Processing math: 61%
Survey

On the reach and the smoothness class of pipes and offsets: a survey

  • Received: 13 December 2021 Revised: 07 February 2022 Accepted: 10 February 2022 Published: 17 February 2022
  • MSC : 53-A04, 53-A05, 65-D17

  • Pipes and offsets are the sets obtained by displacing the points of their progenitor S (i.e., spine curve or base surface, respectively) a constant distance d along normal lines. We review existing results and elucidate the relationship between the smoothness of pipes/offsets and the reach R of the progenitor, a fundamental concept in Federer's celebrated paper where he introduced the family of sets with positive reach. Most CAD literature on pipes/offsets overlooks this concept despite its relevance, so we remedy this deficiency with this survey. The reach admits a geometric interpretation, as the minimal distance between S and its cut locus. For a closed S, the condition d<R means a singularity-free pipe/offset, coinciding with the level set at a distance d from the progenitor. This condition also implies that pipes/offsets inherit the smoothness class Ck, k1, of a closed progenitor. These results hold in spaces of arbitrary dimension, for pipe hypersurfaces from spines or offsets to base hypersurfaces.

    Citation: Javier Sánchez-Reyes, Leonardo Fernández-Jambrina. On the reach and the smoothness class of pipes and offsets: a survey[J]. AIMS Mathematics, 2022, 7(5): 7742-7758. doi: 10.3934/math.2022435

    Related Papers:

    [1] Liping Yang, Hu Li . A hybrid algorithm based on parareal and Schwarz waveform relaxation. Electronic Research Archive, 2022, 30(11): 4086-4107. doi: 10.3934/era.2022207
    [2] Chunhua Chu, Yijun Chen, Qun Zhang, Ying Luo . Joint linear array structure and waveform design for MIMO radar under practical constraints. Electronic Research Archive, 2022, 30(9): 3249-3265. doi: 10.3934/era.2022165
    [3] Xuerong Hu, Yuxiang Han, Junyan Lu, Linxiang Wang . Modeling and experimental investigation of quasi-zero stiffness vibration isolator using shape memory alloy springs. Electronic Research Archive, 2025, 33(2): 768-790. doi: 10.3934/era.2025035
    [4] Qian He, Wenxin Du, Feng Shi, Jiaping Yu . A fast method for solving time-dependent nonlinear convection diffusion problems. Electronic Research Archive, 2022, 30(6): 2165-2182. doi: 10.3934/era.2022109
    [5] Li Tian, Ziqiang Wang, Junying Cao . A high-order numerical scheme for right Caputo fractional differential equations with uniform accuracy. Electronic Research Archive, 2022, 30(10): 3825-3854. doi: 10.3934/era.2022195
    [6] Yi Wei . The Riccati-Bernoulli subsidiary ordinary differential equation method to the coupled Higgs field equation. Electronic Research Archive, 2023, 31(11): 6790-6802. doi: 10.3934/era.2023342
    [7] Adrian Nicolae Branga . Some conditions for the existence and uniqueness of monotonic and positive solutions for nonlinear systems of ordinary differential equations. Electronic Research Archive, 2022, 30(6): 1999-2017. doi: 10.3934/era.2022101
    [8] Junseok Kim . Maximum principle preserving the unconditionally stable method for the Allen–Cahn equation with a high-order potential. Electronic Research Archive, 2025, 33(1): 433-446. doi: 10.3934/era.2025021
    [9] Martin Bohner, Alexander Domoshnitsky, Oleg Kupervasser, Alex Sitkin . Floquet theory for first-order delay equations and an application to height stabilization of a drone's flight. Electronic Research Archive, 2025, 33(5): 2840-2861. doi: 10.3934/era.2025125
    [10] David Cheban, Zhenxin Liu . Averaging principle on infinite intervals for stochastic ordinary differential equations. Electronic Research Archive, 2021, 29(4): 2791-2817. doi: 10.3934/era.2021014
  • Pipes and offsets are the sets obtained by displacing the points of their progenitor S (i.e., spine curve or base surface, respectively) a constant distance d along normal lines. We review existing results and elucidate the relationship between the smoothness of pipes/offsets and the reach R of the progenitor, a fundamental concept in Federer's celebrated paper where he introduced the family of sets with positive reach. Most CAD literature on pipes/offsets overlooks this concept despite its relevance, so we remedy this deficiency with this survey. The reach admits a geometric interpretation, as the minimal distance between S and its cut locus. For a closed S, the condition d<R means a singularity-free pipe/offset, coinciding with the level set at a distance d from the progenitor. This condition also implies that pipes/offsets inherit the smoothness class Ck, k1, of a closed progenitor. These results hold in spaces of arbitrary dimension, for pipe hypersurfaces from spines or offsets to base hypersurfaces.



    Waveform relaxation (WR) is an iterative method for systems of ordinary differential equations (ODEs). It is introduced for the first time by Lelarasmee et al. [1] for the time domain analysis of large-scale nonlinear dynamical systems. A lot of studies have been done on WR methods and most of them focus on convergence (see [2,3,4,5,6,7,8,9]). Zero-stability is the basic property of numerical methods of ODEs[10]. However, to our best knowledge, so far there exists little work on zero-stability of WR methods.

    We first of all propose two examples to show the fact that tiny perturbation may lead to huge change of WR approximation solutions, at the same time, to confirm that it is necessary to study zero-stability of WR methods. For this, it is enough to consider a simple method, and suppose only the initial value has tiny perturbations.

    Example 1. Consider the WR method

    x(k+1)n+2(1+α)x(k+1)n+1+αx(k+1)n=(1α)h(x(k+1)n+x(k)n) (1.1)

    of solving numerically the initial value problem

    ˙x(t)=2x(t),t[0,T];x(0)=x0,

    which is gotten by applying the two step method

    xn+2(1+α)xn+1+αxn=2(1α)hxn

    that is consistent for any α and zero-stable for 1<α<1 to the iterative scheme

    ˙x(k+1)(t)=x(k+1)(t)x(k)(t).

    Suppose that

    Nisapositiveintegerandh=TN, (1.2)
    x(0)n=x0,n=0,1,,N,x(k)0=x0,k=0,1, (1.3)

    and

    x(k+1)1=x(k+1)0h(x(k+1)0+x(k)0),k=0,1,. (1.4)

    We can get the approximate solution {{x(k)n,n=0,1,,N},k=0,1,} by using Eqs (1.1)–(1.4). Suppose that tiny perturbations denoted by δ lead to the initial values become

    ˜x(0)n=x0+δ,n=0,1,,N,˜x(k)0=x0+δ,k=0,1, (1.5)

    and the resulting perturbed solution of Eq (1.1) is denoted by {˜x(k)n}. Let δ=1 for simplicity and denote ˜x(k)nx(k)n with e(k)n. Then we have

    e(k+1)n+2(1+α)e(k+1)n+1+αe(k+1)n=(1α)h(e(k+1)n+e(k)n)(n=0,1,,N2,k=0,1,),e(k+1)0=1,e(k+1)1=(12h)e(k+1)0(k=0,1,),e(0)n=1(n=0,1,,N). (1.6)

    By virtue of Eq (1.6) the following numerical results are obtained.

    The data in Tables 1 and 2 show that errors of the approximate solution of Eq (1.1) brought by perturbations of initial values are controllable for α=0.5, but they are unbounded for α=2 when h tends to zero.

    Table 1.  Results obtained by (1.6) with α=0.5.
    N 10 100 250 500 750 1000
    e(5)N 0.10621 0.1319 0.13343 0.13388 0.13402 0.13409
    e(10)N 0.10621 0.13238 0.13422 0.13478 0.13497 0.13506
    e(100)N 0.10621 0.13238 0.13422 0.13478 0.13497 0.13506

     | Show Table
    DownLoad: CSV
    Table 2.  Results obtained by (1.6) with α=2.
    N 10 100 250 500 1000
    e(5)N 268.74 6.2863e+028 3.7892e+073 3.4922e+148 5.7695e+298
    e(10)N 268.74 6.2867e+028 3.7897e+073 3.4927e+148 5.7704e+298
    e(100)N 268.74 6.2867e+028 3.7897e+073 3.4927e+148 5.7704e+298

     | Show Table
    DownLoad: CSV

    In this numerical examples, taking δ=1 instead of tiny perturbations seem to be unreasonable. The main reason for this is that we are usually interested in the ratio e(k)Nδ instead of δ itself. In fact we have also performed some other experiments using smaller δ, in which the similar ratios are obtained for different δ.

    Example 2. Consider the one-step WR method

    x(k+1)n+1=x(k+1)n+h(500(x(k+1)n)1.001+500(x(k)n)1.001),n=0,1,,2h,x(k+1)0=0; x(0)n=0,foralln, (1.7)

    where 2/h is an integer. Suppose that the initial value 0 becomes δ by the influence of perturbations and the solution x(k)n becomes ˜x(k)n by the influence of δ, which satisfies

    ˜x(k+1)n+1=˜x(k+1)n+h(500(˜x(k+1)n)1.001+500(˜x(k)n)1.001),n=0,1,,2h,˜x(k+1)0=δ; ˜x(0)n=δ,foralln. (1.8)

    Clearly the numerical solution generated by Eq (1.7) is the constant zero and Eq (1.8) can be regarded as the WR method of solving the following initial value problem

    ˙x(t)=1000(x(t))1.001,t[0,2];x(0)=δ. (1.9)

    It is easy to derive that t0=1δ0.001 is the blow-up time of the solution of Eq (1.9) and t0[0,2] whenever δ>10301. Consequently, sup0<t<2x(t)=+ for any δ>10301. If the "2" in Eqs (1.8) and (1.9) is replaced by t0ε, where ε>0 is small enough, then Eq (1.8) converges to Eq (1.9), that is,

    limh0,ksup0nt0εh|˜x(k)nx(nh)|=0,

    see [4]. Thus

    limh0,ksup0n2h|˜x(k)n|=+,foranyδ>10301,

    that is, the change of the solution of Eq (1.8) brought by the tiny change of initial values is unbounded as h tends to zero.

    The above two examples show that tiny perturbations can lead to huge change of WR approximation solutions, although the methods used in the examples are too simple to be practically useful.

    A numerical method is said to be zero-stable if the change of its solution brought by the tiny perturbations is controllable when h tends to zero (see [10]). In this paper we will explore what conditions guarantee the zero-stability of WR methods.

    Consider the initial problem

    ˙x(t)=f(t,x(t)),t[0,T];x(0)=x0(x(t)Rd).

    Taking the splitting function F(t,x,x)=f(t,x) we can construct the iterative scheme

    ˙x(k+1)(t)=F(t,x(k+1)(t),x(k)(t)),t[0,T],k=0,1,;x(0)(t)x0,x(k+1)(0)=x0. (2.1)

    Using one-step methods with variable step-size to discrete Eq (2.1) one arrives at

    x(k+1)n+1=x(k+1)n+hnΦ(tn,hn,x(k+1)n+1,x(k+1)n,x(k)n+1,x(k)n);x(k+1)0=x0, (2.2)

    where n=0,1,,N1,k=0,1,, N1n=0hn=T and x(0)n=x0 for all n. Applying a class of multi-step methods with fixed step-size to Eq (2.1) we get

    x(k+1)n+1=x(k+1)n+hΨ(tn,h,x(k+1)n+1,x(k+1)n,,x(k+1)np,x(k)n+1,x(k)n,,x(k)np), (2.3)

    where n=p,p+1,,N1,k=0,1,, h=T/N, the initial values except x(0)n(n=0,1,,N) and x(k)0(k=0,1,) are generated by a suitable one-step method. Here we take the initial values as

    x(k)n=c(k)n,n=0,1,,p,k=0,1,(c(k)n=x0,ifnk=0). (2.4)

    A classical example of Eq (2.3) is Admas-type linear multi-step methods:

    x(k+1)n+1=x(k+1)n+hp+1j=0βjF(tn+1j,x(k+1)n+1j,x(k)n+1j),n=p,p+1,,N1,

    where βj,j=0,1,,p+1 are constants. The linear multi-step methods use generally the fixed step-size and therefore we only consider the Eq (2.3) with the fixed step-size.

    Let ix(k) denote the component of x(k) satisfying

    x(k)=((1x(k))T,(2x(k))T,,(mx(k))T)T,

    where ix(k)Rdi, x(k)Rd and d1+d2++dm=d. The Eq (2.1) can be rewritten as

    i˙x(k+1)=Fi(t,x(k+1)1x(k+1),x(k+1)2x(k+1),,x(k+1)mx(k+1),x(k)1x(k),x(k)2x(k),,x(k)mx(k)),

    with i=1,2,,m, that is, the large Eq (2.1) is divided into m subsystems. When taking

    Fi(t,)=fi(t,x(k)1x(k),,x(k)i1x(k),x(k+1)ix(k+1),x(k)i+1x(k),,x(k)mx(k)),i=1,2,,m

    one arrives at Guass-Jacobi WR method used frequently in actual computation, which consists of m independent subsystems and is hence parallel in nature(see [2,6,9]). In Eq (2.2) the unique mesh 0=t0<t1<<tN=T is applied to all subsystems. However the subsystems of Gauss-Jocobi WR methods are independent and may have distinct behaviors, and consequently it is better to use different meshes for the subsystems with different behaviors. Applying the mesh

    0=tit0<tit1<<titNi=T,hihj=titj+1titj,j=0,1,,Ni1

    to ith subsystem yields the following multi-rate WR method

    xix(k+1)n+1=xix(k+1)n+hihnΦi(titn,hihn,y1y(k)(titn+1),,yi1y(k)(titn+1),xix(k+1)n+1,yi+1y(k)(titn+1),,ymy(k)(titn+1),y1y(k)(titn),,yi1y(k)(titn),xix(k+1)n,yi+1y(k)(titn),,ymy(k)(titn)),n=0,1,,Ni1, (2.5)

    where i=1,2,,m,k=0,1,. Here the initial values xix(k+1)0=xix(0)n=xix0 for all k and n, (x1x0T,x2x0T,,xmx0T)T=x0 and yjy(k)(t) is the interpolation function satisfying yjy(k)(tjtn)=xjx(k)n for n=0,1,,Nj.

    Because of the presence of errors in actual computing, it is necessary to consider the following perturbed systems of Eqs (2.2), (2.3) and (2.5) generated by the perturbations {δ(k)n,n=0,1,,N,k=0,1,}

    ˜x(k+1)n+1=˜x(k+1)n+hnΦ(tn,hn,˜x(k+1)n+1,˜x(k+1)n,˜x(k)n+1,˜x(k)n)+hnδ(k+1)n+1,n=0,1,,N1;˜x(k+1)0=x0+δ(k+1)0,˜x(0)n=x0+δ(0)n(n=0,1,,N), (2.6)
    ˜x(k+1)n+1=˜x(k+1)n+hΨ(tn,h,˜x(k+1)n+1,˜x(k+1)n,,˜x(k+1)np,˜x(k)n+1,˜x(k)n,,˜x(k)np)+hδ(k+1)n+1,n=p,p+1,,N1;˜x(k+1)n=c(k+1)n+δ(k+1)n,n=0,1,,p,˜x(0)n=x0+δ(0)n(n=0,1,,N), (2.7)

    and

    ˜xi˜x(k+1)n+1=˜xi˜x(k+1)n+hihnΦi(titn,hihn,˜y1˜y(k)(titn+1),,˜yi1˜y(k)(titn+1),˜xi˜x(k+1)n+1,˜yi+1˜y(k)(titn+1),,˜ym˜y(k)(titn+1),˜y1˜y(k)(titn),,˜yi1˜y(k)(titn),˜xi˜x(k+1)n,˜yi+1˜y(k)(titn),,˜ym˜y(k)(titn))+hihnδiδ(k+1)n+1,n=0,1,,Ni1;˜xi˜x(k+1)0=xix0+δiδ(k+1)0,˜xi˜x(0)n=xix0+δiδ(0)n(n=0,1,,Ni), (2.8)

    where i=1,2,,m and ˜yj˜y(k)(t) is the interpolation function satisfying ˜yj˜y(k)(tjtn)=˜xj˜x(k)n for n=0,1,,Nj,j=0,1,,m.

    Definition 2.1. (Page 32 of [10]) Let {δ(k)n,n=0,1,,N,k=0,1,} be any perturbation of Eq (2.2) or Eq (2.3) and Eq (2.4), and let {˜x(k)n,n=0,1,,N,k=0,1,} be the solution of the resulting perturbed system Eq (2.6) or Eq (2.7). Then if there exist constants C and h0 such that, for all h(0,h0](h=maxnhn for Eq (2.2))

    max0k,0nN˜x(k)nx(k)nCε,

    whenever

    max0k,0nNδ(k)nε,

    we say that the Eq (2.2) or Eqs (2.3) and Eq (2.4) is zero-stable.

    Here and hereafter denotes any norm defined in Rd.

    Definition 2.2. Let {iδ(k)n,i=1,2,,m,n=0,1,,N,k=0,1,} be any perturbation of Eq (2.5), and let {i˜x(k)n,i=1,2,,m,n=0,1,,N,k=0,1,} be the solution of the resulting perturbed Eq (2.8). Then if there exist constants h0 and Ck depended on k such that

    max1im0lkmax0nNii˜x(l)nxix(l)nCkε

    for all h=max1immax0nNihihn(0,h0], whenever

    max1im0lkmax0nNiiδ(l)nε,

    we say that the Eq (2.5) is weakly zero-stable.

    The following several lemmas are useful for studying zero-stability of the WR methods mentioned above.

    Lemma 2.3. Let a,b and T be nonnegative constants, and N be a positive integer. Suppose that the sets {hn>0,n=0,1,,N1} and {un>0,n=0,1,,N} satisfy

    un+1(1+ahn)un+bhn,n=0,1,,N1. (2.9)

    Then

    max0nNuneaTu0+ba(eaT1)

    provided that N1n=0hn=T.

    Proof. By using Eq (2.9) repeatedly we have

    un+1(1+ahn)(1+ahn1)(1+ah0)u0+(1+ahn)(1+ahn1)(1+ah1)bh0+(1+ahn)(1+ahn1)(1+ah2)bh1++(1+ahn)bhn1+bhn,

    where n=0,1,,N1. Let t0=0,tn+1=tn+hn,n=0,1,,N1, then tN=T. Noting that 1+x<ex for x>0 we can derive easily from above inequality

    un+1ea(tn+1t0)u0+ea(tn+1t1)b(t1t0)+ea(tn+1t2)b(t2t1)++ea(tn+1tn)b(tntn1)+ea(tn+1tn+1)b(tn+1tn)ea(Tt0)u0+eaTb(eat1(t1t0)++eatn(tntn1)++eatN(tNtN1))

    for n=0,1,,N1. This together with monotonicity of the function eat imply

    un+1ea(Tt0)u0+eaTbTt0eatdt=eaTu0+ba(eaT1)

    for all n=0,1,,N1.

    Lemma 2.4. Let a,b,c,d and T be nonnegative constants, N be a positive integer and hn,n=0,1,,N1, be positive real numbers.

    Suppose that the sequence of positive numbers {e(k)n>0,n=0,1,N,k=0,1,} satisfies

    e(k+1)n+1(1+ahn)e(k+1)n+bhne(k)n+chne(k)n+1+dhn,n=0,1,N1. (2.10)

    Then for any 0<h=max0nN1hn<12c

    max0k,0nNe(k)ne2(a+b+c)Tmax{max0ke(k)0,max0nNe(0)n}+da+b+c(e2(a+b+c)T1) (2.11)

    provided that N1n=0hn=T.

    Proof. By Eq (2.10) we have

    max0ke(k+1)n+1(1+ahn)max0ke(k+1)n+bhnmax0ke(k)n+chnmax0ke(k)n+1+dhn (2.12)

    for n=0,1,,N1. Let ε=max0nNe(0)n and un=max{max0ke(k)n,ε},n=0,1,,N. Clearly max{max0ke(k+1)n,ε}=un. Hence we can get by Eq (2.12)

    un+1(1+ahn)un+bhnun+chnun+1+dhn1+ahn+bhn1chnun+dhn1chn,n=0,1,,N1.

    Suppose that 0<h<12c. Consequently, 11chn<2 and the above inequality thus yield

    un+1(1+2(a+b+c)hn)un+2dhn,n=0,1,,N1.

    This together with Lemma 2.3 yield

    max0nNune2(a+b+c)Tu0+da+b+c(e2(a+b+c)T1).

    Thus Eq (2.11) holds true. The proof is complete.

    Lemma 2.5. Let aj,bj(j=0,1,,p),c,d and T be nonnegative constants. Let N be a positive integer and h=T/N.Suppose that the sequence of positive numbers {e(k)n>0,n=0,1,N,k=0,1,} satisfies

    e(k+1)n+1e(k+1)n+hpj=0(aje(k+1)nj+bje(k)nj)+che(k)n+1+dh,n=p,p+1,,N1. (2.13)

    Then for any 0<h<12c

    max0k,p+1nNe(k)ne2(A+c)Tε+dA+c(e2(A+c)T1),

    where ε=max{max0nNe(0)n,max0k,0npe(k)n}, A=pj=0(aj+bj).

    Proof. Note that e(k)nε for all np and all k0. By using Eq (2.13) repeatedly we have

    e(k+1)p+1(1+ch++(ch)k)(1+Ah)ε+(ch)k+1ε+(1+ch++(ch)k)dh,k=0,1,. (2.14)

    Let 0<h<12c. With the notation αh=1+Ah1ch and βh=dh1ch we can derive from Eq (2.14)

    e(k)p+1αhε+βh,k=0,1,.

    Noting that εαhε+βh and therefore e(k)nαhε+βh for all np+1 and all k0 we thus have by repeating the above process

    e(k)p+2αh(αhε+βh)+βh=(αh)2ε+βh(1+αh),k=0,1,.

    Consequently, we get

    e(k)p+m(αh)mε+βh(1+αh+(αh)2++(αh)m1),k=0,1,

    hold true for m=1,2,,Np. Note that αh1. Thus

    e(k)n(αh)Nε+βh(1+αh+(αh)2++(αh)N1)

    for k=0,1,, n=0,1,,N. This together with 0<ch<1/2 yield

    e(k)n(αh)Nε+(αh)N1αh1βh(1+2(A+c)h)T/hε+dA+c((1+2(A+c)h)T/h1)e2(A+c)Tε+dA+c(e2(A+c)T1)

    for k=0,1,,n=0,1,,N. The proof is complete.

    Theorem 3.1. Suppose that there exist constants L1, L2, L3 and L4 such that

    Φ(t,h,x1,x2,x3,x4)Φ(t,h,y1,y2,y3,y4)4i=1Lixiyi (3.1)

    for any real numbers t,hR,xi,yiRd,i=1,2,3,4. Then the WR Eq (2.2) is zero-stable.

    Proof. Let ε(k)n=˜x(k)nx(k)n and for any ε>0 the perturbations in Eq (2.6) {δ(k)n,k=0,1,,n=0,1,,N} satisfies max0k,0nNδ(k)n<ε. Then by virtue of Eqs (2.2) and (2.6) and the condition (3.1) we have

    ε(k+1)n+1ε(k+1)n+hn(L1ε(k+1)n+1+L2ε(k+1)n+L3ε(k)n+1+L4ε(k)n)+hnε (3.2)

    for n=0,1,,N1,k=0,1, and

    ε(k+1)0ε,k=0,1,,ε(0)nε,n=0,1,,N. (3.3)

    Let hn<12L1. Then 11hnL1<2. We therefore derive from Eq (3.2)

    ε(k+1)n+1(1+2hn(L1+L2))ε(k+1)n+2hnL3ε(k)n+1+2hnL4ε(k)n+2hnε (3.4)

    for n=0,1,,N1,k=0,1,. Consequently, by Eqa (3.3), (3.4) and Lemma 2.4 we have

    ε(k)ne4(L1+L2+L3+L4)Tε+εL1+L2+L3+L4(e4(L1+L2+L3+L4)T1)

    for any k=0,1,,n=0,1,,N if 0<h<min{12L1,14L3}. The proof is therefore complete.

    Theorem 3.2. Suppose that there exist constants Li,i=1,2,,2p+4 such that

    Ψ(t,h,x1,x2,,x2p+4)Ψ(t,h,y1,y2,,y2p+4)2p+4i=1Lixiyi (3.5)

    for any real numbers t,hR,xi,yiRd,i=1,2,,2p+4. Then the WR Eq (2.3) and Eq (2.4) is zero-stable.

    Proof. Let ε(k)n denote ˜x(k)nx(k)n and the perturbations {δ(k)n,k=0,1,,n=0,1,,N} in Eq (2.7) satisfy max0k,0nNδ(k)n<ε, where ε is any positive number. Then by virtue of Eqs (2.3), (2.4), (2.7) and the condition (3.5) we have

    ε(k+1)n+1ε(k+1)n+h(L1ε(k+1)n+1+L2ε(k+1)n++Lp+2ε(k+1)np+Lp+3ε(k)n+1+Lp+4ε(k)n++L2p+4ε(k)np)+hε,n=p,p+1,,N1,ε(k+1)nε,n=0,1,,p,ε(0)nε,n=0,1,,N, (3.6)

    where k=0,1,. Let h<12L1. Consequently, 11hL1<2. We therefore derive from Eq (3.6)

    ε(k+1)n+1(1+2h(L1+L2))ε(k+1)n+2h(L3ε(k+1)n1++Lp+2ε(k+1)np+Lp+3ε(k)n+1+Lp+4ε(k)n++L2p+4ε(k)np)+2hε,n=p,p+1,,N1,ε(k+1)nε,n=0,1,,p,ε(0)nε,n=0,1,,N (3.7)

    for n=0,1,,N1,k=0,1,. By Eq (3.7) and Lemma 2.5 we have

    ε(k)ne4(L1+L2++L2p+4)Tε+εL1+L2++L2p+4(e4(L1+L2++L2p+4)T1)

    for any k=0,1,,n=0,1,,N if 0<h<min{12L1,14Lp+3}. The proof is complete.

    Theorem 3.3. For Eqs (2.5) and (2.8) let Φ=(ΦT1,ΦT2,,ΦTm)T satisfy the Lipschitz condition:there exist constants L1 and L2 such that

    Φ(t,h,x1,x2)Φ(t,h,y1,y2)2i=1Lixiyi,foranyx1,x2,y1,y2Rd, (3.8)

    and the interpolation functions ˜yj˜y(k)(t) and yjy(k)(t) satisfy that

    sup0tT˜yj˜y(k)(t)yjy(k)(t)Cmax0nNj˜xj˜x(k)nxjx(k)n,j=1,2,,m, (3.9)

    where C is the positive constant. Then the multi-rate Eq (2.5) is weakly zero-stable.

    Proof. Define xa=max1imix, xb=mi=1ix for x=(x1xT,x2xT,,xmxT)TRd, where ixRdi,i=1,2,,m,d1+d2++dm=d. It is easy to prove that a and b are the norm. Consequently, there exist constants C1 and C2 such that

    C1xaxC2xbforanyxRd. (3.10)

    Eqs (3.8) and (3.10) thus yield

    C1Φ(t,h,x1,x2)Φ(t,h,y1,y2)aΦ(t,h,x1,x2)Φ(t,h,y1,y2)2j=1Ljxjyj2j=1LjC2xjyjb=2j=1LjC2mi=1ixjyiyj

    for any x1,x2,y1,y2Rd and therefore

    Φi(t,h,x1,x2)Φi(t,h,y1,y2)2j=1LjC2C1mi=1ixjyiyj. (3.11)

    With the notation ie(k)n=i˜x(k)nxix(k)n we can derive from Eqs (2.5), (2.8), (3.9) and (3.11)

    ie(k+1)n+1eie(k+1)n+ihnL1C2CC1(max0jNe1e(k)j++max0jNiei1e(k)j+eie(k+1)n+1+max0jNiei+1e(k)j++max0jNieme(k)j)+hihnL2C2CC1(max0jNie1e(k)j++max0jNiei1e(k)j+eie(k+1)n+max0jNiei+1e(k)j++max0jNieme(k)j)+hihnδiδ(k+1)n+1. (3.12)

    Let h=max1immax0nNihihn<C12L1C2C. Consequently, ihnL1C2CC1<12<1hihnL1C2CC1 which together with Eq (3.12) imply that

    ie(k+1)n+1(1+ahihn)eie(k+1)n+(aml=1limax0jNiele(k)j+2δiδ(k+1)n+1)hihn(1+ahihn)eie(k+1)n+(ami=1max0jNieie(k)j+2max1immax0jNiδiδ(k+1)j)hihn (3.13)

    with a=2(L1+L2)C2CC1. By using Eq (3.13) with k=0 and Lemma 2.3 we get

    ie(1)neaTeie(1)0+1a(eaT1)(ami=1max0jNieie(0)j+2max1immax0jNiδiδ(1)j).

    Thus

    max1immax0nNieie(1)na1max(max1imeie(1)0,mi=1max0jNieie(0)j,max1immax0jNiδiδ(1)j)

    with a1=eaT+1a(eaT1)(a+2). Similarly, using the above inequality, Eq (3.13) with k=1 and Lemma 2.3 we have

    max1immax0nNieie(2)na2max(max1im1l2eie(l)0,mi=1max0jNieie(0)j,max1im1l2max0jNiδiδ(l)j)

    with a2=eaT+(eaT1)(ma1+2a). Repeating the above process yields that for any k there exists the constant ak such that

    max1im0lkmax0nNi˜xi˜x(l)nxix(l)nakmax(max1im0lkδiδ(l)0,mi=1max0nNiδiδ(0)n,max1im0lkmax0nNiδiδ(l)n)

    for any mesh {itn,n=0,1,,N,i=1,2,,m}. The proof is therefore complete.

    Remark 1. In the above discussions we assume that the perturbation at one step is δ(k)nh, which depends on step-size h. This assumption is necessary for the proof of the theorems mentioned above. However it seems to be more reasonable to regard δ(k)n, a small number, as the perturbation, if the step-size is very small. In this case the tiny perturbation at each step may bring out the huge change of the numerical solution. We will explore these in next section by some computer experiments.

    Remark 2. Note that the convergence property of the WR methods is not be used in the proof of Theorem 3.1-3.3. Hence, a divergent WR method may be zero-stable. In other words, zero-stability does not imply convergence.

    In this section some numerical experiments are performed to verify the theorems obtained in Section 3.

    Consider the equation

    x=Ax=(T1I0IT2I0IT3)x,t[0,1],x(0)=x0, (4.1)

    where xR15, Ti=(2i112i112i)R5×5 and I is the identity matrix. The special case of such system has been examined by Burrage [11], which is obtained by discretizing the heat equation in two variables.

    Let A1=(T1T2T3) and A2=AA1. First, choose the following WR methods of solving the Eq (4.1):

    (i) Euler method with variable step-size

    x(k+1)n+1=x(k+1)n+hn(A1x(k+1)n+A2x(k)n),n=0,1,,N1,k=0,1,,x(k+1)0=x0forallk,x(0)n=x0foralln.

    (ii) Two step methods with fixed step-size

    x(k+1)n+1=x(k+1)n+h2[3(A1x(k+1)n+A2x(k)n)(A1x(k+1)n1+A2x(k)n1)],n=1,2,,N1,k=0,1,,x(k+1)0=x0forallk,x(0)n=x0foralln,

    where x(k+1)1 is obtained by a suitable one-step method. Here let

    x(k+1)1=x0+hAx0+h22A2x0.

    (iii) Multi-rate Jacobi methods based on Euler method

    ix(k+1)n+1=xix(k+1)n+hihn(Tixix(k+1)n+1+xi1x(k)n+1+xi+1x(k)n+1),n=0,1,,Ni1,xix(k+1)0=xix(0)n=xix0,x0x(k)n=x4x(k)n=(0,0,0,0,0)Tforallkandn}i=1,2,3.

    Second, assume the initial values and the approximation solution at each calculation step have tiny perturbations as in Eqs (2.6)–(2.8) and let δ(k)nΔ=δ(1,1,,1)TR15, iδ(k)nΔp=δ(1,1,1,1,1)TR5, ˜x(k)n denote the resulting perturbed solution and u(k)n denote ˜x(k)nx(k)n, which yields

    u(k+1)n+1=u(k+1)n+hn(A1u(k+1)n+A2u(k)n)+hnΔ,n=0,1,,N1,k=0,1,,u(k+1)0=Δforallk,u(0)n=Δforalln, (4.2)
    \begin{equation} \begin{aligned} &u^{(k+1)}_{n+1} = u^{(k+1)}_n+\dfrac{h}{2}\left[3(A_1u^{(k+1)}_n+A_2u^{(k)}_n)-(A_1u^{(k+1)}_{n-1}+A_2u^{(k)}_{n-1})\right]+\dfrac{h}{2}\Delta, \\ &\qquad \qquad \qquad \qquad \qquad \qquad n = 1, 2, \cdots, N-1, k = 0, 1, \cdots, \\ &u^{(k+1)}_0 = \Delta, u^{(k+1)}_1 = (I+hA+\dfrac{h^2}{2}A^2)\Delta, \;{ \rm{ for\;all } }\;k, u^{(0)}_n = \Delta\;{ \rm{ for\;all } }\;n, \end{aligned} \end{equation} (4.3)

    and

    \begin{array}{l} \left. \begin{array}{r} _iu^{(k+1)}_{n+1} = \sideset{_i}{_{n}^{(k+1)}}{\mathop{u}}+ \sideset{_i}{_{n}}{\mathop{h}}\left(T_i\cdot \sideset{_i}{_{n+1}^{(k+1)}}{\mathop{u}} +\sideset{_{i-1}}{_{n+1}^{(k)}}{\mathop{u}}+\sideset{_{i+1}}{_{n+1}^{(k)}}{\mathop{u}}+\Delta_p\right), \\ n = 0, 1, \cdots, N_i-1, \\ \sideset{_i}{_{0}^{(k+1)}}{\mathop{u}} = \sideset{_i}{_{n}^{(0)}}{\mathop{u}} = \Delta_p, \sideset{_0}{_{n}^{(k)}}{\mathop{u}} = \sideset{_4}{_{n}^{(k)}}{\mathop{u}} = (0, 0, 0, 0, 0)^{\rm{T}}, \forall k, \forall n \end{array}\right\} i = 1, 2, 3. \end{array} (4.4)

    Lastly, reach a reasonable conclusion by analysing data generated by Eqs (4.2)–(4.4).

    We choose A , A_1 , A_2 and \delta^{(k)}_n as above to guarantee that u^{(k)}_n increase with k and n that is the worst case of error propagation.

    In our experiments the step-sizes h_n in Eq (4.2) and _ih_n in Eq (4.4) are taken as

    h_n = \min\left\{10h, \max\left\{0.1h, |\xi_n|h\right\}\right\}

    and

    _ih_n = \min\{10^ih, \max\{10^{i-2}h, 10^{i-1}|\xi_n|h\}\},

    where h > 0 , \{\xi_0, \xi_1, \cdots\} is a sequence of independent and identically distributed random variables satisfying \xi_i\sim N(0, 1) .

    The data in Tables 3, 5 and 7 show clearly the errors resulted by the perturbations h_n\Delta(h\Delta/2) in Eq (4.2) (Eq (4.3) are controllable as k and n tend to infinity which support the theorems developed in Section 3). However the data in Table 4 and 6 show that the errors increase with k and 1/h when the perturbations h_n\Delta (h\Delta/2) are replaced by the constant perturbation \Delta(\Delta/2) .

    Table 3.  The computing results of Eq (4.2) with \delta = 0.0001 ( \varepsilon = \max\limits_{0\leq l\leq k}\max\limits_{0\leq n\leq N}u^{(l)}_n ).
    h 0.1 0.001
    k 5 10 10 15
    \varepsilon 3.1483e-04 3.1483e-04 3.1605e-04 3.1605e-04
    h 0.00001
    k 10 15
    \varepsilon 3.1606e-04 3.1606e-04          

     | Show Table
    DownLoad: CSV
    Table 4.  The computing results of Eq (4.2) with \delta = 0.0001 ( \varepsilon = \max\limits_{0\leq l\leq k}\max\limits_{0\leq n\leq N}u^{(l)}_n ) for the case of replacing perturbation h_n \Delta with the constant perturbation \Delta .
    h 0.1      0.001      0.00001
    k 5 10 10 15 10 15
    \varepsilon 0.0018 0.0018 0.1824 0.1824 17.6723 17.6723
    h 0.000001
    k 10 15
    \varepsilon 176.8079 176.8079

     | Show Table
    DownLoad: CSV
    Table 5.  The computing results of Eq (4.3) with \delta = 0.0001 ( \varepsilon = \max\limits_{0\leq l\leq k}\max\limits_{0\leq n\leq N}u^{(l)}_n ).
    h 0.1      0.001     
    k 10 15 10 15
    \varepsilon 3.1568e-04 3.1568e-04 3.1606e-04 3.1606e-04
    h 0.00001
    k 10 15
    \varepsilon 3.1606e-04 3.1606e-04

     | Show Table
    DownLoad: CSV
    Table 6.  The computing results of Eq (4.3) with \delta = 0.0001 ( \varepsilon = \max\limits_{0\leq l\leq k}\max\limits_{0\leq n\leq N}u^{(l)}_n ) for the case of replacing perturbation h \Delta/2 with \Delta/2 .
    h 0.1      0.001      0.00001
    k 10 15 10 15 10 15
    \varepsilon 0.1782 0.1782 0.1435 0.1435 14.1724 14.1724
    h 0.000001
    k 10 15
    \varepsilon 141.7252 141.7252

     | Show Table
    DownLoad: CSV
    Table 7.  The computing results of Eq (4.4) with \delta = 0.0001 ( \varepsilon = \max\limits_{0\leq l\leq k}\max\limits_{0\leq n\leq N}u^{(l)}_n ).
    h 0.1      0.001
    k 5 10 10 15
    \varepsilon 3.1085e-04 3.1085e-04 3.1567e-04 3.1567e-04
    h 0.00001
    k 10 15
    \varepsilon 3.1606e-04 3.1606e-04

     | Show Table
    DownLoad: CSV

    It is well known that a linear multi-step method with fixed step-size is convergent if, and only if, it is both consistent and zero-stable. In this paper we only present the sufficient conditions of zero-stability for some special methods. We will explore the relationship between convergence and zero-stability for WR methods based on general linear multi-step methods in the future. Moreover, we shall apply our methods to the numerical study of some inverse problems [12,13,14].

    Research is supported by the Natural Science Foundation of Fujian Province, China (grant number 2021J011031).

    The author declares that he has no conflicts of interest regarding the publication of this paper.



    [1] R. E. Barnhill, Geometry Processing for Design and Manufacturing, Philadelphia: SIAM, 1992.
    [2] N. M. Patrikalakis, T. Maekawa, Shape interrogation for Computer Aided Design and Manufacturing, Berlin: Springer, 2002.
    [3] J. Hoschek, D. Lasser, Fundamentals of Computer Aided Geometric Design, Wellesley, MA: AK Peters, 1993.
    [4] H. Pottmann, A. Asperl, M. Hofer, A. Kilian, Architectural geometry, Exton: Bentley Institute Press, 2007.
    [5] H. Pottmann, M. Eigensatz, A. Vaxman, J. Wallner, Architectural geometry, Comput. Graph., 47 (2015), 145–164. https://doi.org/10.1016/j.cag.2014.11.002
    [6] T. Maekawa, N. M. Patrikalakis, T. Sakkalis, G. Yu, Analysis and applications of pipe surfaces, Comput. Aided Geom. Des., 15 (1998), 437–458. https://doi.org/10.1016/S0167-8396(97)00042-3 doi: 10.1016/S0167-8396(97)00042-3
    [7] M. do Carmo, Differential Geometry of Curves and Surfaces, Upper Saddle River, NJ: Prentice-Hall, 1976.
    [8] A. Gray, E. Abbena, S. Salomon, Modern Differential Geometry of Curves and Surfaces with Mathematica, 3rd Ed., Boca Raton, FL: Chapman & Hall/CRC, 2006.
    [9] T. Maekawa, An overview of offset curves and surfaces, Comput.-Aided Des., 31 (1999), 165–163. https://doi.org/10.1016/S0010-4485(99)00013-5 doi: 10.1016/S0010-4485(99)00013-5
    [10] J. G. Alcázar, J. R. Sendra, Local shape of offsets to algebraic curves, J. Symb. Comput., 42 (2007), 38–351. https://doi.org/10.1016/j.jsc.2006.12.001 doi: 10.1016/j.jsc.2006.12.001
    [11] J. G. Alcázar, Good local behavior of offsets to rational regular algebraic surfaces, J. Symb. Comput., 43 (2008), 845–857. https://doi.org/10.1016/j.jsc.2008.04.001 doi: 10.1016/j.jsc.2008.04.001
    [12] J. G. Alcázar, Good global behavior of offsets to plane algebraic curves J. Symb. Comput., 43 (2008), 659–680. https://doi.org/10.1016/j.jsc.2008.01.003
    [13] H. Federer, Curvature measures, Trans. Amer. Math. Soc., 93 (1959), 418–491.
    [14] J. Wallner, T. Sakkalis, T. Maekawa, H. Pottmann, G. Yu, Self-intersections of offset curves and surfaces, International Journal of Shape Modeling, 7 (2001), 1–21. https://doi.org/10.1142/S0218654301000023 doi: 10.1142/S0218654301000023
    [15] T. Sakkalis, T. J. Peters, J. Bisceglio, Isotopic approximations and interval solids, Comput.-Aided Des., 36 (2014), 1089–1100. https://doi.org/10.1016/j.cad.2004.01.008 doi: 10.1016/j.cad.2004.01.008
    [16] T. Hermann, On the smoothness of offset surfaces, Comput. Aided Geom. Des., 15 (1998), 529–533. https://doi.org/10.1016/S0167-8396(98)00002-8 doi: 10.1016/S0167-8396(98)00002-8
    [17] J. Peters, Geometric continuity, in: G. Farin, J. Hoschek, M.-S. Kim (Eds.), Handbook of Computer Aided Geometric Design, North Holland/Elsevier, (2002), 193–227. https://doi.org/10.1016/B978-044451104-1/50009-5
    [18] G. Farin, NURBS: from Projective Geometry to Practical Use, 2th ed., Natick, MA: AK Peters, 1999.
    [19] G. Farin, Curves and surfaces for CAGD: a practical guide, 5th ed., San Francisco, CA: Morgan Kaufmann, 2002.
    [20] M. Spiegel, Differential Geometry, New York: Schaum McGraw-Hill, 1969.
    [21] M. Berger, B. Gostiaux, Differential Geometry: Manifolds, Curves and Surfaces, New York: Springer, 1988.
    [22] V. Peters, Solid Modeling, in: G. Farin, J. Hoschek, M.-S. Kim (Eds.), Handbook of Computer Aided Geometric Design, North Holland/Elsevier, 2002. https://doi.org/10.1016/B978-044451104-1/50021-6
    [23] K. Lucas, Submanifolds of dimension n-1 in E^n with normals satisfying a Lipschitz condition, Studies in Eigenvalue Problems, Technical Report 18, Department of Mathematics, University of Kansas, 1957, Sect. 2.
    [24] M. Ghomi, R. Howard, Tangent cones and regularity of real hypersurfaces, J. Reine Angew. Math., 697 (2014), 221–247. https://doi.org/10.1515/crelle-2013-0091 doi: 10.1515/crelle-2013-0091
    [25] M. W. Jones, J. A. Bærentzen, M. Sramek, 3D Distance Fields: A Survey of Techniques and Applications, IEEE Trans. Vis. Comput. Graph., 12 (2006), 581–599. https://doi.org/10.1109/TVCG.2006.56 doi: 10.1109/TVCG.2006.56
    [26] C. Thäle, 50 years sets with positive reach - a survey -, Surv. Math. Appl., 3 (2008), 123–165.
    [27] J. Wallner, Self-intersections and smoothness of general offset surfaces, J. Geom., 70 (2001), 176–190. https://doi.org/10.1142/S0218654301000023 doi: 10.1142/S0218654301000023
    [28] R. T. Farouki, Exact offset procedures for simple solids, Comput. Aided Geom. Des., 2 (1985), 257–279. https://doi.org/10.1016/S0167-8396(85)80002-9 doi: 10.1016/S0167-8396(85)80002-9
    [29] R. L. Foote, Regularity of the distance function, Proc. Am. Math. Soc., 92 (1984), 153–155. https://doi.org/2045171
    [30] R. T. Farouki, C. A. Neff, Analytic properties of plane offset curves, Comput. Aided Geom. Des., 7 (1990), 83–99. https://doi.org/10.1016/0167-8396(90)90023-K doi: 10.1016/0167-8396(90)90023-K
    [31] R. T. Farouki, Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable, Berlin: Springer, 2008.
    [32] J.-K. Seong, G. Elber, M.-S. Kim, Trimming local and global self-intersections in offset curves/surfaces using distance maps, Comput. Aided Geom. Des., 29 (2006), 555–564. https://doi.org/10.1016/j.cad.2005.08.002 doi: 10.1016/j.cad.2005.08.002
    [33] J.-J. Kim, J. Lee, M.-S. Kim, G. Elber, Efficient offset trimming for planar rational curves using biarc trees, Comput.-Aided Des., 29 (2012), 183–193. https://doi.org/10.1016/j.cagd.2012.03.014 doi: 10.1016/j.cagd.2012.03.014
    [34] J. G. Alcázar, J. Caravantes, G. M. Diaz-Toca, A new method to compute the singularities of offsets to rational plane curves, J. Comput. Appl. Math., 290 (2015), 385–402. https://doi.org/10.1016/j.cam.2015.06.001 doi: 10.1016/j.cam.2015.06.001
    [35] Q. Y. Hong, Y. Park, M.-S. Kim, G. Elber, Trimming offset surface self-intersections around near-singular regions, Comput. Graph., 82 (2019), 84–94. https://doi.org/10.1016/j.cag.2019.05.016 doi: 10.1016/j.cag.2019.05.016
    [36] F. E. Wolter, Cut Locus and Medial Axis in Global Shape Interrogation and Representation, technical report, MIT, 1993.
    [37] E. C. Sherbrooke, N.M. Patrikalakis, F.-E. Wolter, Differential and Topological Properties of Medial Axis Transforms, Graphical Models and Image processing, 58 (1996), 574–592. https://doi.org/10.1016/j.cag.2019.05.016 doi: 10.1016/j.cag.2019.05.016
    [38] E. Kosinka, Z. Šír, C^2 Hermite interpolation by Minkowski Pythagorean hodograph curves and medial axis transform approximation, Comput. Aided Geom. Des., 27 (2010), 631–643. https://doi.org/10.1016/j.cagd.2010.04.005 doi: 10.1016/j.cagd.2010.04.005
    [39] M. Bizzarri, M. Lávička, J. Vrček, Linear computational approach to interpolations with polynomial Minkowski Pythagorean hodograph curves, J. Comput. Appl. Math., 361 (2019), 283–295. https://doi.org/10.1016/j.cam.2019.04.029 doi: 10.1016/j.cam.2019.04.029
    [40] M. Bizzarri, M. Lávička, Interpolation of Hermite data by clamped Minkowski Pythagorean hodograph B-spline curves, J. Comput. Appl. Math., 392 (2021). https://doi.org/10.1016/j.cam.2021.113469
    [41] F. Chazal, D. Cohen-Steiner, A. Lieutier, B. Thibert, Shape smoothing using double offsets, SPM '07: Proceedings of the 2007 ACM symposium on Solid and physical modeling, (2007), 133–158.
    [42] F. Chazal, D. Cohen-Steiner, A. Lieutier, Q. Mérigot, B. Thibert, Inference of Curvature Using Tubular Neighborhoods. In: Najman L., Romon P. (eds), Modern Approaches to Discrete Curvature. Lecture Notes in Mathematics, 2184 (2017), 133–158, Springer.
    [43] E. Horobeţ, M. Weinstein, Offset hypersurfaces and persistent homology of algebraic varieties, Comput. Aided Geom. Des., 74 (2019), 101767. https://doi.org/10.1016/j.cagd.2019.101767 doi: 10.1016/j.cagd.2019.101767
    [44] R. Ramamurthy, R. T. Farouki, Voronoi diagram and medial axis algorithm for planar domains with curved boundaries I. Theoretical foundations, J. Comput. Appl. Math., 102 (1999), 119–141. https://doi.org/10.1016/S0377-0427(98)00211-8 doi: 10.1016/S0377-0427(98)00211-8
    [45] R. Ramamurthy, R. T. Farouki, Voronoi diagram and medial axis algorithm for planar domains with curved boundaries — II. Detailed algorithm description, J. Comput. Appl. Math., 102 (1999), 253–277. https://doi.org/10.1016/S0377-0427(98)00223-4 doi: 10.1016/S0377-0427(98)00223-4
    [46] S. G. Krantz, H. R. Parks, The Implicit Function Theorem: History, Theory and Applications, Springer, 2003.
    [47] S. G. Krantz, H. R. Parks, Distance to C^k Hypersurfaces, J. Differ. Equ., 40 (1981), 116–120.
    [48] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Berlin: Springer, 1977.
    [49] S. G. Krantz, H. R. Parks, The Geometry of Domains in Space, Boston, USA: Birkhäuser, 1999.
    [50] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Boston, USA: Birkhäuser, 1984.
    [51] S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry, Berlin: Springer, 2004.
    [52] N. Kleinjohann, Nächste Punkte in der Riemannschen Geometrie, Math. Zeit., 38 (1981), 327–344. https://doi.org/10.1007/BF01214610 doi: 10.1007/BF01214610
    [53] V. Bangert, Sets with positive reach, Arch. Math, 38 (1982), 54–57. https: //doi.org/10.1007/BF01304757
    [54] C. Mantegazza, A. C. Mennucci, Hamilton-Jacobi Equations and Distance Functions on Riemannian Manifolds, Appl. Math. Optim., 47 (2003), 1–25. https://doi.org/10.1007/s00245-002-0736-4 doi: 10.1007/s00245-002-0736-4
    [55] R. Farouki, The approximation of non-degenerate offset surfaces, Comput. Aided Geom. Des., 3 (1986), 15–43. https://doi.org/10.1016/0167-8396(86)90022-1 doi: 10.1016/0167-8396(86)90022-1
    [56] E. Arrondo, J. Sendra, J. R. Sendra, Parametric generalized offsets to hypersurfaces, J. Symb. Comput., 23 (1997), 267–285. https://doi.org/10.1006/jsco.1996.0088 doi: 10.1006/jsco.1996.0088
    [57] J. R. Sendra, J. Sendra, Algebraic analysis of offsets to hypersurfaces, Math. Z., 234 (2000), 697–719. https://doi.org/10.1007/s002090050004 doi: 10.1007/s002090050004
    [58] J. G. Alcázar, Local shape of generalized offsets to algebraic curves, J. Symb. Comput., 47 (2012), 327–341. https://doi.org/10.1016/j.jsc.2011.12.001 doi: 10.1016/j.jsc.2011.12.001
    [59] X. Chen, Q. Lin, Properties of generalized offset curves and surfaces, J. Appl. Math., 13 (2014), 124240. https://doi.org/10.1155/2014/124240 doi: 10.1155/2014/124240
    [60] V. Bulut, A. Caliskan, The exchange variations of offset curves and surfaces, Results Math., 67 (2015), 303–332. https://doi.org/10.1007/s00025-015-0445-3 doi: 10.1007/s00025-015-0445-3
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1942) PDF downloads(81) Cited by(2)

Figures and Tables

Figures(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog