Processing math: 100%
Research article Special Issues

On the classical Gauss sums and their some new identities

  • In this paper, we use the analytic methods and the properties of the classical Gauss sums to study the calculating problems of some Gauss sums involving the character of order 12 modulo an odd prime p, and obtain several new and interesting identities for them.

    Citation: Wenpeng Zhang, Xiaodan Yuan. On the classical Gauss sums and their some new identities[J]. AIMS Mathematics, 2022, 7(4): 5860-5870. doi: 10.3934/math.2022325

    Related Papers:

    [1] Xi Liu . Some identities involving Gauss sums. AIMS Mathematics, 2022, 7(2): 3250-3257. doi: 10.3934/math.2022180
    [2] Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo $ p $. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638
    [3] Jianghua Li, Xi Zhang . On the character sums analogous to high dimensional Kloosterman sums. AIMS Mathematics, 2022, 7(1): 294-305. doi: 10.3934/math.2022020
    [4] Xue Han, Tingting Wang . The hybrid power mean of the generalized Gauss sums and the generalized two-term exponential sums. AIMS Mathematics, 2024, 9(2): 3722-3739. doi: 10.3934/math.2024183
    [5] Hu Jiayuan, Chen Zhuoyu . On distribution properties of cubic residues. AIMS Mathematics, 2020, 5(6): 6051-6060. doi: 10.3934/math.2020388
    [6] Xiaoxue Li, Wenpeng Zhang . A note on the hybrid power mean involving the cubic Gauss sums and Kloosterman sums. AIMS Mathematics, 2022, 7(9): 16102-16111. doi: 10.3934/math.2022881
    [7] Wenjia Guo, Xiaoge Liu, Tianping Zhang . Dirichlet characters of the rational polynomials. AIMS Mathematics, 2022, 7(3): 3494-3508. doi: 10.3934/math.2022194
    [8] Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937
    [9] Wenjia Guo, Yuankui Ma, Tianping Zhang . New identities involving Hardy sums $S_3(h, k)$ and general Kloosterman sums. AIMS Mathematics, 2021, 6(2): 1596-1606. doi: 10.3934/math.2021095
    [10] Yan Ma, Di Han . On the high-th mean of one special character sums modulo a prime. AIMS Mathematics, 2023, 8(11): 25804-25814. doi: 10.3934/math.20231316
  • In this paper, we use the analytic methods and the properties of the classical Gauss sums to study the calculating problems of some Gauss sums involving the character of order 12 modulo an odd prime p, and obtain several new and interesting identities for them.



    Let q>1 be an integer. For any Dirichlet character χ modulo q, the classical Gauss sums G(m,χ;q) is defined as follow:

    G(m,χ;q)=qa=1χ(a)e(maq),

    where m is any integer, e(y)=e2πiy and i2=1.

    For convenience, we write τ(χ)=G(1,χ;q). This sum plays a very important role in the study of elementary number theory and analytic number theory, many number theory problems are closely related to it. Because of this, many scholars have studied its various properties, and obtained a series of important results. Perhaps the most important properties of G(m,χ;q) are the following two:

    (A) If (m,q)=1, then we have the identity (see [1,2,3])

    G(m,χ;q)=¯χ(m)G(1,χ;q)=¯χ(m)τ(χ).

    (B) If χ is any primitive character modulo q, then one has also G(m,χ;q)=¯χ(m)τ(χ) and the identity |τ(χ)|=q.

    In addition, let h>1 be any fixed positive integer, then for any prime p with p1modh, there must be a Dirichlet character of order h. From now on, we fix χn to be a primitive character of order n modulo p (i.e. χnn=χ0, the principal character modulo p, and χinχ0 for all 1i<n) throughout the paper. W. P. Zhang and J. Y. Hu [4] (or B. C. Berndt and R. J. Evans [5]) studied the properties of some special Gauss sums, and obtained the following interesting results. That is, for any prime p with p1mod3, one has the identity

    τ3(χ3)+τ3(¯χ3)=dp, (1.1)

    where d is uniquely determined by 4p=d2+27b2 and d1mod3.

    Z. Y. Chen and W. P. Zhang [6] studied the case of the character of order four modulo p, and proved the identity

    τ2(χ4)+τ2(¯χ4)=2pα, (1.2)

    where α=12p1a=1(a+¯ap), and (p)=χ2 denotes the Legendre's symbol modulo p.

    The constant α=α(p) in (1.2) has a special meaning. In fact, we have the identity (for this see Theorems 4–11 in [7])

    p=α2+β2=(12p1a=1(a+¯ap))2+(12p1a=1(a+r¯ap))2, (1.3)

    where r is any quadratic non-residue modulo p. That is, χ2(r)=1.

    L. Chen [8] obtained another identity for the character of order six modulo p. That is, she proved the following conclusion:

    Let p be a prime with p1mod6, then one has the identity

    τ3(χ6)+τ3(¯χ6)={p12(d22p), ifp1mod12;ip12(d22p), ifp7mod12, (1.4)

    where i2=1, d is the same as defined in (1.1).

    Some other results involving Gauss sums and character sums can also be found in [9,10,11,12,13,14,15], we will not list them all here.

    It is not hard to see from [4,6,8] that the number of all such characters in formulaes (1.1), (1.2) and (1.4) is 2. That is, ϕ(3)=ϕ(4)=ϕ(6)=2. A natural thing to think about is: What about the case when the order n satisfies ϕ(n)>2? For example, the character of order 12 modulo p with p1mod12. In this case, we have ϕ(12)=4, and all primitive characters of order 12 modulo p are χ4χ3, χ4¯χ3, ¯χ4χ3 and ¯χ4¯χ3.

    In this article, we shall focus on this problem. We use the properties of the classical Gauss sums and analytic methods to prove the following results:

    Theorem 1.1. Let p be an odd prime with p1mod12, then we have the identities

    τ6(χ4χ3)+τ6(χ4¯χ3)+τ6(¯χ4χ3)+τ6(¯χ4¯χ3)=χ4(3)(1)p142pα(d22p)(4α23p),

    where d is the same as defined in (1.1), and α is the same as defined as in (1.2).

    Theorem 1.2. Let p be an odd prime with p1mod12, then we have the identity

    (τ3(χ4χ3)τ3(χ4¯χ3)τ3(χ4χ3)+τ3(χ4¯χ3))2=27b2d2.

    Theorem 1.3. Let p be an odd prime with p1mod24, then we have the identity

    (τ6(χ8χ3)τ6(χ38χ3)τ6(χ8¯χ3)τ6(χ38¯χ3)τ6(χ8χ3)τ6(χ38χ3)+τ6(χ8¯χ3)τ6(χ38¯χ3))2=27b2d2(d22p)2.

    For any prime p with p1mod12 and any integer n0, we define

    Gn(p)=τ3n(χ4¯χ3)τ3n(χ4χ3)+τ3n(χ4χ3)τ3n(χ4¯χ3)=τ3n(¯χ4¯χ3)τ3n(¯χ4χ3)+τ3n(¯χ4χ3)τ3n(¯χ4¯χ3)

    and

    Hn(p)=τn(¯χ4χ3)τn(χ4χ3)+τn(χ4χ3)τn(¯χ4χ3)=τn(¯χ4¯χ3)τn(χ4¯χ3)+τn(χ4¯χ3)τn(¯χ4¯χ3).

    Then we have the following second order recurrence formulas for Gn(p) and Hn(p). That is, we have:

    Theorem 1.4. For any prime p with p1mod12, we have the second order recurrence formula

    Gn+2(p)=d22ppGn+1(p)Gn(p),  n0,

    where the two initial values G0(p)=2 and G1(p)=d22pp. Therefore,

    Gn(p)=(d22p+33idb2p)n+(d22p33idb2p)n, n0, i2=1.

    Theorem 1.5. Let p be a prime. If p1mod24, then we have the second order recurrence formula

    Hn+2(p)=2αpHn+1(p)Hn(p),  n0,

    where the two initial values H0(p)=2 and H1(p)=2αp. Therefore,

    Hn(p)=(α+iβp)n+(αiβp)n, n0, i2=1.

    If p13mod24, then we have the second order recurrence formula

    Hn+2(p)=2αpHn+1(p)Hn(p),  n0,

    where the two initial values H0(p)=2 and H1(p)=2αp. Therefore,

    Hn(p)=(α+iβp)n+(αiβp)n, n0, i2=1,

    and β is the same as defined in (1.3).

    From these theorems we may immediately deduce the following several interesting corollaries:

    Corollary 1.1. Let p be an odd prime with p1mod12, then we have

    [τ6(χ4χ3)+τ6(χ4¯χ3)+τ6(¯χ4χ3)+τ6(¯χ4¯χ3)]2=4pα2(d22p)2(4α23p)2.

    Corollary 1.2. Let p be an odd prime with p1mod24, then we have

    |τ6(χ8χ3)τ6(χ38χ3)τ6(χ8¯χ3)τ6(χ38¯χ3)τ6(χ8χ3)τ6(χ38χ3)+τ6(χ8¯χ3)τ6(χ38¯χ3)|=33|b||d||d22p|.

    Corollary 1.3. Let p be an odd prime with p1mod12, then we have

    τ3(χ4¯χ3)τ3(χ4χ3)=d22p2p±33db2pi.

    Corollary 1.4. Let p be an odd prime with p1mod12, then we have

    τ(¯χ4χ3)τ(χ4χ3)=χ4(1)αp±βpi.

    How to determine the plus or minus signs in Corollaries 1.3 and 1.4 is also a meaningful problem. Interested readers may consider it.

    In this section, we first give three simple lemmas. Of course, the proofs of some lemmas need the knowledge of character sums. They can be found in many number theory books, such as [1,2,3], here we do not need to list.

    Lemma 2.1. Let p be a prime with p1mod12, then we have the identity

    τ3(χ4¯χ3)τ3(χ4χ3)+τ3(χ4χ3)τ3(χ4¯χ3)=d22pp.

    Proof. Note that χ23=¯χ3 and χ24=¯χ24=χ2, from the properties of the classical Gauss sums we have

    p1a=0χ4χ3(a21)=p1a=0χ4χ3((a+1)21)=p1a=1χ4χ3(a)χ4χ3(a+2)=1τ(¯χ4¯χ3)p1b=1¯χ4¯χ3(b)p1a=1χ4χ3(a)e(b(a+2)p)=τ(χ4χ3)τ(¯χ4¯χ3)p1b=1¯χ4¯χ3(b)¯χ4¯χ3(b)e(2bp)=τ(χ4χ3)τ(¯χ4¯χ3)p1b=1χ2χ3(b)e(2bp)=¯χ3(2)χ2(2)τ(χ4χ3)τ(χ2χ3)τ(¯χ4¯χ3). (2.1)

    On the other hand, for any integer b with (b,p)=1, from the identity

    p1a=0e(ba2p)=1+p1a=1(1+χ2(a))e(bap)=p1a=1χ2(a)e(bap)=χ2(b)p

    and note that χ3(1)=1, ¯χ4χ2=χ4, we also have

    p1a=0χ4χ3(a21)=1τ(¯χ4¯χ3)p1a=0p1b=1¯χ4¯χ3(b)e(b(a21)p)=1τ(¯χ4¯χ3)p1b=1¯χ4¯χ3(b)e(bp)p1a=0e(ba2p)=pτ(¯χ4¯χ3)p1b=1¯χ4¯χ3(b)χ2(b)e(bp)=χ4(1)pτ(χ4¯χ3)τ(¯χ4¯χ3). (2.2)

    From (2.1), (2.2) and note that χ33(2)=χ22(2)=χ24(1)=1, we have the identity

    τ(χ2χ3)=χ3(2)χ2(2)χ4(1)pτ(χ4¯χ3)τ(χ4χ3)

    or

    τ3(χ2χ3)=χ2(2)χ4(1)p32τ3(χ4¯χ3)τ3(χ4χ3). (2.3)

    Since χ2(2)=(1)p218 and χ4(1)=(1)p14, so we have

    χ2(2)χ4(1)=(1)p218(1)p14=(1)p12=1. (2.4)

    Combining (2.3), (2.4) and formula (1.4) we have the identity

    p32(τ3(χ4¯χ3)τ3(χ4χ3)+τ3(χ4χ3)τ3(χ4¯χ3))=τ3(χ2χ3)+τ3(χ2¯χ3)=p12(d22p)

    or

    τ3(χ4¯χ3)τ3(χ4χ3)+τ3(χ4χ3)τ3(χ4¯χ3)=d22pp.

    This proves Lemma 2.1.

    Lemma 2.2. Let p be an odd prime with p1mod24, then we have the identity

    τ6(¯χ4χ3)=p3τ6(χ38¯χ3)τ6(χ8χ3)  and  τ6(¯χ4¯χ3)=p3τ6(χ38χ3)τ6(χ8¯χ3).

    Proof. From the method of proving Lemma 2.1 we have

    p1a=0χ8χ3(a21)=1τ(¯χ8¯χ3)p1b=1¯χ8¯χ3(b)p1a=1χ8χ3(a)e(b(a+2)p)=τ(χ8χ3)τ(¯χ8¯χ3)p1b=1¯χ8¯χ3(b)¯χ8¯χ3(b)e(2bp)=τ(χ8χ3)τ(¯χ8¯χ3)p1b=1¯χ4χ3(b)e(2bp)=¯χ3(2)χ4(2)τ(χ8χ3)τ(¯χ4χ3)τ(¯χ8¯χ3) (2.5)

    and

    p1a=0χ8χ3(a21)=1τ(¯χ8¯χ3)p1a=0p1b=1¯χ8¯χ3(b)e(b(a21)p)=1τ(¯χ8¯χ3)p1b=1¯χ8¯χ3(b)e(bp)p1a=0e(ba2p)=pτ(¯χ8¯χ3)p1b=1¯χ8¯χ3(b)χ2(b)e(bp)=χ8(1)pτ(χ38¯χ3)τ(¯χ8¯χ3). (2.6)

    Note that χ63(2)=1, χ28(1)=1, χ24(2)=χ2(2)=1, from (2.5) and (2.6) we have

    τ6(¯χ4χ3)=p3τ6(χ38¯χ3)τ6(χ8χ3). (2.7)

    Substituting ¯χ3 for χ3 in (2.7) gives us the identity

    τ6(¯χ4¯χ3)=p3τ6(χ38χ3)τ6(χ8¯χ3). (2.8)

    Now Lemma 2.2 follows from (2.7) and (2.8).

    Lemma 2.3. Let p be an odd prime with p1mod3. Then for any character χ modulo p, we have the identity

    τ(χ3)=1pχ3(3)τ(χ)τ(χχ3)τ(χ¯χ3),

    where χ3 is a character of order three modulo p.

    Proof. For this see [16] or [17]. The general result can also be found in [18].

    Now we shall complete the proofs of our all results. First we prove Theorem 1.1. Let p be an odd prime with p1mod12, then note that χ4(1)=¯χ4(1)=(1)p14, χ34=¯χ4, τ(χ4)τ(¯χ4)=χ4(1)p. From Lemmas 2.1 and 2.3 we have

    τ6(χ4¯χ3)+τ6(χ4χ3)=d22ppτ3(χ4¯χ3)τ3(χ4χ3)=d22pp¯χ4(3)(1)p14τ6(¯χ4). (3.1)

    Similarly, we also have

    τ6(¯χ4¯χ3)+τ6(¯χ4χ3)=d22ppχ4(3)(1)p14τ6(χ4). (3.2)

    From (1.2) we have the identity

    8p32α3=(τ2(χ4)+τ2(¯χ4))3=τ6(χ4)+τ6(¯χ4)+3p22pα

    or

    τ6(χ4)+τ6(¯χ4)=8p32α36p52α=2p32α(4α23p). (3.3)

    Since p1mod12, so χ24(3)=χ2(3)=(p3)=(13)=1. Therefore, χ4(3)=¯χ4(3). Combining (3.1)–(3.3) we have

    τ6(χ4¯χ3)+τ6(χ4χ3)+τ6(¯χ4¯χ3)+τ6(¯χ4χ3)=d22ppχ4(3)(1)p14(τ6(χ4)+τ6(¯χ4))=d22ppχ4(3)(1)p142p32α(4α23p)=χ4(3)(1)p142pα(d22p)(4α23p).

    This proves Theorem 1.1.

    Now we prove Theorem 1.2. From Lemma 2.1 we have

    τ6(χ4¯χ3)+τ6(χ4χ3)=d22ppτ3(χ4¯χ3)τ3(χ4χ3) (3.4)

    and

    (τ3(χ4¯χ3)+τ3(χ4χ3))2=d2pτ3(χ4¯χ3)τ3(χ4χ3). (3.5)

    Note that 4pd2=27b2, from (3.5) we also have

    (τ3(χ4¯χ3)τ3(χ4χ3))2=d24ppτ3(χ4¯χ3)τ3(χ4χ3)=27b2pτ3(χ4¯χ3)τ3(χ4χ3). (3.6)

    From (3.5) and (3.6) we may immediately deduce the identity

    (τ3(χ4¯χ3)τ3(χ4χ3)τ3(χ4¯χ3)+τ3(χ4χ3))2=27b2d2.

    This proves Theorem 1.2.

    Now we prove Theorem 1.3. From Lemmas 2.1 and 2.2 we have

    (d22p)2p2=(τ3(¯χ4¯χ3)τ3(¯χ4χ3)+τ3(¯χ4χ3)τ3(¯χ4¯χ3))2=τ6(¯χ4¯χ3)τ6(¯χ4χ3)+τ6(¯χ4χ3)τ6(¯χ4¯χ3)+2=τ6(χ38χ3)τ6(χ8χ3)τ6(χ38¯χ3)τ6(χ8¯χ3)+τ6(χ38¯χ3)τ6(χ8¯χ3)τ6(χ38χ3)τ6(χ8χ3)+2,
    (τ6(χ38χ3)τ6(χ8χ3)+τ6(χ38¯χ3)τ6(χ8¯χ3))2=(d22p)2p2τ6(χ38χ3)τ6(χ8χ3)τ6(χ38¯χ3)τ6(χ8¯χ3) (3.7)

    and

    (τ6(χ38χ3)τ6(χ8χ3)τ6(χ38¯χ3)τ6(χ8¯χ3))2=27b2d2p2τ6(χ38χ3)τ6(χ8χ3)τ6(χ38¯χ3)τ6(χ8¯χ3). (3.8)

    Combining (3.7) and (3.8) we have the identity

    (τ6(χ8χ3)τ6(χ38χ3)τ6(χ8¯χ3)τ6(χ38¯χ3)τ6(χ8χ3)τ6(χ38χ3)+τ6(χ8¯χ3)τ6(χ38¯χ3))2=27b2d2(d22p)2.

    This proves Theorem 1.3.

    From Lemma 2.1 we have G0(p)=2 and G1(p)=d22pp. For any integer n0, from Lemma 2.1 and the definition of Gn(p) we have

    d22ppGn+1(p)=G1(p)Gn+1(p)=(τ3(χ4¯χ3)τ3(χ4χ3)+τ3(χ4χ3)τ3(χ4¯χ3))(τ3n+3(χ4¯χ3)τ3n+3(χ4χ3)+τ3n+3(χ4χ3)τ3n+3(χ4¯χ3))=τ3n+6(χ4¯χ3)τ3n+6(χ4χ3)+τ3n+6(χ4χ3)τ3n+6(χ4¯χ3)+τ3n(χ4¯χ3)τ3n(χ4χ3)+τ3n(χ4χ3)τ3n(χ4¯χ3)=Gn+2(p)+Gn(p),

    which implies the second order recurrence formula

    Gn+2(p)=d22ppGn+1(p)Gn(p), n0.

    Let x1 and x2 denote two roots of the quadratic equation x2d22ppx+1=0. Then note that 4p=d2+27b2, we have

    x1=d22p+33idb2p  and  x2=d22p33idb2p.

    From the properties of the second order recurrence formula and the initial conditions G0(p)=2, G1(p)=d22pp, we may immediately deduce the general term

    Gn(p)=(d22p+33idb2p)n+(d22p33idb2p)n.

    This proves Theorem 1.4.

    Similarly, we can also deduce Theorem 1.5. In fact, note that χ4(3)χ4(1)=1 and τ(χ4)τ(¯χ4)=χ4(1)p=τ(χ4¯χ3)τ(¯χ4χ3). From Lemma 2.3 we have

    τ(¯χ4)=1p¯χ4(3)τ(χ4)τ(χ4χ3)τ(χ4¯χ3)

    or

    τ2(¯χ4)=τ(χ4χ3)τ(χ4¯χ3)=pχ4(1)τ(χ4χ3)τ(¯χ4χ3) (3.9)

    and

    τ2(χ4)=τ(¯χ4χ3)τ(¯χ4¯χ3)=pχ4(1)τ(¯χ4χ3)τ(χ4χ3). (3.10)

    Combining (1.2), (3.9) and (3.10) we have the identity

    τ(χ4χ3)τ(¯χ4χ3)+τ(¯χ4χ3)τ(χ4χ3)=χ4(1)2αp. (3.11)

    Now let us divide p into two cases:

    If p1mod24, then χ4(1)=1. From (3.11) and the method of proving Theorem 1.4 we have H0(p)=2, H1(p)=2αp and Hn+2(p)=2αpHn+1(p)Hn(p) for all n0. The general term of Hn(p) is

    Hn(p)=(α+iβp)n+(αiβp)n, n0, i2=1,

    where β is defined as in (1.3).

    If p13mod24, then χ4(1)=1. From (3.11) and the method of proving Theorem 1.4 we have H0(p)=2, H1(p)=2αp and Hn+2(p)=2αpHn+1(p)Hn(p) for all n0. The general term of Hn(p) is

    Hn(p)=(α+iβp)n+(αiβp)n, n0, i2=1,

    These complete the proofs of our all results.

    The main results of this paper are to prove some new identities for the classical Gauss sums. For example, if p is a prime with p1mod12, then for any character χ4 of order four and character χ3 of order three modulo p, we have the identity

    τ6(χ4χ3)+τ6(χ4¯χ3)+τ6(¯χ4χ3)+τ6(¯χ4¯χ3)=χ4(3)(1)p142pα(d22p)(4α23p).

    These results not only give the exact values of some special Gauss sums, and they are also some new contribution to research in related fields.

    This work was supported by the N. S. F. (11771351 and 12126357) of China.

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] T. M. Apostol, Introduction to analytic number theory, New York: Springer, 1976.
    [2] K. Ireland, M. Rosen, A classical introduction to modern number theory, New York: Springer, 1982. https://doi.org/10.1007/978-1-4757-1779-2
    [3] C. D. Pan, C. B. Pan, Goldbach conjecture, Beijing: Science Press, 1992.
    [4] W. P. Zhang, J. Y. Hu, The number of solutions of the diagonal cubic congruence equation modp, Math. Reports, 20 (2018), 73–80.
    [5] B. C. Berndt, R. J. Evans, The determination of Gauss sums, Bull. Amer. Math. Soc., 5 (1981), 107–128. https://doi.org/10.1090/S0273-0979-1981-14930-2 doi: 10.1090/S0273-0979-1981-14930-2
    [6] Z. Y. Chen, W. P. Zhang, On the fourth-order linear recurrence formula related to classical Gauss sums, Open Math., 15 (2017), 1251–1255. https://doi.org/10.1515/math-2017-0104 doi: 10.1515/math-2017-0104
    [7] W. P. Zhang, H. L. Li, Elementary number theory (Chinese), Xi'an: Shaanxi Normal University Press, 2013.
    [8] L. Chen, On classical Gauss sums and some of their properties, Symmetry, 10 (2018), 1–6. https://doi.org/10.3390/sym10110625 doi: 10.3390/sym10110625
    [9] L. Chen, Z. Y. Chen, Some new hybrid power mean formulae of trigonometric sums, Adv. Differ. Equ., 2020 (2020), 1–9. https://doi.org/10.1186/s13662-020-02660-7 doi: 10.1186/s13662-020-02660-7
    [10] L. Chen, J. Y. Hu, A linear recurrence formula involving cubic Gauss sums and Kloosterman sums, Acta Math. Sinica (Chin. Ser.), 61 (2018), 67–72.
    [11] S. M. Shen, W. P. Zhang, On the quartic Gauss sums and their recurrence property, Adv. Differ. Equ., 2017 (2017), 1–9. https://doi.org/10.1186/s13662-017-1097-2 doi: 10.1186/s13662-017-1097-2
    [12] S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506. https://doi.org/10.1016/0022-314X(77)90010-5 doi: 10.1016/0022-314X(77)90010-5
    [13] W. P. Zhang, The fourth power mean of the generalized quartic Gauss sums, J. Shaanxi Normal Univ. Nat. Sci. Ed., 49 (2021), 1–5.
    [14] T. T. Wang, On the fourth power mean of the generalized two-term exponential sums, J. Shaanxi Normal Univ. Nat. Sci. Ed., 49 (2021), 6–12.
    [15] J. Greene, D. Stanton, The triplication formula for Gauss sums, Aequationes Math., 30 (1986), 143–141. https://doi.org/10.1007/BF02189920 doi: 10.1007/BF02189920
    [16] W. P. Zhang, A. Samad, Z. Y. Chen, New identities dealing with Gauss sums, Symmetry, 12 (2020), 1–7. https://doi.org/10.3390/sym12091416 doi: 10.3390/sym12091416
    [17] W. Duke, H. Iwaniec, A relation between cubic exponential and Kloosterman sums, Contemp. Math., 143 (1993), 255–258.
    [18] H. Davenport, H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen F¨allen, J. Reine Angew. Math., 172 (1935), 151–182. https://doi.org/10.1515/crll.1935.172.151 doi: 10.1515/crll.1935.172.151
  • This article has been cited by:

    1. Wenpeng Zhang, Yuanyuan Meng, On the fourth power mean of one special two-term exponential sums, 2023, 8, 2473-6988, 8650, 10.3934/math.2023434
    2. Li Wang, Xuexia Wang, Shaofang Hong, One Kind New Hybrid Power Mean and Its Computational Formulae, 2022, 2022, 2314-4785, 1, 10.1155/2022/2603863
    3. Xiaoxue Li, Wenpeng Zhang, A note on the hybrid power mean involving the cubic Gauss sums and Kloosterman sums, 2022, 7, 2473-6988, 16102, 10.3934/math.2022881
    4. Wenxu Ge, Weiping Li, Tianze Wang, A remark for Gauss sums of order 3 and some applications for cubic congruence equations, 2022, 7, 2473-6988, 10671, 10.3934/math.2022595
    5. Xiaodan Yuan, Wenpeng Zhang, On cubic residues and related problems, 2022, 0019-5588, 10.1007/s13226-022-00299-6
    6. Wang Xuexia, Wang Li, A new two-term exponential sums and its fourth power mean, 2023, 0009-725X, 10.1007/s12215-023-00879-3
    7. Jianghua Li, Zepeng Zhang, Tianyu Pan, On two-term exponential sums and their mean values, 2023, 31, 2688-1594, 5559, 10.3934/era.2023282
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2429) PDF downloads(130) Cited by(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog