
We aimed in this paper to acquire the periodic wave solutions and soliton solutions and other solutions such as kink-wave solutions for the cubic nonlinear Schrödinger equation with repulsive delta potential (δ-NLSE) and complex coupled Higgs field equation via two mathematical methods Jacobi elliptic function method and generalized Kudryashov method. Some of these solutions are degenerated to solitary wave solutions and periodic wave solutions in the limit case. We also gave the meaning of these solutions physically and the numerical simulation by some figures.
Citation: F. A. Mohammed, Mohammed K. Elboree. Soliton solutions and periodic solutions for two models arises in mathematical physics[J]. AIMS Mathematics, 2022, 7(3): 4439-4458. doi: 10.3934/math.2022247
[1] | Naveed Iqbal, Ranchao Wu, Yeliz Karaca, Rasool Shah, Wajaree Weera . Pattern dynamics and Turing instability induced by self-super-cross-diffusive predator-prey model via amplitude equations. AIMS Mathematics, 2023, 8(2): 2940-2960. doi: 10.3934/math.2023153 |
[2] | Wei Li, Qingkai Xu, Xingjian Wang, Chunrui Zhang . Dynamics analysis of spatiotemporal discrete predator-prey model based on coupled map lattices. AIMS Mathematics, 2025, 10(1): 1248-1299. doi: 10.3934/math.2025059 |
[3] | Anna Sun, Ranchao Wu, Mengxin Chen . Turing-Hopf bifurcation analysis in a diffusive Gierer-Meinhardt model. AIMS Mathematics, 2021, 6(2): 1920-1942. doi: 10.3934/math.2021117 |
[4] | Jing Zhang, Shengmao Fu . Hopf bifurcation and Turing pattern of a diffusive Rosenzweig-MacArthur model with fear factor. AIMS Mathematics, 2024, 9(11): 32514-32551. doi: 10.3934/math.20241558 |
[5] | Xiao-Long Gao, Hao-Lu Zhang, Xiao-Yu Li . Research on pattern dynamics of a class of predator-prey model with interval biological coefficients for capture. AIMS Mathematics, 2024, 9(7): 18506-18527. doi: 10.3934/math.2024901 |
[6] | Teekam Singh, Ramu Dubey, Vishnu Narayan Mishra . Spatial dynamics of predator-prey system with hunting cooperation in predators and type I functional response. AIMS Mathematics, 2020, 5(1): 673-684. doi: 10.3934/math.2020045 |
[7] | Ting Gao, Xinyou Meng . Stability and Hopf bifurcation of a delayed diffusive phytoplankton-zooplankton-fish model with refuge and two functional responses. AIMS Mathematics, 2023, 8(4): 8867-8901. doi: 10.3934/math.2023445 |
[8] | Jaywan Chung, Yong-Jung Kim, Ohsang Kwon, Chang-Wook Yoon . Biological advection and cross-diffusion with parameter regimes. AIMS Mathematics, 2019, 4(6): 1721-1744. doi: 10.3934/math.2019.6.1721 |
[9] | Shuo Xu, Chunrui Zhang . Spatiotemporal patterns induced by cross-diffusion on vegetation model. AIMS Mathematics, 2022, 7(8): 14076-14098. doi: 10.3934/math.2022776 |
[10] | Pan Xue, Cuiping Ren . Spatial patterns for a predator-prey system with Beddington-DeAngelis functional response and fractional cross-diffusion. AIMS Mathematics, 2023, 8(8): 19413-19426. doi: 10.3934/math.2023990 |
We aimed in this paper to acquire the periodic wave solutions and soliton solutions and other solutions such as kink-wave solutions for the cubic nonlinear Schrödinger equation with repulsive delta potential (δ-NLSE) and complex coupled Higgs field equation via two mathematical methods Jacobi elliptic function method and generalized Kudryashov method. Some of these solutions are degenerated to solitary wave solutions and periodic wave solutions in the limit case. We also gave the meaning of these solutions physically and the numerical simulation by some figures.
Since 1946, biologist Crombic proved the stability effect through experiments [1,2] and more and more scholars analyzed the refuge effect on the population model [3,4,5,6,7,8,9], mainly focused on the self-diffusion effect on dynamic behavior of the population system. In addition to the effect of self-diffusion, cross-diffusion also plays an important role during the population pattern formation. About the predator-prey systems with diffusion terms, many scholars have studied the Turning instability and Hopf bifurcation of its constant equilibrium [10,11,12,13,14,15,16,17]. At present, for the reaction-diffusion predator-prey system, most literatures [18,19,20,21,22,23,24,25] focus on Turing instability of the constant equilibrium, but there are few research results on the stability of the periodic solutions. Therefore, it is significant to study the Turing pattern formation of Hopf bifurcating periodic solutions for the cross-diffusion population model with prey refuge and the Holling Ⅲ functional response.
In 2015, Yang et al. [9] studied a diffusive prey-predator system in Holling type Ⅲ with a prey refuge:
{∂u(x,t)∂t=D1Δu+au−ru2−α(1−m)2u2vβ2+(1−m)2u2, x∈Ω,t>0,∂v(x,t)∂t=D2Δv−cv+kα(1−m)2u2vβ2+(1−m)2u2, x∈Ω,t>0,∂νu=∂νv=0, x∈∂Ω,t>0. | (1.1) |
Here, u,v indicates the quantity of prey and predator respectively; α,β,a,r,c,k are all positive; a is the intrinsic growth rate of the prey; a/r represents the maximum carrying capacity of the environment on the prey; c is the mortality rate of the predator; k represents the conversion rate after the predator eating the prey; m∈[0,1) indicates the refuge coefficient, i.e., the proportion of the protected prey. Only (1−m)u can be caught by the predator. In the real world, the mobility of each species is affected not only by itself but also by the density of other species. Therefore, on the basis of (1.1), we introduce the cross-diffusion terms and establish the population model as follows:
{∂u(x,t)∂t=D11Δu+D12Δv+au−ru2−α(1−m)2u2vβ2+(1−m)2u2, x∈Ω,t>0,∂v(x,t)∂t=D21Δu+D22Δv−cv+kα(1−m)2u2vβ2+(1−m)2u2, x∈Ω,t>0,∂νu=∂νv=0, x∈∂Ω,t>0, | (1.2) |
where Ω=(0,lπ) is a bounded domain with smooth boundary ∂Ω in Rn and D11,D22 and D12,D21 are the self-diffusivity and cross-diffusivity of u and v. We assume that the diffusion coefficients satisfy D11D22−D12D21>0.
The organizational structure of the rest is as follows: In section two, we study the stability of Hopf bifurcating periodic solutions for the ordinary differential population model and derive the first derivative formula of the periodic function for the corresponding perturbed model. In section three, we give the conditions of Turing patterns occurring at Hopf bifurcating periodic solutions in the reaction-diffusion population system. In section four, we give a brief conclusion. Finally, the relevant conclusions are verified by numerical simulations.
In order to research conveniently, we nondimensionalize model (1.2). Let ˆu=uβ,ˆv=vkβ,ˆt=at, and we still replace ˆu,ˆv,ˆt with u,v,t, then model (1.2) becomes
{∂u∂t=d11Δu+d12Δv+u−pu2−s(1−m)2u2v1+(1−m)2u2, x∈Ω,t>0,∂v∂t=d21Δu+d22Δv−θv+s(1−m)2u2v1+(1−m)2u2, x∈Ω,t>0,∂νu=∂νv=0, x∈∂Ω,t>0, | (2.1) |
where, d11=D11a,d12=D12a,d21=D21a,d22=D22a,θ=ca and p=rβa,s=kαa.
The ordinary differential equations corresponding to the reaction-diffusion population model (2.1) are
{dudt=u−pu2−s(1−m)2u2v1+(1−m)2u2,t>0,dvdt=−θv+s(1−m)2u2v1+(1−m)2u2, t>0. | (2.2) |
By calculation, four equilibria of model (2.2) are P0=(0,0),P1=(1/p,0),P+=(κ,vκ),P−=(u−,v−) with
κ=11−m√θs−θ,vκ=κθ(1−pκ),u−=−κ,v−=−(1+pκ)(1+(1−m)2κ2)s(1−m)2κ. |
Clearly, the equilibrium P−=(u−,v−) has no biological significance, so we do not study its dynamic behavior. Let's make the following assumptions:
(A1)s>θ,0≤κ<1p;
(A2)s<2θ,2θ−s2θp<κ<1p;
(A3)s≥2θ,√θs−θ<κ<1p;
(A4)θ<s<2θ,√θs−θ<κ<2θ−s2θp.
Theorem 2.1. Let κ0=2θ−s2θp and assume that (A1) satisfies. The following results are true for model (2.2).
(1) If (A2) (or(A3)) holds, then the positive equilibrium P+=(κ,vκ) is locally asymptotically stable. If (A4) holds, then the positive equilibrium P+=(κ,vκ) is unstable.
(2) If (A3) holds, the positive equilibrium P+=(κ,vκ) is locally asymptotically stable for κ∈(κ0,1p), while unstable for κ∈(√θs−θ,κ0). When κ=κ0, the model undergoes a supercritical Hopf bifurcation at P+=(κ,vκ), a family of periodic solutions (uT(t),vT(t)) bifurcate from P+=(κ,vκ) and the bifurcating periodic solutions are stable.
Proof. If (A1) holds, then P+=(κ,vκ) is a unique positive equilibrium of (2.2). Setting the Jacobi matrix of (2.2) at (κ,vκ) is
J(κ):=(a(κ),b(κ)c(κ),0), |
where, a(κ)=2θs(1−pκ)−1,b(κ)=−θ and c(κ)=2(s−θ)s(1−pκ). The characteristic equation of J(κ) is
λ2−T(κ)λ+D(κ)=0, | (2.3) |
with
T(κ)=2θs(1−pκ)−1,D(κ)=2θ(s−θ)s(1−pκ). |
then the roots of Eq (2.3) are
λ1,2=12[T(κ)±√T2(κ)−4D(κ)]. |
If (A2)(or(A3)) satisfies, then all the eigenvalues of J(κ) have strictly negative real parts according to the stability theory, and P+=(κ,vκ) is locally asymptotically stable. If (A4) is true, then all the eigenvalues of J(κ) have positive real parts, hence, P+=(κ,vκ) is unstable. For an arbitrary κ∈(√θs−θ,κ0), model (2.2) is unstable at P+=(κ,vκ), and for an arbitrary κ∈(κ0,1p), P+=(κ,vκ) (2.2) is locally asymptotically stable. When κ=κ0, J(κ0) has a pair of pure imaginary roots λ=±iω0 with ω0=(s−θ)12. Let λ(κ)=β(κ)±iω(κ) be the roots of Eq (2.3) near κ=κ0, then we have
β(κ)=θs(1−pκ)−12,dβ(κ)dκ|κ=κ0=−pθs<0. |
According to the Poincaré-Andronov-Hopf bifurcation theorem, system (2.1) undergoes Hopf bifurcation at κ=κ0. Let the eigenvectors of J(κ0) and J∗(κ0) corresponding to the eigenvalues iω0 and −iω0 be q=(1,b0)T,q∗=(a∗0,b∗0)T, satisfying <q∗,q>=1 and <q∗,ˉq>=0, where b0=−ω0θi,a∗0=12lπ, b∗0=−θ2lπω0. Denote
f(κ,u,v)=u+κ−p(u+κ)2−s(1−m)2(u+κ)2(v+vκ)1+(1−m)2(u+κ)2,g(κ,u,v)=−θ(v+vκ)+s(1−m)2(u+κ)2(v+vκ)1+(1−m)2(u+κ)2 |
by [26], and we give the expression of the cubic coefficient c1(κ0) in normal form. Calculating Qqq, Qqˉq and Cqqˉq,
Qqq=(c0d0),Qqˉq=(e0f0),Cqqˉq=(g0h0), |
with
c0=−2p(2s3−9s2θ+14sθ2−8θ3+4is(s−θ)θω0)s2(s−2θ),d0=2p(s−θ)(s2−6sθ+8θ2+4isθω0)s2(s−2θ),e0=−2p(2s2−5sθ+4θ2)s2,f0=2p(s2−5sθ+4θ2)s2,g0=8p2(s−θ)θ2(−6(s−2θ)2+is(s−4θ)ω0)s3(s−2θ)2,h0=8p2(s−θ)θ2(6(s−2θ)2−is(s−4θ)ω0)s3(s−2θ)2, |
as well as
<¯q∗,Qqq>=−is2(s−2θ)ω0p(θ(s3−7s2θ+14sθ2−8θ3)+4s(s−θ)θω20) +1s2(s−2θ)ω0p(−2s3+s2θ(9+4θ)+8θ3−2sθ2(7+2θ))ω0,<q∗,Cqqˉq>=4p2(s−θ)θ2(θ+iω0)(6i(s−2θ)2+s(s−4θ)ω0)s3(s−2θ)2ω0 =4p2(s−θ)θ2s3(s−2θ)2(sθ(s−4θ)−6(s−2θ)2) +4p2(s−θ)θ2s3(s−2θ)2ω0(6θ(s−2θ)2+s(s−4θ)ω02)i,<q∗,Qqq>=is2(s−2θ)ω0(pθ(s3−7s2θ+14sθ2−8θ3)−4s(s−θ)θω20) +1s2(s−2θ)ω0(−2s3+s2(9−4θ)θ+8θ3+2sθ2(−7+2θ)),<q∗,Qqˉq>=p(iθ(s2−5sθ+4θ2)+(−2s2+5sθ−4θ2)ω0). |
Then, we can obtain
H20=(c0d0)−<q∗,Qqq>(1b0)−<¯q∗,Qqq>(1¯b0)=0,H11=(e0f0)−<q∗,Qqˉq>(1b0)−<¯q∗,Qqˉq>(1ˉb0)=0, |
so
c1(κ0)=i2ω0<q∗,Qqq>⋅<q∗,Qqˉq>+12<ˉq∗,Cqqˉq>. | (2.4) |
Its real and imaginary parts are
Re(c1(κ0))=p2s2(s−2θ)ω02(−2s3+s2(9−4θ)θ+8θ3+2sθ2(−7+2θ))θ(s2−5sθ+4θ2) −p2s2(s−2θ)ω0(pθ(s3−7s2θ+14sθ2−8θ3)−4s(s−θ)θω20)(−2s2+5sθ−4θ2) +2p2(s−θ)θ2s3(s−2θ)2(sθ(s−4θ)−6(s−2θ)2) | (2.5) |
and
Im(c1(κ0))=p2s2(s−2θ)ω0(−2s3+s2(9−4θ)θ+8θ3+2sθ2(−7+2θ))(−2s2+5sθ−4θ2) −p2s2(s−2θ)ω02(pθ(s3−7s2θ+14sθ2−8θ3)−4s(s−θ)θω20)θ(s2−5sθ+4θ2) +2p2(s−θ)θ2s3(s−2θ)2ω0(6θ(s−2θ)2+s(s−4θ)ω02). | (2.6) |
If Re(c1(κ0))<0(>0), then the Hopf bifurcation is backward (forward) and the bifurcating periodic solutions (uT(t),vT(t)) are stable (unstable).
In this subsection, for the perturbed population model, we derive the first derivative formula of the periodic function about the perturbation coefficients. On the basis of model (2.1), we introduce the perturbation term τ and coefficients (k11k12k21k22). The corresponding perturbed population model is
(I+τ(k11k12k21k22))(dudtdvdt)=(u−pu2−s(1−m)2u2v1+(1−m)2u2−θv+s(1−m)2u2v1+(1−m)2u2), | (2.7) |
where τ is sufficiently small such that (1+τk11τk12τk211+τk22) is reversible, then (2.7) can be reduced to
(dudtdvdt)=1K(τ)(1+k22τ−k12τ−k21τ1+k11τ)(u−pu2−s(1−m)2u2v1+(1−m)2u2−θv+s(1−m)2u2v1+(1−m)2u2), | (2.8) |
where
K(τ):=|(1+τk11τk12τk211+τk22)|=(k11k22−k12k21)τ2+(k11+k22)τ+1>0. |
At P+=(κ,vκ), the Jacobian matrix of (2.8) is
J(κ,τ):=1K(τ)(J11(κ,τ)J12(κ,τ)J21(κ,τ)J22(κ,τ)), | (2.9) |
where,
J11(κ,τ):=(1+k22τ)a(κ)−k12c(κ)τ,J12(κ,τ):=(1+k22τ)b(κ),J21(κ,τ):=(1+k11τ)c(κ)−k21a(κ)τ,J22(κ,τ):=−k21b(κ)τ,a(κ)=2θs(1−pκ)−1,b(κ)=−θ,c(κ)=2(s−θ)s(1−pκ). | (2.10) |
Let the characteristic equation corresponding to J(κ,τ) be
λ2−H(κ,τ)λ+D(κ,τ)=0, | (2.11) |
where
H(κ,τ)=1K(τ)τ⋅(k22a(κ)−k12c(κ)−k21b(κ))+1K(τ)a(κ),D(κ,τ)=1K(τ)2θ(s−θ)s(1−pκ). | (2.12) |
When κ→κτ, let ˉβ(κτ)±iˉω(κτ) be the roots of the characteristic Eq (2.11), then
ˉβ(κτ)=12H(κ,τ),ˉω(κτ)=12√4D(κ,τ)−H2(κ,τ). | (2.13) |
Lemma 2.1. (See [26]) When κ→κ0, the population model (2.2) has a stable periodic solution (uT(t),vT(t)) bifurcating from P+=(κ,vκ) and T is the minimum positive period of (uT(t),vT(t)). Then there is a positive number τ1 such that for any τ∈(−τ1,τ1), the perturbed population model (2.7) has a periodic solution (uT(t,τ),vT(t,τ)) depending on if τ, T(τ) is the minimum positive periodic function. When τ→0, (uT(t,τ),vT(t,τ))→(uT(t),vT(t)) and T(τ)→T, then
T(τ)=2πˉω(κτ)(1+(ˉβ′(κτ)Im(c1(κτ))ˉω(κτ)Re(c1(κτ))−ˉω′(κτ)ˉω(κτ))(κ−κτ)+O((κ−κτ)2),κ→κτ,c1(κτ):=i2ˉω(κτ)(g20(τ)g11(τ)−2|g11(τ)|2−13|g02(τ)|2)+g21(τ)2. |
Re(c1(κτ)) and Im(c1(κτ)) are the real and imaginary parts of c1(κτ), and ˉβ(κτ) and ˉω(κτ) are defined by (2.13).
Theorem 2.2. When κ→κ0 for the perturbed population model (2.7), the first-order derivative formula of the periodic function, with respect to the perturbation coefficients, is
T′(0)=√D(κ0)k11+√D(κ0)k22−Im(c1(κ0))Re(c1(κ0))c(κ0)k12−Im(c1(κ0))Re(c1(κ0))b(κ0)k21, |
where b(κ0)=−θ,c(κ0)=s−θθ,D(κ0)=s−θ. Re(c1(κ0)) and Im(c1(κ0)) are defined in (2.5) and (2.6).
Proof. By Lemma 2.1, differentiating the periodic function T(τ), we have
T′(τ)=−2πˉω2(κτ)dˉω(κτ)dτ−2πˉω(κτ)(ˉβ′(κτ)Im(c1(κτ))ˉω(κτ)Re(c1(κτ))−ˉω′(κτ)ˉω(κτ))dκτdτ+O(κ−κτ). |
If κ→κτ, then O(κ−κτ)→0, and setting τ=0, then ˉω(κ0)=ω(κ0)=√D(κ0).
We first compute dκτdτ|τ=0. At κ=κτ, by the expression of H(κ,τ) defined in (2.12), we can gain
τ(k22a(κτ)−k12c(κτ)−k21b(κτ))+a(κτ)=0. | (2.14) |
Differentiating (2.14) with respect to τ, we obtain
(k22a(κτ)−k12c(κτ)−k21b(κτ))+a′(κτ)dκτdτ=0, | (2.15) |
and setting τ=0, we have
dκτdτ|τ=0=k12c(κ0)+k21b(κ0)a′(κ0), | (2.16) |
with
b(κ0)=−θ,c(κ0)=s−θθ,a′(κ0)=−2θps. |
Second, we calculate ˉω′(κ0). When κ→κτ, we derive
ˉω(κ)=12√4D(κ,τ)−H2(κ,τ), |
thereby,
ˉω′(κ)=∂κD(κ,τ)−12H(κ,τ)∂κH(κ,τ)√4D(κ,τ)−H2(κ,τ). |
Since H(κτ,τ)=0 and ∂κD(κτ,τ)=1K(τ)D′(κτ), we have
ˉω′(κ0)=∂κD(κτ,τ)2√D(κτ,τ)|τ=0=D′(κτ)2√K(τ)D(κτ)|τ=0=D′(κ0)2√D(κ0). | (2.17) |
At last, we calculate ddτ(ˉω(κτ))|τ=0. By ˉω(κτ)=√D(κτ,τ), we can get
ddτ(ˉω(κτ))=12√D(κτ,τ)ddτ(D(κτ,τ)). | (2.18) |
According to D(κτ,τ)=D(κτ)K(τ), we have
ddτ(D(κτ,τ))=−K′(τ)K2(τ)D(κτ)+ddτ(D(κτ))1K(τ). | (2.19) |
Setting τ=0, we can obtain
−K′(τ)K2(τ)D(κ0)=−(k11+k22)D(κ0),ddτ(D(κτ))1K(τ)|τ=0=D′(κ0)dκτdτ(0). | (2.20) |
Therefore, from (2.16) and (2.20), we have
ddτ(D(κτ,τ))|τ=0=−(k11+k22)D(κ0)+k12c(κ0)+k21b(κ0)a′(κ0)D′(κ0). | (2.21) |
By (2.18) and (2.21), we obtain
ddτ(ˉω(κτ))|τ=0=12√D(κ0)(−(k11+k22)D(κ0)+k12c(κ0)+k21b(κ0)a′(κ0)D′(κ0)). | (2.22) |
Again, by (2.16), (2.17) and (2.22), we can derive
T′(0)=√D(κ0)k11+√D(κ0)k22−Im(c1(κ0))Re(c1(κ0))c(κ0)k12−Im(c1(κ0))Re(c1(κ0))b(κ0)k21. |
With respect to the population model (1.2) and according to the theory expounded in [27], we study the mathematical mechanisms of Turing patterns occurring at the stable periodic solution (uT(t),vT(t)). By the first derivative formula of the periodic function of the perturbed population model (2.7), we give the following theorem.
Theorem 3.1. If hypothesis (A4) and Re(c1(κ0))<0 hold, when κ→κ0, the stable spatially homogeneous Hopf bifurcating periodic solution bifurcates (uT(t),vT(t)) from P+=(κ,vκ). If the domain Ω is large enough and
√D(κ0)d11+√D(κ0)d22−Im(c1(κ0))Re(c1(κ0))c(κ0)d12−Im(c1(κ0))Re(c1(κ0))b(κ0)d21<0, |
then the following conclusions are true:
(1) The reaction-diffusion population model (1.2) produces Turing patterns at the periodic solution (uT(t),vT(t));
(2) If Im(c1(κ0))<0(>0), then when k12>M1(k21>M2), the reaction-diffusion population model (1.2) produces Turing patterns. That is, Turing patterns occuring at the periodic solution are determined by the cross-diffusion coefficients k12(k21), where
b(κ0)=−θ,c(κ0)=s−θθ,D(κ0)=s−θ. |
Re(c1(κ0)) and Im(c1(κ0)) from (2.5) and (2.6):
M1:=√D(κ0)d11+√D(κ0)d22−Im(c1(κ0))Re(c1(κ0))b(κ0)d21Im(c1(κ0))Re(c1(κ0))c(κ0),M2:=√D(κ0)d11+√D(κ0)d22−Im(c1(κ0))Re(c1(κ0))c(κ0)d12Im(c1(κ0))Re(c1(κ0))b(κ0). |
Proof. Let the linearized vector form of the population model (2.1) at (uT(t),vT(t)) be
(∂ϕ∂t,∂φ∂t)T=diag(DΔϕ,D Δ φ)+JT(t)(ϕ,φ)T), | (3.1) |
where,
JT(t):=(1−2puT(t)−2s(1−m)2uT(t)vT(t)(1+(1−m)2(uT(t))2)2−s(1−m)2(uT(t))21+(1−m)2(uT(t))22s(1−m)2uT(t)vT(t)(1+(1−m)2(uT(t))2)2−θ+s(1−m)2(uT(t))21+(1−m)2(uT(t))2) |
is the Jacobian matrix of model (2.1) at (uT(t),vT(t)). D:=(d11d12d21d22), Δ is the Laplace operator. Let αn and ηn(x) be the eigenvalues and eigenfunctions of −Δ in region Ω, respectively, and (ϕ,φ)T=(h(t),g(t))T∑∞n=0knηn(x). For the sake of convenience, we set ς:=αn≥0,n∈N0:={0}⋃N, then
(dh(t)dt,dg(t)dt)T=−ςD(h(t)g(t))+JT(t)(h(t)g(t)). | (3.2) |
If D=0, then Eq (3.2) can be reduced to
(dh(t)dt,dg(t)dt)T=JT(t)(h(t),g(t))T. | (3.3) |
Setting ρ(t) as the fundamental solution matrix of Eq (3.3), it satisfies ρ(0)=I2. Let λi,i=1,2 be the eigenvalues of ρ(T), the corresponding eigenfunctions are (ξi,ηi)T,i=1,2, i.e.,
ρ(T)(ξi,ηi)T=λi(ξi,ηi)T, |
where λ1 and λ2 are Floquet multipliers. Define
(ϕi(t),ψi(t))T:=ρ(t)(ξi,ηi)T, |
clearly,
(ϕi(0),ψi(0))T=(ξi,ηi)T,ρ(T)(ϕi(0),ψi(0))T=λi(ϕi(0),ψi(0))T. |
Differentiating with respect to t in (2.2), we can obtain
(u″v″)=(1−2pu−2s(1−m)2uv(1+(1−m)2u2)2−s(1−m)2u21+(1−m)2u22s(1−m)2uv(1+(1−m)2u2)2−θ+s(1−m)2u21+(1−m)2u2)(dudt,dvdt)T, |
then λ1=1 is the eigenvalue of ρ(T) and the eigenvector is (ϕ1(t),ψ1(t))T=(duT(t)dt|t=0,dvT(t)dt|t=0)T. Since (uT(t),vT(t)) is stable, |λi|<1. Let ρ(t,ς) be the fundamental solution matrix of Eq (3.2), then we have
∂ρ(t,ς)∂t=−ςDρ(t,ς)+JT(t)ρ(t,ς) |
and ρ(t,0)=ρ(t). By the implicit function theorem, there is ς1>0, ς∈(−ς1,ς1) and continuous differentiable functions δi(ς),ξi(ς),ηi(ς), such that
ρ(T,ς)(ξi(ς),ηi(ς))T=δi(ς)(ξi(ς),ηi(ς))T, | (3.4) |
where δ1(ς) and δ2(ς) are Floquet multipliers. Make the following definition
(ϕi(t,ς),ψi(t,ς))T:=ρ(t,ς)(ξi(ς),ηi(ς))T; | (3.5) |
by ρ(0,ς)=I, we have
(ϕi(0,ς),ψi(0,ς))T=(ξi(ς),ηi(ς))T. | (3.6) |
From (3.4) and (3.6), we can gain
ρ(T,ς)(ϕi(0,ς),ψi(0,ς))T=δi(ς)(ϕi(0,ς),ψi(0,ς))T, |
and especially
(ϕi(t,0)ψi(t,0))=ρ(t,0)(ξi(0)ηi(0))=ρ(t)(ξiηi)=ρ(t)(ϕi(0)ψi(0))=(ϕi(t)ψi(t)). |
Taking i=1, by (3.5), we know
(ϕ1(t,ς),ψ1(t,ς))T:=ρ(t,ς)(ξ1(ς),η1(ς))T. |
Hence, we can derive
(∂ϕ1(t,ς)∂t,∂ψ1(t,ς)∂t)T=−ςD(ϕ1(t,ς),ψ1(t,ς))T+JT(t)(ϕ1(t,ς),ψ1(t,ς))T. |
Differentiating the above equation with respect to ς and setting ς=0, we obtain
(∂ϕ1ς(t,0)∂t,∂ψ1ς(t,0)∂t)T=−D(ϕ1(t),ψ1(t))T+JT(t)(ϕ1ς(t,0),ψ1ς(t,0))T, | (3.7) |
where, ϕ1ς:=∂ςϕ1,ψ1ς:=∂ςψ1. On the other hand, from (3.4) and (3.5), we can get
(ϕ1(T,ς),ψ1(T,ς))T=δ1(ς)(ϕ1(0,ς),ψ1(0,ς))T. |
Differentiating with respect to ς, we have
(ϕ1ς(T,ς),ψ1ς(T,ς))T=δ′1(ς)(ϕ1(0,ς),ψ1(0,ς))T+δ1(ς)(ϕ1ς(0,ς),ψ1ς(0,ς))T. |
Let ς=0 by (3.6) and δ1(0)=λ1=1, and we can derive
(ϕ1ς(T,0),ψ1ς(T,0))T=δ′1(0)(ϕ1(0),ψ1(0))T+(ϕ1ς(0,0),ψ1ς(0,0))T. | (3.8) |
According to Lemma 2.1, (uT(t,τ),vT(t,τ)) is the periodic solution of the perturbed population model (2.7), i.e.,
(1+τd11τd12τd211+τd22)(∂uT(t,τ)∂t∂uT(t,τ)∂t)=(uT(t,τ)−p(uT(t,τ))2−s(1−m)2(uT(t,τ))2vT(t,τ)1+(1−m)2(uT(t,τ))2−θvT(t,τ)+s(1−m)2(uT(t,τ))2vT(t,τ)1+(1−m)2(uT(t,τ))2). |
Differentiating with respect to τ and letting τ=0, we have
(d(∂tuT(t,0))dτ,d(∂tvT(t,0))dτ)T=−D(ϕ1(t),ψ1(t))T+JT(t)(duT(t,0)dτ,dvT(t,0)dτ)T, | (3.9) |
where ∂tuT(t,0)=ϕ1(t),∂tvT(t,0)=ψ1(t). Since T(τ) is the minimum positive periodic solution of (uT(t,τ),vT(t,τ)), we have
(uT(t,τ),vT(t,τ))=(uT(t+T(τ),τ),vT(t+T(τ),τ)). |
Differentiating with respect to τ and letting τ=0,t=0, we can gain
(duT(T,0)dτ,dvT(T,0)dτ)T=−T′(0)(ϕ1(0),ψ1(0))T+(duT(0,0)dτ,dvT(0,0)dτ)T, | (3.10) |
where uT(t,0)=uT(t),vT(t,0)=vT(t),T(0)=T. Define
Z(t):=(ϕ1ς(t,0),ψ1ς(t,0))T−(duT(t,0)dτ,dvT(t,0)dτ)T, |
and by (3.7)–(3.10), we get
Z′(t)=JT(t)Z(t), | (3.11) |
Z(T)−Z(0)=(δ′1(0)+T′(0))(ϕ1(0),ψ1(0))T. | (3.12) |
Let Z(t)=A(t)(Z1,Z2)T be the general solution of (3.11), where any vector (Z1,Z2)T∈R2. Since (ϕ1(0),ψ1(0))T and (ϕ2(0),ψ2(0))T are linearly independent, there exits constants p1 and p2 such that
(Z1,Z2)T=p1(ϕ1(0),ψ1(0))T+p2(ϕ2(0),ψ2(0))T. | (3.13) |
Substituting (3.13) into (3.12), we get δ′1(0)+T′(0)=0. According to Theorem 2.2, if T′(0)<0, then δ′1(0)>0. Assuming that Ω is sufficiently large, then there is at least one eigenvalue αn of −Δ so that δ1(ς)=δ1(αn)>1. Therefore, the population model (1.2) appears to have Turing patterns at (uT(t),vT(t)). When T′(0)<0 by Theorem 2.2, we have
√D(κ0)d11+√D(κ0)d22−Im(c1(κ0))Re(c1(κ0))c(κ0)d12−Im(c1(κ0))Re(c1(κ0))b(κ0)d21<0. | (3.14) |
Since (A3) is true, we can obtain b(κ0)=−θ<0,c(κ0)=s−θθ>0. If Re(c1(κ0))<0, then when Im(c1(κ0))<0,
Im(c1(κ0))Re(c1(κ0))c(κ0)>0,Im(c1(κ0))Re(c1(κ0))b(κ0)<0. |
From (3.14), we gain
d12>√D(κ0)d11+√D(κ0)d22−Im(c1(κ0))Re(c1(κ0))b(κ0)d21Im(c1(κ0))Re(c1(κ0))c(κ0):=M1. |
When the cross-diffusion coefficient d12>M1, the cross-diffusion population model (1.2) generates Turing patterns at the periodic solution (uT(t),vT(t)). Similarly, if Im(c1(κ0))>0, then
Im(c1(κ0))Re(c1(κ0))c(κ0)<0,Im(c1(κ0))Re(c1(κ0))b(κ0)>0, |
so
d21>√D(κ0)d11+√D(κ0)d22−Im(c1(κ0))Re(c1(κ0))c(κ0)d12Im(c1(κ0))Re(c1(κ0))b(κ0):=M2. |
When the cross-diffusion coefficient d21>M2, the cross-diffusion population model (1.2) produces Turing patterns at the periodic solution (uT(t),vT(t)).
We shall conduct numerical simulations in three cases to verify the relevant conclusions: The diffusive population model forms Turing patterns at the periodic solutions. Fix the parameters in model (2.1):
m=0.6,s=0.1,θ=0.09,p=0.0592,x∈Ω=(0,30), |
then (κ,vκ)=(7.5,46.3) is a unique positive equilibrium. By calculation, κ0=7.505. According to Theorem 2.1, when κ→κ0, b(κ0)=−0.09,c(κ0)=19,D(κ0)=0.01, Rec1(κ0)=−3.1316×10−3<0 and Imc1(κ0)=4.3667×10−3, simultaneously, hypothesis (A4) is true. Take the initial values as u0=8+0.1cos(x),v0=47+0.1cos(x).
(1) If d11=1,d22=1,d12=d21=0, then √D(κ0)d11+√D(κ0)d22=0.2>0. By Theorem 3.1, in model (1.2), Turing patterns do not appear at (uT(t),vT(t)), namely, the same self-diffusion rates do not destroy the stability of the periodic solution(See [28]). If d11≠d22,d11>0,d22>0 and d12=d21=0, then √D(κ0)d11+√D(κ0)d22>0 and the periodic solution of diffusion model (1.2) is stable (Figure 1).
(2) If d11=0.2,d22=0.5,d12=0.05, then M2=0.6195. Select d21=0.7 by calculating T′(0)<0. According to Theorem 3.1, when d21>M2=0.6195, cross-diffusion induces system (1.2) to produce Turing patterns at (uT(t),vT(t)) (Figure 2).
(3) If d11=1,d22=1,d12=0.02, then M2=1.6184. We choose d21=1.7, through computation and T′(0)<0. According to Theorem 3.1, when d21>M2, cross-diffusion induces system (1.2) to produce Turing patterns at (uT(t),vT(t)) (Figure 3).
In this paper, we established a cross-diffusion population model with prey refuge and Holling Ⅲ functional response, and studied the mathematical mechanisms of Turing patterns generated by the diffusion-driven instability of the periodic solutions. The results show that when Im(c1(κ0))<0(>0), the symbol of the diffusivity expression T′(0) is actually determined by the cross-diffusion coefficient d21(d12). That is, when d21>M2(d12>M1) and the region Ω is sufficiently large, T′(0)<0 and model (1.2) generate Turing patterns at the periodic solutions. Our research more accurately determined the range of cross-diffusion coefficients of Turing patterns occurring at the periodic solutions. This provided a new idea for model (1.2) to generate Turing instability at the periodic solutions.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors declare that they have no competing interests.
[1] |
Y. Gurefe, E. Misirli, Y. Pandir, A. Sonmezoglu, M. Ekici, New exact solutions of the Davey-Stewartson equation with power-law nonlinearity, Bull. Malays. Math. Sci. Soc., 38 (2015), 1223–1234. https://doi.org/10.1007/s40840-014-0075-z doi: 10.1007/s40840-014-0075-z
![]() |
[2] |
M. Khalfallah, Exact traveling wave solutions of the Boussinesq-Burgers equation, Math. Comput. Model., 49 (2009), 666–671. https://doi.org/10.1016/j.mcm.2008.08.004 doi: 10.1016/j.mcm.2008.08.004
![]() |
[3] |
M. Khalfallah, New exact traveling wave solutions of the (3+1) dimensional Kadomtsev-Petviashvili (KP) equation, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009), 1169–1175. https://doi.org/10.1016/j.cnsns.2007.11.010 doi: 10.1016/j.cnsns.2007.11.010
![]() |
[4] |
A. S. Abdel Rady, M. Khalfallah, On soliton solutions for Boussinesq-Burgers equations, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 886–894. https://doi.org/10.1016/j.cnsns.2009.05.039 doi: 10.1016/j.cnsns.2009.05.039
![]() |
[5] |
A. S. Abdel Rady, E. S. Osman, M. Khalfallah, On soliton solutions for a generalized Hirota-Satsuma coupled KdV equation, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 264–274. https://doi.org/10.1016/j.cnsns.2009.03.011 doi: 10.1016/j.cnsns.2009.03.011
![]() |
[6] |
A. S. Abdel Rady, E. S. Osman, M. Khalfallah, The homogeneous balance method and its application to the Benjamin-Bona-Mahoney (BBM) equation, Appl. Math. Comput., 217 (2010), 1385–1390. https://doi.org/10.1016/j.amc.2009.05.027 doi: 10.1016/j.amc.2009.05.027
![]() |
[7] |
A. M. Wazwaz, New solitary wave solutions to the Kuramoto-Sivashinsky and the Kawahara equations, Appl. Math. Comput., 182 (2006), 1642–1650. https://doi.org/10.1016/j.amc.2006.06.002 doi: 10.1016/j.amc.2006.06.002
![]() |
[8] |
A. M. Wazwaz, New solitary wave solutions to the modified forms of Degasperis-Procesi and Camassa-Holm equations, Appl. Math. Comput., 186 (2007), 130–141. https://doi.org/10.1016/j.amc.2006.07.092 doi: 10.1016/j.amc.2006.07.092
![]() |
[9] |
R. Guo, J. Y. Song, H. T. Zhang, F. H. Qi, Soliton solutions, conservation laws and modulation instability for the discrete coupled modified Korteweg-de Vries equations, Mod. Phys. Lett. B, 32 (2018), 1850152. https://doi.org/10.1142/S021798491850152X doi: 10.1142/S021798491850152X
![]() |
[10] |
J. Weiss, M. Tabor, G. Carnevalle, The Painlevé property for partial differential equations, J. Math. Phys., 24 (1983), 522–526. https://doi.org/10.1063/1.525721 doi: 10.1063/1.525721
![]() |
[11] |
N. A. Kudryashov, Exact solutions of the generalized Kuramoto-Sivashinsky equation, Phys. Lett. A, 147 (1990), 287–291. https://doi.org/10.1016/0375-9601(90)90449-X doi: 10.1016/0375-9601(90)90449-X
![]() |
[12] |
W. X. Ma, Travelling wave solutions to a seventh order generalized KdV equation, Phys. Lett. A, 180 (1993), 221–224. https://doi.org/10.1016/0375-9601(93)90699-Z doi: 10.1016/0375-9601(93)90699-Z
![]() |
[13] |
S. Z. Rida, M. Khalfallah, New periodic wave and soliton solutions for a Kadomtsev-Petviashvili (KP) like equation coupled to a Schrödinger equation, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 2818–2827. https://doi.org/10.1016/j.cnsns.2009.10.024 doi: 10.1016/j.cnsns.2009.10.024
![]() |
[14] |
M. K. Elboree, The Jacobi elliptic function method and its application for two component BKP hierarchy equations, Comput. Math. Appl., 62 (2011), 4402–4414. https://doi.org/10.1016/j.camwa.2011.10.015 doi: 10.1016/j.camwa.2011.10.015
![]() |
[15] |
M. Mirzazadeh, M. Eslami, A. Biswas, Dispersive optical solitons by Kudryashov's method, Optik, 125 (2014), 6874–6880. https://doi.org/10.1016/j.ijleo.2014.02.044 doi: 10.1016/j.ijleo.2014.02.044
![]() |
[16] |
A. Neirameh, Exact analytical solutions for 3D-Gross-Pitaevskii equation with periodic potential by using the Kudryashov method, J. Egypt. Math. Soc., 24 (2016), 49–53. https://doi.org/10.1016/j.joems.2014.11.004 doi: 10.1016/j.joems.2014.11.004
![]() |
[17] | H. O. Roshid, M. N. Alam, M. F. Hoque, M. A. Akbar, A new extended (G′/G)-expansion method to find exact traveling wave solutions of nonlinear evolution equations, Math. Stat., 1 (2013), 162–166. |
[18] |
M. N. Alam, M. A. Akbar, Some new exact traveling wave solutions to the simplified MCH equation and the (1+1)-dimensional combined KdV-mKdV equations, J. Assoc. Arab Univ. Basic Appl. Sci., 17 (2015), 6–13. https://doi.org/10.1016/j.jaubas.2013.12.001 doi: 10.1016/j.jaubas.2013.12.001
![]() |
[19] |
M. A. Akbar, N. H. M. Ali, M. T. Islam, Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics, AIMS Math., 4 (2019), 397–411. https://doi.org/10.3934/math.2019.3.397 doi: 10.3934/math.2019.3.397
![]() |
[20] | H. O. Roshid, M. N. Alam, M. A. Akbar, Traveling wave solutions for fifth order (1+1)-dimensional Kaup-Kupershmidt equation with the help of exp(−Φ(η))-expansion method, Walailak J. Sci. Tech., 12 (2015), 1063–1073. |
[21] | M. N. Alam1, M. G. Hafez, M. A. Akbar, H. O. Roshid, Exact solutions to the (2+1)-dimensional Boussinesq equation via exp(−Φ(η))-expansion method, J. Sci. Res., 7 (2015), 1–10. |
[22] |
S. T. Mohyud-Dina, T. Nawaz, E. Azhar, M. A. Akbar, Fractional sub-equation method to space-time fractional Calogero-Degasperis and potential Kadomtsev-Petviashvili equations, J. Taibah Uni. Sci., 11 (2017), 258–263. https://doi.org/10.1016/j.jtusci.2014.11.010 doi: 10.1016/j.jtusci.2014.11.010
![]() |
[23] |
I. Jaradata, M. Alquran, S. Momani, A. Biswas, Dark and singular optical solutions with dual-mode nonlinear Schrödinger's equation and Kerr-law nonlinearity, Optik, 172 (2018), 822–825. https://doi.org/10.1016/j.ijleo.2018.07.069 doi: 10.1016/j.ijleo.2018.07.069
![]() |
[24] |
M. Alquran, I. Jaradat, Multiplicative of dual-waves generated upon increasing the phase velocity parameter embedded in dual-mode Schr¨dinger with nonlinearity Kerr laws, Nonlinear Dyn., 96 (2019), 115–121. https://doi.org/10.1007/s11071-019-04778-0 doi: 10.1007/s11071-019-04778-0
![]() |
[25] |
T. A. Sulaiman, A. Yusuf, M. Alquran, Dynamics of optical solitons and nonautonomous complex wave solutions to the nonlinear Schrodinger equation with variable coefficients, Nonlinear Dyn., 104 (2021), 639–648. https://doi.org/10.1007/s11071-021-06284-8 doi: 10.1007/s11071-021-06284-8
![]() |
[26] |
M. Alquran, Optical bidirectional wave-solutions to new two-mode extension of the coupled KdV-Schrodinger equations, Opt. Quant. Electron., 53 (2021), 588. https://doi.org/10.1007/s11082-021-03245-8 doi: 10.1007/s11082-021-03245-8
![]() |
[27] |
M. Alquran, A. Jarrah, Jacobi elliptic function solutions for a two-mode KdV equation, J. King Saud Univ. Sci., 31 (2019), 485–489. https://doi.org/10.1016/j.jksus.2017.06.010 doi: 10.1016/j.jksus.2017.06.010
![]() |
[28] | M. Al Ghabshi, E. V. Krishnan, M. Alquran1, K. Al-Khaled, Jacobi elliptic function solutions of a nonlinear Schrodinger equation in metamaterials, Nonlinear Stud., 24 (2017), 469–480. |
[29] | M. Alquran, A. Jarrah, E.V. Krishnan, Solitary wave solutions of the phi-four equation and the breaking soliton system by means of Jacobi elliptic sine-cosine expansion method, Nonlinear Dyn. Syst. Theory, 18 (2018), 233–240. |
[30] |
L. Huang, J. Manafian, G. Singh, K. S. Nisar, M. K. M. Nasution, New lump and interaction soliton, N-soliton solutions and the LSP for the (3+1)-D potential-YTSF-like equation, Results Phys., 29 (2021), 104713. https://doi.org/10.1016/j.rinp.2021.104713 doi: 10.1016/j.rinp.2021.104713
![]() |
[31] |
Y. Z. Peng, Exact solutions for some nonlinear partial differential equations, Phys. Lett. A, 314 (2003), 401–408. https://doi.org/10.1016/S0375-9601(03)00909-5 doi: 10.1016/S0375-9601(03)00909-5
![]() |
[32] |
K. A. Gepreel, T. A. Nofal, A. A. Alasmari, Exact solutions for nonlinear integro-partial differential equations using the generalized Kudryashov method, J. Egypt. Math. Soc., 25 (2017), 438–444. https://doi.org/10.1016/j.joems.2017.09.001 doi: 10.1016/j.joems.2017.09.001
![]() |
[33] |
D. Baleanu, M. Inc, A. I. Aliyu, A. Yusuf, Optical solitons, nonlinear self-adjointness and conservation laws for the cubic nonlinear Shrödinger's equation with repulsive delta potential, Superlattices Microstruct., 111 (2017), 546–555. https://doi.org/10.1016/j.spmi.2017.07.010 doi: 10.1016/j.spmi.2017.07.010
![]() |
[34] |
R. H. Goodman, P. J. Holmes, M. I. Weinstein, Strong NLS soliton-defect interactions, Phys. D: Nonlinear Phenom., 192 (2004), 215–248. https://doi.org/10.1016/j.physd.2004.01.021 doi: 10.1016/j.physd.2004.01.021
![]() |
[35] |
H. Triki, A. M. Wazwaz, Combined optical solitary waves of the Fokas-Lenells equation, Waves Random Complex Media, 27 (2017), 587–593. https://doi.org/10.1080/17455030.2017.1285449 doi: 10.1080/17455030.2017.1285449
![]() |
[36] |
L. H. Zhang, Travelling wave solutions for the generalized Zakharov-Kuznetsov equation with higher-order nonlinear terms, Appl. Math. Comput., 208 (2009), 144–155. https://doi.org/10.1016/j.amc.2008.11.020 doi: 10.1016/j.amc.2008.11.020
![]() |
[37] |
M. A. Abdelkawy, A. H. Bhrawy, E. Zerrad, A. Biswas, Application of tanh method to complex coupled nonlinear evolution equations, Acta Phys. Pol. A, 129 (2016), 278–283. http://dx.doi.org/10.12693/APhysPolA.129.278 doi: 10.12693/APhysPolA.129.278
![]() |
[38] | M. Tajiri, On N-soliton solutions of coupled Higgs field equations, J. Phys. Soc. Japan, 52 (1983), 2277–2280. |
[39] |
Y. C. Hon, E. G. Fan, A series of exact solutions for coupled Higgs field equation and coupled Schrödinger-Boussinesq equation, Nonlinear Anal.: Theory Methods Appl., 71 (2009), 3501–3508. https://doi.org/10.1016/j.na.2009.02.029 doi: 10.1016/j.na.2009.02.029
![]() |
[40] |
S. Kumar, K. Singh, R. K. Gupta, Coupled Higgs field equation and Hamiltonian amplitude equation: Lie classical approach and (G' /G)-expansion method, Pramana J. Phys., 79 (2012), 41–60. https://doi.org/10.1007/s12043-012-0284-7 doi: 10.1007/s12043-012-0284-7
![]() |