Research article Special Issues

The general two-dimensional divisor problems involving Hecke eigenvalues

  • Received: 17 November 2021 Revised: 31 December 2021 Accepted: 14 January 2022 Published: 19 January 2022
  • MSC : 11N37, 11A25

  • We consider the general two-dimensional divisor problems involving Hecke eigenvalues, and are able to improve the previous results in this direction.

    Citation: Jing Huang, Taiyu Li, Huafeng Liu, Fuxia Xu. The general two-dimensional divisor problems involving Hecke eigenvalues[J]. AIMS Mathematics, 2022, 7(4): 6396-6403. doi: 10.3934/math.2022356

    Related Papers:

  • We consider the general two-dimensional divisor problems involving Hecke eigenvalues, and are able to improve the previous results in this direction.



    加载中


    [1] J. Bourgain, Decoupling, exponential sums and the Riemann zeta function, J. Amer. Math. Soc., 30 (2017), 205–224. https://doi.org/10.1090/jams/860 doi: 10.1090/jams/860
    [2] J. Bourgain, N. Watt, Mean square of zeta function, circle problem and divisor problem revisited, arXiv Preprint, 2017. Available from: https://arXiv.org/abs/1709.04340.
    [3] P. Deligne, La conjecture de Weil. I, Publ. Math. Inst. Hautes Études Sci., 43 (1974), 273–307. https://doi.org/10.1007/BF02684373
    [4] P. Deligne, La conjecture de Weil. II, Publ. Math. Inst. Hautes Études Sci., 52 (1980), 137–252. https://doi.org/10.1007/BF02684780
    [5] S. Gelbart, H. Jacquet, A relation between automorphic representations of $GL(2)$ and $GL(3)$, Ann. Sci. École Norm. Sup., 11 (1978), 471–542. https://doi.org/10.24033/asens.1355 doi: 10.24033/asens.1355
    [6] E. Hecke, Theorie der Eisensteinsche Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Sem. Hamburg, 5 (1927), 199–224. https://doi.org/10.1007/BF02952521 doi: 10.1007/BF02952521
    [7] J. Huang, H. F. Liu, F. X. Xu, Two-dimension divisor problems related to symmetric $L$-function, Symmetry, 13 (2021), 1–12. https://doi.org/10.3390/sym13020359 doi: 10.3390/sym13020359
    [8] A. Ivić, The Riemann zeta-function: The theory of the Riemann zeta-function with applications, New York: John Wiley and Sons, 1985.
    [9] H. Iwaniec, Topics in classical automorphic forms, Providence, Rhode lsland: American Mathematical Society, 1997. https://doi.org/10.1090/gsm/017
    [10] H. Iwaniec, E. Kowalski, Analytic number theory, Providence, Rhode lsland: American Mathematical Society, 2004. https://doi.org/10.1090/coll/053
    [11] Y. J. Jiang, G. S. Lü, X. F. Yan, Mean value theorem connected with Fourier coefficients of Hecke-Maass forms for $SL(m, Z)$, Math. Proc. Cambridge Philos. Soc., 161 (2016), 339–356. https://doi.org/10.1017/S030500411600027X doi: 10.1017/S030500411600027X
    [12] S. Kanemitsu, A. Sankaranarayanan, Y. Tanigawa, A mean value theorem for Dirichlet series and a general divisor problem, Monatsh. Math., 136 (2002), 17–34. https://doi.org/10.1007/s006050200031 doi: 10.1007/s006050200031
    [13] E. Krätzel, Teilerprobleme in drei Dimensionen, Math. Nachr., 42 (1969), 275–288. https://doi.org/10.1002/mana.19690420408 doi: 10.1002/mana.19690420408
    [14] H. X. Lao, The cancellation of Fourier coefficients of cusp forms over different sparse sequences, Acta Math. Sin. Engl. Ser., 29 (2013), 1963–1972. https://doi.org/10.1007/s10114-013-2706-y doi: 10.1007/s10114-013-2706-y
    [15] H. X. Lao, Mean value of Dirichlet series coefficients of Rankin-Selberg $L$-functions, Lith. Math. J., 57 (2017), 351–358. https://doi.org/10.1007/s10986-017-9365-0 doi: 10.1007/s10986-017-9365-0
    [16] H. F. Liu, R. Zhang, Some problems involving Hecke eigenvalues, Acta. Math. Hungar., 159 (2019), 287–298. https://doi.org/10.1007/s10474-019-00913-w doi: 10.1007/s10474-019-00913-w
    [17] G. S. Lü, On general divisor problems involving Hecke eigenvalues, Acta. Math. Hungar., 135 (2012), 148–159. https://doi.org/10.1007/s10474-011-0150-y doi: 10.1007/s10474-011-0150-y
    [18] R. M. Nunes, On the subconvexity estimate for self-dual $GL(3)$ $L$-functions in the $t$-aspect, arXiv Preprint, 2017. Available from: https://arXiv.org/abs/1703.04424.
    [19] A. Perelli, General $L$-functions, Ann. Mat. Pura Appl., 130 (1982), 287–306. https://doi.org/10.1007/BF01761499
    [20] R. A. Rankin, Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithemtical functions, Math. Proc. Cambridge Philos. Soc., 35 (1939), 357–372. https://doi.org/10.1017/S0305004100021101 doi: 10.1017/S0305004100021101
    [21] R. A. Rankin, Sums of cusp form coefficients, In: Automorphic forms and analytic number theory, Université de Montréal, 1990,115–121.
    [22] A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid., 43 (1940), 47–50.
    [23] J. Wu, Power sums of Hecke eigenvalues and application, Acta Arith., 137 (2009), 333–344. https://doi.org/10.4064/aa137-4-3 doi: 10.4064/aa137-4-3
    [24] D. Y. Zhang, Y. K. Lau, Y. N. Wang, Remark on the paper "On products of Fourier coefficients of cusp forms", Arch. Math., 108 (2017), 263–269. https://doi.org/10.1007/s00013-016-0996-x doi: 10.1007/s00013-016-0996-x
    [25] D. Y. Zhang, Y. N. Wang, Higher-power moments of Fourier coefficients of holomorphic cusp forms for the congruence subgroup $\Gamma_0(N)$, Ramanujan J., 47 (2018), 685–700. https://doi.org/10.1007/s11139-018-0051-6 doi: 10.1007/s11139-018-0051-6
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1235) PDF downloads(71) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog