. | (2.8) |
By using (2.8) in (2.7) and making simple calculations, we have
(Lν−1,α,βδ(ω))j(Lν,α,βδ(ω))j=α+12−[(A−B)η1−ϰe−iθ−(α+12)B]k(ω)(1+Bk(ω))(ν−1+α+12). | (2.9) |
Or, equivalently
(Lν,α,βδ(ω))j=(1+Bk(ω))(ν−1+α+12)α+12−[(A−B)η1−ϰe−iθ−(α+12)B]k(ω)(Lν−1,α,βδ(ω))j. | (2.10) |
Since |k(ω)|≤|ω|, (2.10) gives us
|(Lν,α,βδ(ω))j|≤[1+|B||ω|](ν−1+α+12)α+12−|(A−B)η1−ϰe−iθ−(α+12)B||ω||(Lν−1,α,βδ(ω))j|≤[1+|B||ω|](ν−1+α+12)α+12−[(A−B)|η|1−ϰ−(α+12)|B|]|ω||(Lν−1,α,βδ(ω))j| | (2.11) |
Since (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U∗. So from (1.3), we have
(Lν,α,βλ(ω))j=φ(ω)(Lν,α,βδ(ω))j. | (2.12) |
Differentiating (2.12) with respect to ω then multiplying with ω, we get
(Lν,α,βλ(ω))j=ωφ′(ω)(Lν,α,βδ(ω))j+ωφ(ω)(Lν,α,βδ(ω))j+1. | (2.13) |
By using (2.8), (2.12) and (2.13), we have
(Lν,α,βλ(ω))j+1=1(ν−1+α+12)ωφ′(ω)(Lν,α,βδ(ω))j+φ(ω)(Lν−1,α,βδ(ω))j+1. | (2.14) |
On the other hand, noticing that the Schwarz function φ satisfies the inequality
|φ′(ω)|≤1−|φ(ω)|21−|ω|2 (ω∈U∗). | (2.15) |
Using (2.8) and (2.15) in (2.14), we get
|(Lν,α,βλ(ω))j|≤[|φ(ω)|+ω(1−|φ(ω)|2)[1+|B||ω|](ν−1+α+12)(ν−1+α+12)(1−|ω|2)(α+12−[(A−B)|η|1−ϰ−(α+12)B]|ω|)]×|(Lν−1,α,βδ(ω))j|, |
By taking
|ω|=r, |φ(ω)|=ρ (0≤ρ≤1), |
reduces to the inequality
|(Lν,α,βλ(ω))j|≤Φ1(ρ)(ν−1+α+12)(1−r2)(α+12−[(A−B)|η|1−ϰ−(α+12)B]r)|(Lν−1,α,βδ(ω))j|, |
where
Φ1(ρ)=[ρ(ν−1+α+12)(1−r2)(α+12−[(A−B)|η|1−ϰ−(α+12)B]r)+r(1−ρ2)[1+|B|r](ν−1+α+12)]=−r[1+|B|r](ν−1+α+12)ρ2+ρ(ν−1+α+12)(1−r2)(α+12−[(A−B)|η|1−ϰ−(α+12)B]r)+r[1+|B|r](ν−1+α+12), | (2.16) |
takes in maximum value at ρ=1 with r0=r0(η,ϰ,ν,α,β,A,B) where r0 is the least positive root of the (2.2). Furthermore, if 0≤ξ0≤r0(η,ϰ,ν,α,β,A,B), then the function ψ1(ρ) defined by
ψ1(ρ)=−ξ0[1+|B|ξ0](ν−1+α+12)ρ2+ρ(ν−1+α+12)(1−ξ20)(α+12−[(A−B)|η|1−ϰ−(α+12)B]ξ0)+ξ0[1+|B|ξ0](ν−1+α+12), | (2.17) |
is an increasing function on the interval (0≤ρ≤1), so that
ψ1(ρ)≤ψ1(1)=(ν−1+α+12)(1−ξ20)[α+12−((A−B)|η|1−ϰ−(α+12)B)ξ0](0≤ρ≤1, 0≤ξ0≤r0(η,ϰ,A,B)). |
Hence, upon setting ρ=1 in (2.17), we achieve (2.1).
Special Cases: Let A=1 and B=−1 in Theorem 1, we obtain the following corollary.
Corollary 1. Let the function λ∈∑ and suppose that δ∈Mν,jα,β(η,ϰ;A,B). If (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U∗, then
|(Lν,α,βλ(ω))j+1|≤|(Lν,α,βδ(ω))j+1|,(|ω|<r1), |
where r1=r1(η,ϰ,ν,α,β) is the least positive roots of the equation
ρ(ν−1+α+12)[2|η|1−ϰ−(α+12)]r3−(ν−1+α+12)[ρ(α+12)+ρ2−1]r2−(ν−1+α+12)[ρ{2|η|1−ϰ−(α+12)}+ρ2−1]r+ρ(ν−1+α+12)(α+12)=0. | (2.18) |
Here, r=−1 is one of the roots (2.18) and the other roots are given by
r1=k0−√k20−4ρ2(ν−1+α+12)[2|η|1−ϰ−(α+12)](ν−1+α+12)(α+12)2ρ(ν−1+α+12)[2|η|1−ϰ−(α+12)], |
where
k0=(ν−1+α+12)[ρ{2|η|1−ϰ−2(α+12)}+ρ2−1]. |
Taking ϰ=0 in corollary 1, we state the following:
Corollary 2. Let the function λ∈∑ and suppose that δ∈Mν,jα,β(η,ϰ;A,B). If (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U∗, then
|(Lv,α,βλ(ω))j+1|≤|(Lv,α,βδ(ω))j+1|,(|ω|<r2), |
where r2=r2(η,ν,α,β) is the lowest positive roots of the equation
ρ(ν−1+α+12)[2|η|−(α+12)]r3−(ν−1+α+12)[ρ(α+12)+ρ2−1]r2−(ν−1+α+12)[ρ{2|η|−(α+12)}+ρ2−1]r+ρ(ν−1+α+12)(α+12)=0, | (2.19) |
given by
r2=k1−√k21−4ρ2(ν−1+α+12)[2|η|−(α+12)](ν−1+α+12)(α+12)2ρ(ν−1+α+12)[2|η|−(α+12)], |
where
k1=(ν−1+α+12)[ρ{2|η|−2(α+12)}+ρ2−1]. |
Taking α=β=1 in corollary 2, we get the following:
Corollary 3. Let the function λ∈∑ and suppose that δ∈Mν,jα,β(η,ϰ;A,B). If (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U∗, then
|(Lν,α,βλ(ω))j+1|≤|(Lν,α,βδ(ω))j+1|,(|ω|<r3), |
where r3=r3(η,ν) is the lowest positive roots of the equation
ρν[2|η|−1]r3−ν[ρ+ρ2−1]r2−ν[ρ(2|η|−1)+ρ2−1]r+ρν=0, | (2.20) |
given by
r3=k2−√k22−4ρ2ν[2|η|−1]ν2ρν[2|η|−1], |
where
k2=ν[ρ{2|η|−2}+ρ2−1]. |
Secondly, we exam majorization property for the class Nν,jα,β(θ,b;A,B).
Theorem 2. Let the function λ∈∑ and suppose that δ∈Nν,jα,β(θ,b;A,B). If
(Lν,α,βλ(ω))j≪(Lν,α,βδ(ω))j,(j∈0,1,2...), |
then
|(Lν,α,βλ(ω))j+1|≤|(Lν,α,βδ(ω))j+1|,(|ω|<r4), | (3.1) |
where r4=r4(θ,b,ν,α,β,A,B) is the smallest positive roots of the equation
−ρ[|(B−A)bcosθ+(ν+α+12−1)|B||]r3−[ρ{ν+α+12−1}−|B|(1−ρ2)(ν−1+α+12)]r2+[ρ{|(B−A)bcosθ+(ν+α+12−1)|B||}+(1−ρ2)(ν−1+α+12)]r+ρ[ν+α+12−1]=0,(−π2<θ<π2,−1≤β<A≤1,η∈C−{0},ν,α,β>0,andω∈U∗). | (3.2) |
Proof. Since δ∈Nν,jα,β(θ,b;A,B), so
1−eiθbcosθ(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+j+1)=1+Aω1+Bω, | (3.3) |
where, k(ω) is defined as (2.4).
From (3.3), we have
ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j=[(B−A)bcosθ−(j+1)Beiθ]k(ω)−(j+1)eiθeiθ(1+Bk(ω)). | (3.4) |
Now, using (2.8) in (3.4) and making simple calculations, we obtain
(Lν−1,α,βδ(ω))j(Lν,α,βδ(ω))j=[(B−A)bcosθ+(ν+α+12−1)Beiθ]k(ω)+[(ν+j+α+12)−1]eiθeiθ(1+Bk(ω))(ν−1+α+12), | (3.5) |
which, in view of |k(ω)|≤|ω| (ω∈U∗), immediately yields the following inequality
|(Lν,α,βδ(ω))j|≤|eiθ|(1+|B||k(ω)|)(ν−1+α+12)[|(B−A)bcosθ+(ν+α+12−1)Beiθ|]|k(ω)|+[(ν+α+12)−1]|eiθ|×|(Lν−1,α,βδ(ω))j|. | (3.6) |
Now, using (2.15) and (3.6) in (2.14) and working on the similar lines as in Theorem 1, we have
|(Lν−1,α,βλ(ω))j|≤[|φ(ω)|+|ω|(1−|φ(ω)|2)(1+|B||ω|)(ν−1+α+12)(1−|ω|2)[{|(B−A)bcosθ+(ν+α+12−1)B|}|ω|+[(ν+α+12)−1]]]×|(Lν−1,α,βδ(ω))j|. |
By setting |ω|=r,|φ(ω)|=ρ(0≤ρ≤1), leads us to the inequality
|(Lν−1,α,βλ(ω))j|≤[Φ2(ρ)(1−r2)[{|(B−A)bcosθ+(ν+α+12−1)B|}r+(ν+α+12)−1]]×|(Lν−1,α,βδ(ω))j|, | (3.7) |
where the function Φ2(ρ) is given by
Φ2(ρ)=ρ(1−r2)[{|(B−A)bcosθ+(ν+α+12−1)B|}r+(ν+α+12)−1]+r(1−ρ2)(1+Br)(ν−1+α+12). |
Φ2(ρ) its maximum value at ρ=1 with r4=r4(θ,b,ν,α,β,A,B) given in (3.2). Moreover if 0≤ξ1≤r4(θ,b,ν,α,β,A,B), then the function.
ψ2(ρ)=ρ(1−ξ21)[{|(B−A)bcosθ+(ν+α+12−1)B|}ξ1+(ν+α+12)−1]+ξ1(1−ρ2)(1+Bξ1)(ν−1+α+12), |
increasing on the interval 0≤ρ≤1, so that ψ2(ρ) does not exceed
ψ2(1)=(1−ξ21)[{|(B−A)bcosθ+(ν+α+12−1)B|}ξ1+(ν+α+12)−1]. |
Therefore, from this fact (3.7) gives the inequality (3.1). We complete the proof.
Special Cases: Let A=1 and B=−1 in Theorem 2, we obtain the following corollary.
Corollary 4. Let the function λ∈∑ and suppose that δ∈Nν,jα,β(θ,b;A,B). If
(Lν,α,βλ(ω))j≪(Lν,α,βδ(ω))j,(j∈0,1,2,...), |
then
|(Lν,α,βλ(ω))j+1|≤|(Lν,α,βδ(ω))j+1|,(|ω|<r5), |
where r5=r5(θ,b,ν,α,β) is the lowest positive roots of the equation
−ρ[|−2bcosθ+(ν+α+12−1)|]r3−[ρ{ν+α+12−1}−(1−ρ2)(ν−1+α+12)]r2+[ρ{|−2bcosθ+(ν+α+12−1)|}+(1−ρ2)(ν−1+α+12)]r+ρ[ν+α+12−1]=0. | (3.8) |
Where r=−1 is first roots and the other two roots are given by
r5=κ0−√κ20+4ρ2[|−2bcosθ+(ν+α+12−1)|][ν+α+12−1]−2ρ[|−2bcosθ+(ν+α+12−1)|], |
and
κ0=[(1−ρ2)(ν−1+α+12)−ρ{|−2bcosθ+2(ν+α+12−1)|}]. |
Which reduces to Corollary 4 for θ=0.
Corollary 5. Let the function λ∈∑ and suppose that δ∈Nν,jα,β(θ,b;A,B). If
(Lν,α,βλ(ω))j≪(Lν,α,βδ(ω))j,(j∈0,1,2,...), |
then
|(Lν,α,βλ(ω))j+1|≤|(Lν,α,βδ(ω))j+1|,(|ω|<r6), |
where r6=r6(b,ν,α,β) is the least positive roots of the equation
−ρ[|−2b+(ν+α+12−1)|]r3−[ρ{ν+α+12−1}−(1−ρ2)(ν−1+α+12)]r2+[ρ{|−2b+(ν+α+12−1)|}+(1−ρ2)(ν−1+α+12)]r+ρ[ν+α+12−1]=0, | (3.9) |
given by
r6=κ1−√κ21+4ρ2[|−2b+(ν+α+12−1)|][ν+α+12−1]−2ρ[|−2b+(ν+α+12−1)|], |
and
κ1=[(1−ρ2)(ν−1+α+12)−ρ{|−2b+2(ν+α+12−1)|}]. |
Taking α=β=1 in corollary 5, we get.
Corollary 6. Let the function λ∈∑ and suppose that δ∈Nν,jα,β(θ,b;A,B). If
(Lν,α,βλ(ω))j≪(Lν,α,βδ(ω))j,(j∈0,1,2,...), |
then
|(Lν,α,βλ(ω))j+1|≤|(Lν,α,βδ(ω))j+1|,(|ω|<r7), |
where r7=r7(b,ν) is the lowest positive roots of the equation
−ρ|−2b+ν|r3−[ρν−(1−ρ2)ν]r2+[ρ|−2b+ν|+(1−ρ2)ν]r+ρ[ν]=0, | (3.10) |
given by
r7=κ2−√κ22+4ρ2[|−2b+ν|][ν]−2ρ[|−2b+ν|], |
and
κ2=[(1−ρ2)ν−ρ{|−2b+2ν|}]. |
In this paper, we explore the problems of majorization for the classes Mν,jα,β(η,ϰ;A,B) and Nν,jα,β(θ,b;A,B) by using a convolution operator Lν,α,β. These results generalizes and unify the theory of majorization which is an active part of current ongoing research in Geometric Function Theory. By specializing different parameters like ν,η,ϰ,θ and b, we obtain a number of important corollaries in Geometric Function Theory.
The work here is supported by GUP-2019-032.
The authors agree with the contents of the manuscript, and there is no conflict of interest among the authors.
[1] |
D. Baleanu, A. Fernandez, On fractional operators and their classifications, Mathematics, 7 (2019), 830. https://doi.org/10.3390/math7090830 doi: 10.3390/math7090830
![]() |
[2] |
M. D. Ikram, M. I. Asjad, A. Akg¨ul, D. Baleanu, Effects of hybrid nanofluid on novel fractional model of heat transfer flow between two parallel plates, Alex. Eng. J., 60 (2021), 3593–3604, https://doi.org/10.1016/j.aej.2021.01.054 doi: 10.1016/j.aej.2021.01.054
![]() |
[3] | J. J. Trujillo, E. Scalas, K. Diethelm, D. Baleanu, Fractional calculus: Models and numerical methods, World Scientific, 2016. |
[4] |
Y. M. Chu, M. D. Ikram, M. I. Asjad, A. Ahmadian, F. Ghaemi, Influence of hybrid nanofluids and heat generation on coupled heat and mass transfer flow of a viscous fluid with novel fractional derivative, J. Therm. Anal. Calorim., 144 (2021), 2057–2077. https://doi.org/10.1007/s10973-021-10692-8 doi: 10.1007/s10973-021-10692-8
![]() |
[5] |
A. Atangana, J. F. Botha, A generalized groundwater flow equation using the concept of variable-order derivative, Bound. Value Probl., 2013 (2013), 53. https://doi.org/10.1186/1687-2770-2013-53 doi: 10.1186/1687-2770-2013-53
![]() |
[6] |
A. Atangana, A. Secer, A note on fractional order derivatives and table of fractional derivatives of some special functions, Abstr. Appl. Anal., 2013 (2013), 279681. https://doi.org/10.1155/2013/279681 doi: 10.1155/2013/279681
![]() |
[7] |
A. R. Butt, M. Abdullah, N. Raza, M. A. Imran, Influence of non-integer order parameter and Hartmann number on the heat and mass transfer flow of a Jeffery fluid over an oscillating vertical plate via Caputo-Fabrizio time fractional derivatives, Eur. Phys. J. Plus, 132 (2017), 414. https://doi.org/10.1140/epjp/i2017-11713-4 doi: 10.1140/epjp/i2017-11713-4
![]() |
[8] |
S. Aman, I. Khan, Z. Ismail, M. Z. Salleh, Applications of fractional derivatives to nanofluids: Exact and numerical solutions, Math. Model. Nat. Phenom., 13 (2018), 1–12. https://doi.org/10.1051/mmnp/2018013 doi: 10.1051/mmnp/2018013
![]() |
[9] |
F. Ali, S. Murtaza, I. Khan, N. A. Sheikh, K. S. Nisar, Atangana-Baleanu fractional model for the flow of Jeffrey nanofluid with diffusion-thermo effects: Applications in engine oil, Adv. Differ. Equ., 2019 (2019), 346. https://doi.org/10.1186/s13662-019-2222-1 doi: 10.1186/s13662-019-2222-1
![]() |
[10] |
Q. Al-Mdallal, K. A. Abro, I. Khan, Analytical solutions of fractional Walter's B fluid with applications, Complexity, 2018 (2018), 8131329. https://doi.org/10.1155/2018/8131329 doi: 10.1155/2018/8131329
![]() |
[11] |
M. A. Imran, I. Khan, M. Ahmad, N. A. Shah, M. Nazar, Heat and mass transport of differential type fluid with non-integer order time-fractional Caputo derivatives, J. Mol. Liq., 229 (2017), 67–75. https://doi.org/10.1016/j.molliq.2016.11.095 doi: 10.1016/j.molliq.2016.11.095
![]() |
[12] |
M. A. Imran, N. A. Shah, I. Khan, M. Aleem, Applications of non-integer Caputo time fractional derivatives to natural convection flow subject to arbitrary velocity and Newtonian heating, Neural. Comput. Appl., 30 (2018), 1589–1599. https://doi.org/10.1007/s00521-016-2741-6 doi: 10.1007/s00521-016-2741-6
![]() |
[13] |
K. M. Saad, Comparing the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivative with fractional order: Fractional cubic isothermal auto-catalytic chemical system, Eur. Phys. J. Plus, 133 (2018), 94. https://doi.org/10.1140/epjp/i2018-11947-6 doi: 10.1140/epjp/i2018-11947-6
![]() |
[14] |
N. A. Sheikh, F. Ali, M. Saqib, I. Khan, S. A. A. Jan, A. S. Alshomrani, et al., Comparison and analysis of the Atangana-Baleanu and Caputo-Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction, Results Phys., 7 (2017), 789–800. https://doi.org/10.1016/j.rinp.2017.01.025 doi: 10.1016/j.rinp.2017.01.025
![]() |
[15] |
F. Ali, S. Murtaza, N. A. Sheikh, I. Khan, Heat transfer analysis of generalized Jeffery nanofluid in a rotating frame: Atangana-Baleanu and Caputo-Fabrizio fractional models, Chaos Solitons Fract., 129 (2019), 1–15. https://doi.org/10.1016/j.chaos.2019.08.013 doi: 10.1016/j.chaos.2019.08.013
![]() |
[16] |
M. Ahmad, M. A. Imran, M. Aleem, I. Khan, A comparative study and analysis of natural convection flow of MHD non-Newtonian fluid in the presence of heat source and first-order chemical reaction, J. Therm. Anal. Calorim., 137 (2019), 1783–1796. https://doi.org/10.1007/s10973-019-08065-3 doi: 10.1007/s10973-019-08065-3
![]() |
[17] |
N. Shahid, A study of heat and mass transfer in a fractional MHD flow over an infinite oscillating plate, SpringerPlus, 4 (2015), 640. https://doi.org/10.1186/s40064-015-1426-4 doi: 10.1186/s40064-015-1426-4
![]() |
[18] |
M. B. Riaz, N. Iftikhar, A comparative study of heat transfer analysis of MHD Maxwell fluid in view of local and nonlocal differential operators, Chaos Solitons Fract., 132 (2020), 109556. https://doi.org/10.1016/j.chaos.2019.109556 doi: 10.1016/j.chaos.2019.109556
![]() |
[19] |
M. Tahir, M. A. Imran, N. Raza, M. Abdullah, M. Aleem, Wall slip and non-integer order derivative effects on the heat transfer flow of Maxwell fluid over an oscillating vertical plate with new definition of fractional Caputo-Fabrizio derivatives, Results Phys., 7 (2017), 1887–1898. https://doi.org/10.1016/j.rinp.2017.06.001 doi: 10.1016/j.rinp.2017.06.001
![]() |
[20] |
M. Saqib, F. Ali, I. Khan, N. A. Sheikh, S. A. A. Jan, Samiulhaq, Exact solutions for free convection flow of generalized Jeffrey fluid: A Caputo-Fabrizio fractional model, Alex. Eng. J., 57 (2018), 1849–1858. https://doi.org/10.1016/j.aej.2017.03.017 doi: 10.1016/j.aej.2017.03.017
![]() |
[21] |
M. A. Imran, F. Miraj, I. Khan, I. Tlili, MHD fractional Jeffrey's fluid flow in the presence of thermo diffusion, thermal radiation effects with first order chemical reaction and uniform heat flux, Results Phys., 10 (2018), 10–17. https://doi.org/10.1016/j.rinp.2018.04.008 doi: 10.1016/j.rinp.2018.04.008
![]() |
[22] |
F. Ali, F. Ali, N. A. Sheikh, I. Khan, K. S. Nisar, Caputo-Fabrizio fractional derivatives modeling of transient MHD Brinkman nanoliquid: Applications in food technology, Chaos Solitons Fract., 131 (2020), 109489. https://doi.org/10.1016/j.chaos.2019.109489 doi: 10.1016/j.chaos.2019.109489
![]() |
[23] |
A. Babakhani, D. Baleanu, Employing of some basic theory for class of fractional differential equations, Adv. Differ. Equ., 2011 (2011), 296353. https://doi.org/10.1155/2011/296353 doi: 10.1155/2011/296353
![]() |
[24] |
M. Herzallah, D. Baleanu, Fractional-order variational calculus with generalized boundary conditions, Adv Differ Equ., 2011 (2011), 357580. https://doi.org/10.1155/2011/357580 doi: 10.1155/2011/357580
![]() |
[25] |
A. Akg¨ul, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Solitons Fract., 114 (2018), 478–482. https://doi.org/10.1016/j.chaos.2018.07.032 doi: 10.1016/j.chaos.2018.07.032
![]() |
[26] | F. Jarad, T. Abdeljawad, A modified Laplace transform for certain generalized fractional operators, Results Nonlinear Anal., 1 (2018), 88-98, |
[27] |
F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Solitons Fract., 117 (2018), 16–20. https://doi.org/10.1016/j.chaos.2018.10.006 doi: 10.1016/j.chaos.2018.10.006
![]() |
[28] |
A. Akg¨ul, A. Cordero, J. R. Torregrosa, Solutions of fractional gas dynamics equation by a new technique, Math. Methods Appl. Sci., 43 (2020), 1349–1358. https://doi.org/10.1002/mma.5950 doi: 10.1002/mma.5950
![]() |
[29] |
M. D. Ikram, M. A. Imran, A. Ahmadian, M. Ferrara, A new fractional mathematical model of extraction nanofluids using clay nanoparticles for different based fluids, Math. Methods Appl. Sci., 2020. https://doi.org/10.1002/mma.6568 doi: 10.1002/mma.6568
![]() |
[30] |
D. Baleanu, A. Fernandez, A. Akg¨ul, On a fractional operator combining proportional and classical differintegrals, Mathematics, 8 (2020), 360. https://doi.org/10.3390/math8030360 doi: 10.3390/math8030360
![]() |
[31] |
A. V. Kuznetsov, The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms, Int. Commun. Heat Mass Tran., 37 (2010), 1421–1425. https://doi.org/10.1016/j.icheatmasstransfer.2010.08.015 doi: 10.1016/j.icheatmasstransfer.2010.08.015
![]() |
[32] |
A. V. Kuznetsov, Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: Oscillatory instability, Nanoscale Res. Lett., 6 (2011), 100. https://doi.org/10.1186/1556-276X-6-100 doi: 10.1186/1556-276X-6-100
![]() |
[33] | B. Mallikarjuna, A. M. Rashad, A. Chamkha, M. M. M. Abdou, Mixed bioconvection flow of a nanofluid containing gyrotactic microorganisms past a vertical slender cylinder, Front. Heat Mass Tran., 2018. |
[34] |
M. J. Uddin, Y. Alginahi, O. A. Bég, M. N. Kabir, Numerical solutions for gyrotactic bioconvection in nanofluid-saturated porous media with Stefan blowing and multiple slip effects, Comput. Math. Appl., 72 (2016), 2562–2581. http://dx.doi.org/10.1016/j.camwa.2016.09.018 doi: 10.1016/j.camwa.2016.09.018
![]() |
[35] |
N. A. Amirsom, M. J. Uddin, A. I. M. Ismail, MHD boundary layer bionanoconvective non-Newtonian flow past a needle with Stefan blowing, Heat Transfer, 48 (2019), 727–743. https://doi.org/10.1002/htj.21403 doi: 10.1002/htj.21403
![]() |
[36] |
W. A. Khan, A. M. Rashad, M. M. M. Abdou, I. Tlili, Natural bioconvection flow of a nanofluid containing gyrotactic microorganisms about a truncated cone, Eur. J. Mech., 75 (2019), 133–142. https://doi.org/10.1016/j.euromechflu.2019.01.002 doi: 10.1016/j.euromechflu.2019.01.002
![]() |
[37] |
F. T. Zohra, M. J. Uddin, M. F. Basir, A. I. M. Ismail, Magnetohydrodynamic bio-nano-convective slip flow with Stefan blowing effects over a rotating disc, Proc. Inst. Mech. Eng., Part N, 234 (2020), 83–97. https://doi.org/10.1177/2397791419881580 doi: 10.1177/2397791419881580
![]() |
[38] |
A. M. Alwatban, S. U. Khan, H. Waqas, I. Tlili, Interaction of Wu's slip features in bioconvection of Eyring Powell nanoparticles with activation energy, Processes, 7 (2019), 859. https://doi.org/10.3390/pr7110859 doi: 10.3390/pr7110859
![]() |
[39] |
A. Kumar, V. Sugunamma, N. Sandeep, J. V. R. Reddy, Impact of Brownian motion and thermophoresis on bioconvective flow of nanoliquids past a variable thickness surface with slip effects, Multidiscip. Model. Mater. Struct., 15 (2019), 103–132. https://doi.org/10.1108/MMMS-02-2018-0023 doi: 10.1108/MMMS-02-2018-0023
![]() |
[40] |
M. A. Imran, S. U. Rehman, A. Ahmadian, S. Salahshour, M. Salimi, First solution of fractional bioconvection with power law kernel for a vertical surfacem, Mathematics, 9 (2021), 1366. https://doi.org/10.3390/math9121366 doi: 10.3390/math9121366
![]() |
[41] |
A. Raees, H. Xu, S. J. Liao, Unsteady mixed nano-bioconvection flow in a horizontal channel with its upper plate expanding or contracting, Int. J. Heat Mass Tran., 86 (2015), 174–182. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.03.003 doi: 10.1016/j.ijheatmasstransfer.2015.03.003
![]() |
[42] |
Q. Zhao, H. Xu, L. Tao, Unsteady bioconvection squeezing flow in a horizontal channel with chemical reaction and magnetic field effects, Math. Probl. Eng., 2017 (2017), 2541413. https://doi.org/10.1155/2017/2541413 doi: 10.1155/2017/2541413
![]() |
[43] |
N. A. A. Latiff, M. J. Uddin, O. A. Bég, A. I. Ismail, Unsteady forced bioconvection slip flow of a micropolar nanofluid from a stretching/shrinking sheet, Proc. Inst. Mech. Eng., Part N, 230 (2016), 177–187. https://doi.org/10.1177/1740349915613817 doi: 10.1177/1740349915613817
![]() |
[44] |
L. Ali, X. Liu, B. Ali, S. Mujeed, S. Abdal, Finite element simulation of multi-slip effects on unsteady mhd bioconvective micropolar nanofluid flow over a sheet with solutal and thermal convective boundary conditions, Coatings, 9 (2019), 842. https://doi.org/10.3390/coatings9120842 doi: 10.3390/coatings9120842
![]() |
1. | Syed Ghoos Ali Shah, Saqib Hussain, Akhter Rasheed, Zahid Shareef, Maslina Darus, Fanglei Wang, Application of Quasisubordination to Certain Classes of Meromorphic Functions, 2020, 2020, 2314-8888, 1, 10.1155/2020/4581926 | |
2. | Syed Ghoos Ali Shah, Saima Noor, Saqib Hussain, Asifa Tasleem, Akhter Rasheed, Maslina Darus, Rashad Asharabi, Analytic Functions Related with Starlikeness, 2021, 2021, 1563-5147, 1, 10.1155/2021/9924434 | |
3. | Syed Ghoos Ali Shah, Saqib Hussain, Saima Noor, Maslina Darus, Ibrar Ahmad, Teodor Bulboaca, Multivalent Functions Related with an Integral Operator, 2021, 2021, 1687-0425, 1, 10.1155/2021/5882343 | |
4. | Syed Ghoos Ali Shah, Shahbaz Khan, Saqib Hussain, Maslina Darus, q-Noor integral operator associated with starlike functions and q-conic domains, 2022, 7, 2473-6988, 10842, 10.3934/math.2022606 | |
5. | Neelam Khan, Muhammad Arif, Maslina Darus, Abdellatif Ben Makhlouf, Majorization Properties for Certain Subclasses of Meromorphic Function of Complex Order, 2022, 2022, 1099-0526, 1, 10.1155/2022/2385739 | |
6. | Ibrar Ahmad, Syed Ghoos Ali Shah, Saqib Hussain, Maslina Darus, Babar Ahmad, Firdous A. Shah, Fekete-Szegö Functional for Bi-univalent Functions Related with Gegenbauer Polynomials, 2022, 2022, 2314-4785, 1, 10.1155/2022/2705203 | |
7. | F. Müge SAKAR, Syed Ghoos Ali SHAH, Saqib HUSSAİN, Akhter RASHEED, Muhammad NAEEM, q-Meromorphic closed-to-convex functions related with Janowski function, 2022, 71, 1303-5991, 25, 10.31801/cfsuasmas.883970 | |
8. | Syed Ghoos Ali Shah, Sa’ud Al-Sa’di, Saqib Hussain, Asifa Tasleem, Akhter Rasheed, Imran Zulfiqar Cheema, Maslina Darus, Fekete-Szegö functional for a class of non-Bazilevic functions related to quasi-subordination, 2023, 56, 2391-4661, 10.1515/dema-2022-0232 | |
9. | Abdul Basir, Muhammad Adil Khan, Hidayat Ullah, Yahya Almalki, Saowaluck Chasreechai, Thanin Sitthiwirattham, Derivation of Bounds for Majorization Differences by a Novel Method and Its Applications in Information Theory, 2023, 12, 2075-1680, 885, 10.3390/axioms12090885 | |
10. | Shatha S. Alhily, Alina Alb Lupas, Certain Class of Close-to-Convex Univalent Functions, 2023, 15, 2073-8994, 1789, 10.3390/sym15091789 |