This paper analyzes the relationship between the nonfinancial corporate sector leverage (NFCL) and financial stability in the post crisis era, revealing considerable heterogeneity across the level of financial intermediation (FI). First, we use the financial soundness indicators proposed by the IMF and the generalized dynamic factor model (GDFM) to measure the financial stability represented by the FSI of OECD countries. Second, in a panel quantile regression framework, we examine the effects of NFCL on FSI for different quantiles of FSI. The result shows that the impact of NFCL on financial stability at different levels is asymmetric, which reflects differences in the supply and demand of debt. Third, this paper further discusses the transmission mechanism of FI between NFCL and FSI based on the panel smooth transition regression model (PSTR). We find that the transmission channel of NFCL to financial stability depends on the level of financial intermediation, but with diverging magnitude for the different levels of FI.
Citation: Ziqing Du, Yaru Li, Guangming Lv. Evaluating the nonlinear relationship between nonfinancial corporate sector leverage and financial stability in the post crisis era[J]. AIMS Mathematics, 2022, 7(11): 20178-20198. doi: 10.3934/math.20221104
[1] | Yousef Jawarneh, Humaira Yasmin, M. Mossa Al-Sawalha, Rasool Shah, Asfandyar Khan . Fractional comparative analysis of Camassa-Holm and Degasperis-Procesi equations. AIMS Mathematics, 2023, 8(11): 25845-25862. doi: 10.3934/math.20231318 |
[2] | Zheng Dou, Kexin Luo . Global weak solutions of nonlinear rotation-Camassa-Holm model. AIMS Mathematics, 2023, 8(7): 15285-15298. doi: 10.3934/math.2023781 |
[3] | Yunxi Guo, Ying Wang . The Cauchy problem to a gkCH equation with peakon solutions. AIMS Mathematics, 2022, 7(7): 12781-12801. doi: 10.3934/math.2022707 |
[4] | A. K. M. Kazi Sazzad Hossain, M. Ali Akbar . Solitary wave solutions of few nonlinear evolution equations. AIMS Mathematics, 2020, 5(2): 1199-1215. doi: 10.3934/math.2020083 |
[5] | Mahmoud A. E. Abdelrahman, S. Z. Hassan, R. A. Alomair, D. M. Alsaleh . Fundamental solutions for the conformable time fractional Phi-4 and space-time fractional simplified MCH equations. AIMS Mathematics, 2021, 6(6): 6555-6568. doi: 10.3934/math.2021386 |
[6] | Zhe Ji, Yifan Nie, Lingfei Li, Yingying Xie, Mancang Wang . Rational solutions of an extended (2+1)-dimensional Camassa-Holm- Kadomtsev-Petviashvili equation in liquid drop. AIMS Mathematics, 2023, 8(2): 3163-3184. doi: 10.3934/math.2023162 |
[7] | M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397 |
[8] | Umair Ali, Sanaullah Mastoi, Wan Ainun Mior Othman, Mostafa M. A Khater, Muhammad Sohail . Computation of traveling wave solution for nonlinear variable-order fractional model of modified equal width equation. AIMS Mathematics, 2021, 6(9): 10055-10069. doi: 10.3934/math.2021584 |
[9] | M. TarikulIslam, M. AliAkbar, M. Abul Kalam Azad . Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative. AIMS Mathematics, 2018, 3(4): 625-646. doi: 10.3934/Math.2018.4.625 |
[10] | Ying Wang, Yunxi Guo . Blow-up solution and analyticity to a generalized Camassa-Holm equation. AIMS Mathematics, 2023, 8(5): 10728-10744. doi: 10.3934/math.2023544 |
This paper analyzes the relationship between the nonfinancial corporate sector leverage (NFCL) and financial stability in the post crisis era, revealing considerable heterogeneity across the level of financial intermediation (FI). First, we use the financial soundness indicators proposed by the IMF and the generalized dynamic factor model (GDFM) to measure the financial stability represented by the FSI of OECD countries. Second, in a panel quantile regression framework, we examine the effects of NFCL on FSI for different quantiles of FSI. The result shows that the impact of NFCL on financial stability at different levels is asymmetric, which reflects differences in the supply and demand of debt. Third, this paper further discusses the transmission mechanism of FI between NFCL and FSI based on the panel smooth transition regression model (PSTR). We find that the transmission channel of NFCL to financial stability depends on the level of financial intermediation, but with diverging magnitude for the different levels of FI.
There have been many literatures on continuous dependence and structural stability for the past few years, including those of Aulisa et al. [1], Celebi et al. [2,3], Liu et al. [4,5,6], Chen et al. [7,8], Ames and Payne [9,10], Ames and Straughan [11], Ciarletta and Straughan [12], Franchi and Straughan [13,14,15,16], Lin and Payne [17,18], Li et al. [19,20,21], Straughan et al. [22,23] and Zhou et al. [24,25]. Particularly, most researches focus on the continuous dependence on the boundary data, domain geometry, initial time geometry, and the model itself. Hirsch and Smale [26] pointed out the necessity of studying the continuous dependence of solutions. They emphasized the physical significance of this type of research. This means that changes in the coefficients of partial differential equations may be physically reflected through changes in constitutive parameters. We trust that mathematical analysis of these equations will help to disclose their applicability in physics. Since inevitable errors occur in both numerical calculations and physical measurements of data, continuous correlation results are very important. It is relevant to understand the extent to which such errors affect the solution.
Harfash [27] researched a system of equations to describe the double-diffusion convection in Darcy flow with magnetic field effect. The author assumed the magnetic fields with only the vertical component which was a specific magnetic field. By establishing a priori results, the author illustrates that the solution of the equations depends continuously on changes in the magnetic force and gravity vector coefficients. Some authors have paid attentions to similar problems. By employing Payne's [28] highly innovative procedure for obtaining a priori estimates, Ames and Payne [9] have established a similar result for the Navier-Stokes equations. But it is necessary to restrict the size of the interval or the size of the initial data in their result. A similar result for a Brinkman porous material and for the Darcy equations of flow in porous media has been derived by Franchi and Straughan [29] and Payne and Straughan [30], respectively.
In this paper, we assume that the Darcy flow with magnetic field effect occupies a bounded region Ω in R3 and that the boundary of the region is denoted by ∂Ω which is sufficient smooth to use the divergence theorem. The variables vi, T, C and p are the fluid velocity vector, the temperature, the salt concentration and the pressure, respectively. The governing equations for Darcy flow with magnetic field effect may be written as
vi=−p,i+giT+hiC+σ[(v×B0)×B0]i, | (1.1) |
T,t+viT,i=ΔT, | (1.2) |
C,t+viC,i=ΔC+γΔT, | (1.3) |
vi,i=0, | (1.4) |
where gi and hi are gravity vector terms arising in the density equation of state, Δ is Laplacian operator, γ is the Soret coefficient, σ is magnetic coefficient, and B0=(0,0,B0) is a magnetic field with only the vertical component and v=(v1,v2,v3). In (1.1), we take a particular magnetic field, as in [27,31].
On the boundary, we impose
vini=0,∂T∂n+kT=F(x,t),∂C∂n+τC=G(x,t), on ∂Ω×{t>0}, | (1.5) |
where F and G are positive functions, ni is the unit outward normal to ∂Ω and k and τ are positive constants. Equation (1.5) may be thought of as expressing Newton's law of cooling with inhomogeneous outside temperature or inhomogeneous outside salt concentration, i.e.
∂T∂n=−k(T−Ta),∂C∂n=−κ(C−Ca), |
where Ta and Ca are the ambient outside temperature and the ambient outside salt concentration, respectively. The initial conditions are written as
T(x,0)=T0(x);C(x,0)=C0(x); in Ω, | (1.6) |
for prescribed functions T0 and C0.
In our work, we still consider the same particular equations as in [27]. But our boundary conditions is Newton's law of cooling type with inhomogeneous outside temperature. Thus, the Sobolev inequalities which are used in [27] are not available in our paper. Compared with [9], we no longer need to impose special restrictions on the region Ω. So their method fails to handle the system in this paper. In this paper, we derive the upper bounds of ∫ΩT4dx and ∫ΩC4dx which are difficulty to obtain. By using the these priori results, we derive the continuous dependence on the magnetic coefficient and the boundary parameter. Throughout this paper, the usual summation convention is employed with repeated Latin subscripts summed from 1 to 3. The comma is used to indicate partial differentiation, i.e. ui,j=∂ui∂xj, ui,jui,j=Σ3i,j=1∂ui∂xj.
In this section, we want to derive bounds for various norms of vi, T and C in term of known data which will be used in the next sections. Before we derive these bounds, we prove some lemmas firstly.
Lemma 2.1. Let functions fi,(i=1,2,3), defined on ∂Ω, be some functions such that
fini≥f0>0 ,on ∂Ω, | (2.1) |
and
|fi,i|≤m1,|fi|≤m2, | (2.2) |
where f0>0 is a constant and m1, m2 are both positiveconstants. Then,
f0∫∂Ωφ2dA≤m3∫Ωφ2dx+α∫Ωφ,iφ,idx, | (2.3) |
for a function φ which is defined on the closure of thedomain Ω. In (2.3), α>0 is an arbitrary constant which may be very small and m3=(m1+m22α).
Proof. We began with the identity
(fiφ2),i=fi,iφ2+2fiφφ,i. | (2.4) |
Integrating (2.4) over Ω, using (2.1) and the divergence theorem, we have
f0∫∂Ωφ2dA≤∫Ω(fiφ2),idx=∫Ωfi,iφ2dx+2∫Ωfiφφ,idx. | (2.5) |
The Hölder inequality and (2.2) allow us to obtain
f0∫∂Ωφ2dA≤m1∫Ωφ2dx+2m2(∫Ωφ2dx)12(∫Ωφ,iφ,idx)12, | (2.6) |
from which it follows that
f0∫∂Ωφ2dA≤(m1+m22α)∫Ωφ2dx+α∫Ωφ,iφ,idx. | (2.7) |
Lemma 2.2. Let T,v∈H1(Ω), T0∈L2P(Ω) and F∈L2P(∂Ω). Then, the solution for (1.2) satisfies
supΩ×[0,ς]|T|≤Tm, |
where Tm=max{|T0|,|F|}.
Proof. We began with
ddt∫ΩT2pdx=2p∫ΩT2p−1T,tdx. |
Using (1.2), the divergence theorem and the Young inequality, we are leaded to
ddt∫ΩT2pdx≤2p∫∂ΩT2p−1FdA−2pk∫∂ΩT2pdA−2p(2p−1)∫ΩT2p−2T,iT,idx≤(2p−1)2p−1(2pk)2p−1∫∂ΩF2pdA. |
An integration of this inequality allows that
(∫ΩT2pdx)12p≤(2p−12pk∫∂ΩF2pdA+∫ΩT2p0dx)12p. |
Allowing p→∞, we obtain
supΩ×[0,ς]|T|≤Tm, |
where Tm depends on the initial-boundary conditions of T.
Lemma 2.3. Let T,v∈H1(Ω) and C be thesolutions for (1.2) and (1.3) and T0,C0∈C2(Ω), F,G∈C2(∂Ω×{t>0}). Then,
∫ΩT2dx≤A1(t),∫ΩC2dx≤A2(t), | (2.8) |
where A1(t) and A2(t) are positive functions which will be given later.
Proof. Using (1.2) and the divergence theorem, we compute
12ddt∫ΩT2dx=∫ΩTT,tdx=∫ΩT[ΔT−viT,i]dx=∫∂ΩTFdA−k∫∂ΩT2dA−∫ΩT,iT,idx. | (2.9) |
By the Hölder inequality and the Young inequality, from (2.9) we have
12ddt∫ΩT2dx+∫ΩT,iT,idx≤14k∫∂ΩF2dA. | (2.10) |
Integrating (2.10) from 0 to t, we have
∫ΩT2dx+2∫t0∫ΩT,iT,idxdη≤12k∫t0∫∂ΩF2dAdη+∫ΩT20dx≐A1(t). | (2.11) |
From the identity
∫ΩC(C,t+viC,i−ΔC−γΔT)dx=0, |
we get
12ddt∫ΩC2dx+∫ΩC,iC,idx=∫∂ΩGCdA−τ∫∂ΩC2dA+γ∫∂ΩFCdA−kγ∫∂ΩTCdA−γ∫ΩT,iC,idx. | (2.12) |
Upon employing the Cauchy-Schwarz inequality and the arithmetic-geometric mean inequality, we can get
∫∂ΩGCdA≤1τ∫∂ΩG2dA+τ4∫∂ΩC2dA,γ∫∂ΩFCdA≤γ2τ∫∂ΩF2dA+τ4∫∂ΩC2dA,kγ∫∂ΩTCdA≤12τk2γ2∫∂ΩT2dA+τ2∫∂ΩC2dA,γ∫ΩT,iC,idx≤12γ2∫ΩT,iT,idx+12∫ΩC,iC,idx. |
We use these inequalities together with (2.12) to arrive at
ddt∫ΩC2dx+∫ΩC,iC,idx≤2τ∫∂ΩG2dA+2γ2τ∫∂ΩF2dA+k2γ2τ∫∂ΩT2dA+γ2∫ΩT,iT,idx. | (2.13) |
Letting φ=T in Lemma 2.1 and using (2.11), we have
f0∫∂ΩT2dA≤m3∫ΩT2dx+α∫ΩT,iT,idx≤m3A1(t)+α∫ΩT,iT,idx. | (2.14) |
Thus, (2.13) can be rewritten as
ddt∫ΩC2dx+∫ΩC,iC,idx≤2τ∫∂ΩG2dA+2γ2τ∫∂ΩF2dA+k2m3γ2f0τA1(t)+2γ2∫ΩT,iT,idx, | (2.15) |
with α=f0τk2. An integration of (2.15) leads to
∫ΩC2dx+∫t0∫ΩC,iC,idxdη≤2τ∫t0∫∂ΩG2dAdη+2γ2τ∫t0∫∂ΩF2dAdη+k2m3γ2f0τ∫t0A1(η)dη+2γ2∫t0∫ΩT,iT,idxdη+∫ΩC20dx. | (2.16) |
In light of (2.11), we have
∫ΩC2dx+∫t0∫ΩC,iC,idxdη≤2τ∫t0∫∂ΩG2dAdη+2γ2τ∫t0∫∂ΩF2dAdη+k2m3γ2f0τ∫t0A1(η)dη+γ2A1(t)+∫ΩC20dx≐A2(t). | (2.17) |
Lemma 2.4. Let T and C be the solutions for(1.2) and (1.3), and T,v∈H1(Ω), T0,C0∈C4(Ω), F,G∈C4(∂Ω×{t>0}). Then,
∫ΩT4dx≤A3(t),∫ΩC4dx≤A4(t), | (2.18) |
where A3(t) and A4(t) will be given later.
Proof. We first let H be a solution of the problem
H,t+viH,i=ΔH, in Ω×{t>0},∂H∂n+τH=G(x,t),on ∂Ω×{t>0},H(x,0)=C0(x),in Ω. | (2.19) |
Using (2.19) and the divergence theorem, we find
14ddt∫ΩH4dx=∫ΩH3H,tdx=∫ΩH3[ΔH−viH,i]dx=∫∂ΩH3GdA−τ∫∂ΩH4dA−34∫Ω(H2),i(H2),idx. | (2.20) |
By the Hölder inequality, we have
∫ΩH4dx+3∫t0∫Ω(H2),i(H2),idxdη≤2764τ3∫∂ΩG4dA+∫ΩC40dx. | (2.21) |
From (2.21), it is clear that ∫ΩH4dx can be bounded by known data. Now, we set
ψ(x,t)=C−H. |
Then, ψ satisfies the initial-boundary condition problem
ψ,t+viψ,i=Δψ+γΔT,in Ω×{t>0},∂ψ∂n+τψ=0,on ∂Ω×{t>0},ψ(x,0)=0,in Ω. | (2.22) |
Next, we also define a new function
Φ(t)=δ1∫ΩT4dx+δ2∫ΩT2ψ2dx+∫Ωψ4dx, | (2.23) |
where δ1 and δ2 are positive constants to be determined later. Now, it is easy to see that
Φ′(t)=4δ1∫ΩT3(ΔT−viT,i)dx+2δ2∫ΩTψ2(ΔT−viT,i)dx+2δ2∫ΩT2ψ(Δψ+γΔT−viψ,i)dx+4∫Ωψ3(Δψ+γΔT−viψ,i)dx, | (2.24) |
from which we may get that
Φ′(t)=−3δ1∫Ω(T2),i(T2),idx−3∫Ω(ψ2),i(ψ2),idx−2δ2∫Ω(ψT,i+ψ,iT)(ψT,i+ψ,iT)dx−4δ2∫ΩTψψ,iT,idx−4δ2γ∫ΩTψT,iT,idx−2δ2γ∫ΩT2ψ,iT,idx−12γ∫Ωψ2ψ,iT,idx−4δ1k∫∂ΩT4dA−4τ∫∂Ωψ4dA+4δ1∫∂ΩT3FdA+2δ2∫∂Ωψ2TFdA+2δ2γ∫∂ΩψT2FdA−2δ2(k+τ)∫∂Ωψ2T2dA−2δ2kγ∫∂ΩψT3dA+4γ∫∂Ωψ3FdA−4kγ∫∂Ωψ3TdA=16∑1Ji. | (2.25) |
Now using the arithmetic-geometric mean and the Schwarz inequalities, we find that
J4≤12δ2ε1∫Ω(T2),i(T2),idx+δ22ε1∫Ω(ψ2),i(ψ2),idx, | (2.26) |
and
J5+J6=−4δ2γ∫ΩTT,i[Tψ,i+T,iψ]dx+2δ2γ∫ΩT2ψ,iT,idx≤δ2ε2∫Ω(T2),i(T2),idx+δ2γ2ε2∫Ω[Tψ,i+T,iψ][Tψ,i+T,iψ]dx+2δ2T2mγ(∫Ω|∇ψ|2dx∫Ω|∇T|2dx)12, | (2.27) |
where Tm is defined in Lemma 2.2. Furthermore,
J7=−12γ∫Ωψψ,i[ψT,i+ψ,iT]dx+12γ∫ΩTψ|∇ψ|2dx≤3ε3∫Ω(ψ2),i(ψ2),idx+3γ2ε3∫Ω[Tψ,i+T,iψ][Tψ,i+T,iψ]dx+3γ2ε4T2m∫Ω|∇ψ|2dx+3ε4∫Ω(ψ2),i(ψ2),idx, | (2.28) |
Inserting (2.26)–(2.28) into (2.25), and using the Hölder and the Young inequalities to the integrals on the boundary, we have
Φ′(t)≤−(3δ1−12δ2ε1−δ2ε2)∫Ω(T2),i(T2),idx−(3−δ22ε1−3ε3−3ε4)∫Ω(ψ2),i(ψ2),idx−(2δ2−δ2γ2ε2−3γ2ε3)∫Ω(ψT,i+ψ,iT)(ψT,i+ψ,iT)dx+2δ2T2mγ(∫Ω|∇ψ|2dx∫Ω|∇T|2dx)12+3γ2ε4T2m∫Ω|∇ψ|2dx−(4δ1γ−3δ1ε5−δ2ε72ε6−δ2ε8−δ2(κ+τ)ε10−32δ2kγε11−γε−313)∮∂ΩT4dA−(4κ−δ2ε6−δ2ε92ε8−δ2(κ+τ)ε10−12δ2kε−311−3γε12−3γε13)∮∂Ωψ4dA+(δ1ε−35+δ22ε6ε7+δ22ε8ε9+γε−312)∮∂ΩF4dA, | (2.29) |
where εi (i=1,2,⋯,13) are positive constants to be determined. To ensure that the coefficients of the first three terms and the sixth and seventh terms to be non-positive, we choose that
δ1=max{5γ4,27γ3(k+τ)2k+(92)43kγ3+12(92)3γ3k3}, δ2=6γ2,ε1=3γ2, ε2=γ2, ε3=12, ε4=6, ε5=γ3, ε6=k9γ2, ε7=kδ154γ3, ε8=δ112γ,ε9=kδ1108γ3, ε10=k9(κ+τ)γ2, ε11=3√92γ, ε12=ε13=2k9γ. |
We drop the non-positive terms in (2.29) to have
Φ′(t)≤2δ2T2mγ(∫Ω|∇ψ|2dx∫Ω|∇T|2dx)12+6γ2ε4T2m∫Ω|∇ψ|2dx+(δ1ε−35+δ22ε6ε7+δ22ε8ε9+γε−312)∮∂ΩF4dA. |
Using the arithmetic-geometric mean inequality and integrating the above formula from 0 to t, we obtain
Φ(t)≤˜m1∫t0∫Ω|∇ψ|2dxdη+˜m2∫t0∫Ω|∇T|2dxdη+˜m3∫t0∮∂ΩF4dAdη, | (2.30) |
where ˜m1=δ2T2mγ+6γ2ε4T2m, ˜m2=δ2T2mγ and ˜m3=(δ1ε−35+δ22ε6ε7+δ22ε8ε9+γε−312).
Next, we multiply (2.22)1 with ψ, integrate in Ω and use Cauchy-Schwarz's inequality to obtain
ddt||ψ||2=−2∫Ωψ,iψ,idx−2τ∫∂Ωψ2dA−2γ∫ΩT,iψ,idx−2γ∫∂ΩFψdA−2kγ∫∂ΩTψdA≤−∫Ωψ,iψ,idx+γ2∫ΩT,iT,idx+γ2τ∫∂ΩF2dA+k2γ2τ∫∂ΩT2dA. | (2.31) |
In light of (2.14), (2.31) yields that
ddt∫Ωψ2dx≤−∫Ωψ,iψ,idx+(k2γ2αf0τ+γ2)∫ΩT,iT,idx+γ2τ∫∂ΩF2dA+k2m3γ2f0τA1(t). | (2.32) |
Integrating (2.32) from 0 to t, we have
∫Ωψ2dx+∫t0∫Ωψ,iψ,idxdη≤(k2γ2αf0τ+γ2)∫t0∫ΩT,iT,idxdη+γ2τ∫t0∫∂ΩF2dAdη+k2m3γ2f0τ∫t0A1(η)dη. | (2.33) |
With the aid of (2.11), inequality (2.33) can be rewritten as
∫Ωψ2dx+∫t0∫Ωψ,iψ,idxdη≤12(k2γ2αf0τ+γ2)A1(t)+γ2τ∫t0∫∂ΩF2dAdη+k2m3γ2f0τ∫t0A1(η)dη. | (2.34) |
Inserting (2.34) into (2.30) and using (2.11) again, we have
Φ(t)≤m(t), | (2.35) |
where
m(t)=12~m1(k2γ2αf0τ+γ2)A1(t)+~m1γ2τ∫t0∫∂ΩF2dAdη+~m1k2m3γ2f0τ∫t0A1(η)dη+m22A1(t)+˜m3∫t0∫∂ΩF4dAdη. |
Recalling the definition of Φ(t) in (2.23), we may get
∫Ω|T|4dx≤1δ1m(t)≐A3(t),∫Ω|ψ|4dx≤m(t). | (2.36) |
By the triangle inequality, we have
(∫ΩC4dx)14≤(∫Ωψ4dx)14+(∫ΩH4dx)14. |
Combining (2.21) and (2.36), we have
∫ΩC4dx≤A4(t), | (2.37) |
where
A4(t)={m14(t)+[2764τ3∫∂ΩG4dA+∫ΩC40dx]14}4. |
Next, we pay our attention to seek the bound for L2 norm of vi as well as ∇v. We obtain the following lemma which will be used in the continuous dependence proof.
Lemma 2.5. Let vi, T and C are the solutions of(1.1)–(1.3) with the initial-boundary conditions (1.5) and(1.6), and T0,C0∈C4(Ω), F,G∈C4(∂Ω×{t>0}). Then,
∫Ωvividx≤A5(t),∫t0∫Ωvi,jvi,jdxdη≤A6(t), | (2.38) |
where A5(t) and A6(t) are positive functions which will bederived later.
Proof. We start with the identity
∫Ωvividx=∫Ωvi{−p,i+giT+hiC+σ[(v×B0)×B0]i}dx. |
Since B0=(0,0,B0), it is clear that [(v×B0)×B0]i=B20(¯kiv3−vi), where ¯k=(¯k1,¯k2,¯k3)=(0,0,1). Obviously,
[(v×B0)×B0]v=B20(¯kiv3−vi)vi=−B20[v21+v22]≤0, | (2.39) |
so by the Hölder inequality and the arithmetic-geometric mean inequality, we have
∫Ωvividx≤2g2∫ΩT2dx+2h2∫ΩC2dx. |
Combining (2.8) and Lemma 2.3, we obtain
∫Ωvividx≤2g2A1(t)+2h2A2(t)≐A5(t). | (2.40) |
We commence bounding the L2 norm for the velocity gradient. To do this, we split the velocity into symmetric and skew parts. We write
∫Ωvi,jvi,jdx=∫Ωvi,j(vi,j−vj,i)dx+∫Ωvi,jvj,idx. | (2.41) |
To bound the first term of (2.41), we use the Eq (1.1) to have
∫Ωvi,j(vi,j−vj,i)dx=∫Ω{−p,ij+giT,j+hiC,j+σB20(¯kiv3−vi),j}vi,jdx−∫Ω{−p,ij+gjT,i+hjC,i+σB20(¯kjv3−vj),i}vi,jdx=∫Ω(giT,j−gjT,i)vi,jdx+∫Ω(hiC,j−hjC,i)vi,jdx+σB20∫Ω(¯kiv3,j−¯kjv3,i)vi,jdx−σB20∫Ω(vi,j−vj,i)vi,jdx. | (2.42) |
Using Hölder inequality and arithmetic-geometric inequality again in (2.42), we arrive at
∫Ω(giT,j−gjT,i)vi,jdx≤∫Ω(giT,j−gjT,i)(giT,j−gjT,i)dx+14∫Ωvi,jvi,jdx=2∫Ω(g2T,iT,i−giT,igjT,j)dx+14∫Ωvi,jvi,jdx≤2∫Ω(g2T,iT,i+12gigiT,iT,i+12gjgjT,jT,j)dx+14∫Ωvi,jvi,jdx≤4g2∫ΩT,iT,idx+14∫Ωvi,jvi,jdx. | (2.43) |
Similarly, we also have
∫Ω(hiC,j−hjC,i)vi,jdx≤4h2∫ΩC,iC,idx+14∫Ωvi,jvi,jdx. | (2.44) |
In view of ¯k=(0,0,1), the third term of (2.42) yields
σB20∫Ω(¯kiv3,j−¯kjv3,i)vi,jdx=12σB20∫Ω(¯kiv3,j−¯kjv3,i)(vi,j−vj,i)dx=σB20∫Ω¯kiv3,j(vi,j−vj,i)dx=σB20∫Ωv3,j(v3,j−vj,3)dx≤σB20∫Ω(vi,j−vj,i)vi,jdx. | (2.45) |
Inserting (2.43)–(2.45) into (2.42), we have
∫Ωvi,j(vi,j−vj,i)dx≤4g2∫ΩT,iT,idx+4h2∫ΩC,iC,idx+12∫Ωvi,jvi,jdx. | (2.46) |
To handle the second term of (2.41), we use the divergence theorem and integrate by parts to obtain
∫Ωvi,jvj,idx=∫∂Ωvi,jvjnidA=∫∂Ω(vini),jvjdA−∫∂Ωvivjni,jdA. | (2.47) |
The first term of (2.47) is zero, since vini=0 on ∂Ω. If the region Ω is convex, Lin and Payne [18] state ∫∂Ωvivjni,jdA≥0 which leads to
∫Ωvi,jvj,idx≤0. |
For non-convex Ω,
∫Ωvi,jvj,idx≤k0∫∂ΩvividA. |
Using Lemma 2.1 with φ=vi, we conclude that
∫Ωvi,jvj,idx≤k0m3f0∫Ωvividx+k0f0α∫Ωvi,jvi,jdx. | (2.48) |
Choosing α=f04k0 and then inserting (2.46) and (2.48) into (2.41), we have
∫Ωvi,jvi,jdx≤4g2∫ΩT,iT,idx+4h2∫ΩC,iC,idx+k0m3f0∫Ωvividx+34∫Ωvi,jvi,jdx, |
from which it follows that
∫Ωvi,jvi,jdx≤16g2∫ΩT,iT,idx+16h2∫ΩC,iC,idx+4k0m3f0∫Ωvividx. |
By (2.11), (2.19) and (2.48), we have
∫t0∫Ωvi,jvi,jdxdη≤8g2A1(t)+16h2A2(t)+4k0m3f0∫t0A5(η)dη≐A6(t), |
where we have used (2.11), (2.17) and (2.40).
Let (vi,p,T,C) and (v∗i,p∗,T∗,C∗) be the solutions to the problem (1.1)–(1.6) for the same initial-boundary data, but for different magnetic coefficients σ1 and σ2, respectively. Differential variables wi, π, θ, Σ and σ are defined by
wi=vi−v∗i,θ=T−T∗,Σ=C−C∗,π=p−p∗,σ=σ1−σ2. |
Then,
wi=−π,i+giθ+hiΣ+σ[(v∗×B0)×B0]i+σ1[(w×B0)×B0]i, | (3.1) |
θ,t+v∗iθ,i+wiT,i=Δθ, | (3.2) |
Σ,t+v∗iΣ,i+wiC,i=ΔΣ+γΔθ, | (3.3) |
wi,i=0, | (3.4) |
with the initial-boundary conditions
wini=0,∂θ∂n=−kθ,∂Σ∂n=−τΣ,on ∂Ω×{t>0}, | (3.5) |
θ(x,0)=Σ(x,0)=0, x∈Ω. | (3.6) |
We have the following theorem.
Theorem 3.1. If T0,C0∈L∞(Ω), F,G∈C4(∂Ω×{t>0}), then the solutions of (1.1)–(1.6)depend continuously on the magnetic coefficient σ, asshown explicit in inequalities (3.26) and (3.27) whichderives a relation of the form
β∫Ωθ2dx+∫ΩΣ2dx≤L1σ2, |
and
∫Ωwiwidx≤L2σ2, |
where L1 and L2 are priori constants and β>0 is acomputable constant.
Proof. Multiplying (3.16) with wi and integrating over Ω, then using Cauchy-Schwarz's inequality and the arithmetic-geometric mean inequality, we obtain
∫Ωwiwidx≤g(∫Ωθ2dx)12(∫Ωwiwidx)12+h(∫ΩΣ2dx)12(∫Ωwiwidx)12+σB20∫Ω(¯kiv∗3−v∗i)widx+σ1B20∫Ω(¯kiw3−wi)widx, | (3.7) |
where g=max{√gigi}, h=max{√hihi}. Since ¯k=(0,0,1), it is easy to find
σ1B20∫Ω(¯kiw3−wi)widx≤0 | (3.8) |
as in (2.39). By the Cauchy-Schwarz inequality, we have
σB20∫Ω(¯kiv∗3−v∗i)widx≤σB20(∫Ω(v∗3)2dx)12(∫Ωwiwidx)12+σB20(∫Ωv∗iv∗idx)12(∫Ωwiwidx)12≤2σB20(∫Ωv∗iv∗idx)12(∫Ωwiwidx)12. | (3.9) |
Inserting (3.8) and (3.9) into (3.7) and applying the arithmetic-geometric mean inequality, we have
∫Ωwiwidx≤4g2∫Ωθ2dx+4h2∫ΩΣ2dx+8σ2B40∫Ωv∗iv∗idx. | (3.10) |
In view of (2.38) in Lemma 2.5, from (3.10) we have
∫Ωwiwidx≤4g2∫Ωθ2dx+4h2∫ΩΣ2dx+8σ2B40A5(t). | (3.11) |
Next, we compute
ddt(β∫Ωθ2dx+∫ΩΣ2dx)=2β∫Ωθθ,tdx+2∫ΩΣΣ,tdx=2β∫Ωθ[Δθ−v∗iθ,i−wiT,i]dx+2∫ΩΣ[ΔΣ+γΔθ−v∗iΣ,i−wiC,i]dx=−2β∫Ωθ,iθ,idx−2∫ΩΣ,iΣ,idx−2βk∫∂Ωθ2dA−2τ∫∂ΩΣ2dA+2β∫Ωθ,iwiTdx+2∫ΩΣ,iwiCdx−2γ∫Ωθ,iΣ,idx−2kγ∫∂ΩθΣdA. | (3.12) |
Using Cauchy-Schwarz inequality and the arithmetic-geometric mean inequality and Lemma 2.4, we have
2β∫Ωθ,iwiTdx≤2β(∫Ωθ,iθ,idx)12(∫Ω(wiwi)2dx)14(∫ΩT4dx)14≤β∫Ωθ,iθ,idx+β(∫Ω(wiwi)2dx)12A123(t), | (3.13) |
and
2∫ΩΣ,iwiCdx≤∫ΩΣ,iΣ,idx+(∫Ω(wiwi)2dx)12A124(t). | (3.14) |
Inserting these two inequalities into (3.12) and using the Cauchy-Schwarz inequality in the last two terms on the right of (3.12), we have
ddt(β∫Ωθ2dx+∫ΩΣ2dx)≤−(β−γβ1)∫Ωθ,iθ,idx−(1−γβ1)∫ΩΣ,iΣ,idx−k(2β−γβ2)∫∂Ωθ2dA−(2τ−kγβ2)∫∂ΩΣ2dA+(∫Ω(wiwi)2dx)12[βA123(t)+A124(t)], | (3.15) |
for some arbitrary positive constants \beta_1 and \beta_2 .
Now, we use the bound for L_4 norm of w_i which has been derived in [18] (see (B.17)). We write here as the form
\begin{equation} \begin{split} \Big(\int_\Omega(w_iw_i)^2dx\Big)^\frac{1}{2}\leq M\Big\{(1+\frac{\delta}{4})\int_\Omega w_iw_idx+\frac{3}{4}\delta^{-\frac{1}{3}}\int_\Omega w_{i,j}w_{i,j}dx\Big\}, \end{split} \end{equation} | (3.16) |
where M is a positive computable constant and \delta > 0 is an arbitrary constant. To get the bound for \int_\Omega w_{i, j}w_{i, j}dx , we use a similar methods which were used in (2.41) and (2.48) with \alpha = \frac{f_0}{2k_0} to have
\begin{equation} \begin{split} \int_\Omega w_{i,j}w_{i,j}dx\leq2\int_\Omega w_{i,j}(w_{i,j}-w_{j,i})dx+\frac{2k_0m_3}{f_0}\int_\Omega w_{i}w_{i}dx. \end{split} \end{equation} | (3.17) |
To handle the first term of (3.17), we compute
\begin{equation} \begin{split} &\int_\Omega(w_{i,j}-w_{j,i})(w_{i,j}-w_{j,i})dx\\ = &2\int_\Omega w_{i,j}(w_{i,j}-w_{j,i})dx\\ = &2\int_\Omega w_{i,j}[-\pi_{,ij}+g_i\theta_{,j}+h_i\Sigma_{,j}+\sigma B_0^2(\overline{k}_iv^*_{3,j}-v^*_{i,j})+\sigma_1 B_0^2(\overline{k}_iw_{3,j}-w_{i,j})]dx\\ &-2\int_\Omega w_{i,j}[-\pi_{,ij}+g_j\theta_{,i}+h_j\Sigma_{,i}+\sigma B_0^2(\overline{k}_jv^*_{3,i}-v^*_{j,i})+\sigma_1 B_0^2(\overline{k}_jw_{3,j}-w_{j,i})]dx\\ = &2\int_\Omega[g_i\theta_{,j}-g_j\theta_{,i}]w_{i,j}dx+2\int_\Omega[g_j\Sigma_{,i}-g_i\Sigma_{,j}]w_{i,j}dx \\ &+2\sigma B_0^2\int_\Omega[\overline{k}_iv^*_{3,j}-\overline{k}_jv^*_{3,i}]w_{i,j}dx-2\sigma B_0^2\int_\Omega[v^*_{i,j}-v^*_{j,i}]w_{i,j}dx\\ &+2\sigma_1 B_0^2\int_\Omega[\overline{k}_iw_{3,j}-\overline{k}_jw_{3,i}]w_{i,j}dx -2\sigma_1B_0^2\int_\Omega[w_{i,j}-w_{j,i}]w_{i,j}dx. \end{split} \end{equation} | (3.18) |
Using the Cauchy-Schwarz inequality and the arithmetic-geometric mean inequality, we have
\begin{equation} \begin{split} 2\int_\Omega[g_i\theta_{,j}-g_j\theta_{,i}]w_{i,j}dx& = \int_\Omega[g_i\theta_{,j}-g_j\theta_{,i}][w_{i,j}-w_{j,i}]dx = 2\int_\Omega g_i\theta_{,j}[w_{i,j}-w_{j,i}]dx\\ &\leq8g^2\int_\Omega\theta_{,j}\theta_{,j}dx+\frac{1}{8}\int_\Omega(w_{i,j}-w_{j,i})(w_{i,j}-w_{j,i})dx\\ &\leq8g^2\int_\Omega\theta_{,j}\theta_{,j}dx+\frac{1}{4}\int_\Omega(w_{i,j}-w_{j,i})w_{i,j}dx, \end{split} \end{equation} | (3.19) |
and
\begin{equation} \begin{split} 2\int_\Omega[h_i\Sigma_{,j}-h_j\Sigma_{,i}]w_{i,j}dx\leq8h^2\int_\Omega\Sigma_{,j}\Sigma_{,j}dx+\frac{1}{4}\int_\Omega(w_{i,j}-w_{j,i})w_{i,j}dx. \end{split} \end{equation} | (3.20) |
Using the Cauchy-Schwarz inequality and the arithmetic-geometric mean inequality, we have
\begin{equation} \begin{split} &2\sigma B_0^2\int_\Omega[\overline{k}_iv^*_{3,j}-\overline{k}_jv^*_{3,i}]w_{i,j}dx -2\sigma B_0^2\int_\Omega[v^*_{i,j}-v^*_{j,i}]w_{i,j}dx\\ = &2\sigma B_0^2\int_\Omega\overline{k}_iv^*_{3,j}[w_{i,j}-w_{j,i}]dx-2\sigma B_0^2\int_\Omega v^*_{i,j}[w_{i,j}-w_{j,i}]dx\\ \leq&8\sigma^2B_0^4\int_\Omega v^*_{3,j}v^*_{3,j}dx+8\sigma^2B_0^4\int_\Omega v^*_{i,j}v^*_{i,j}dx+\frac{1}{2}\int_\Omega(w_{i,j}-w_{j,i})w_{i,j}dx. \end{split} \end{equation} | (3.21) |
Since \overline {\underline {\textbf{k}} } = (0, 0, 1) , we have
\begin{equation} \begin{split} &2\sigma_1 B_0^2\int_\Omega[\overline{k}_iw_{3,j}-\overline{k}_jw_{3,i}]w_{i,j}dx\\ = &\; 2\sigma_1 B_0^2\int_\Omega\overline{k}_iw_{3,j}(w_{i,j}-w_{j,i})dx\\ = &\; 2\sigma_1 B_0^2\int_\Omega w_{3,j}(w_{3,j}-w_{j,3})dx\\ \leq&\; 2\sigma_1 B_0^2\int_\Omega w_{i,j}(w_{i,j}-w_{j,i})dx. \end{split} \end{equation} | (3.22) |
Inserting (3.19)–(3.21) and (3.22) into (3.18), we obtain
\begin{equation*} \begin{split} \int_\Omega w_{i,j}(w_{i,j}-w_{j,i})dx\leq8g^2\int_\Omega\theta_{,j}\theta_{,j}dx+8h^2\int_\Omega\Sigma_{,j}\Sigma_{,j}dx+8\sigma^2B_0^4\int_\Omega v^*_{3,j}v^*_{3,j}dx+8\sigma^2B_0^4\int_\Omega v^*_{i,j}v^*_{i,j}dx. \end{split} \end{equation*} |
It follows from (3.17) that
\begin{equation} \begin{split} \int_\Omega w_{i,j}w_{i,j}dx\leq&16g^2\int_\Omega\theta_{,j}\theta_{,j}dx+16h^2\int_\Omega\Sigma_{,j}\Sigma_{,j}dx\\ &+16\sigma^2B_0^4\int_\Omega v^*_{3,j}v^*_{3,j}dx+16\sigma^2B_0^4\int_\Omega v^*_{i,j}v^*_{i,j}dx+\frac{2k_0m_3}{f_0}\int_\Omega w_{i}w_{i}dx. \end{split} \end{equation} | (3.23) |
Combining (3.15), (3.16) and (3.23), we conclude
\begin{equation} \begin{split} \frac{d}{dt}\Big(\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\Big)\leq&-M_1\int_\Omega\theta_{,i}\theta_{,i}dx-M_2\int_\Omega\Sigma_{,i}\Sigma_{,i}dx-M_3\int_{\partial\Omega}\theta^2dA\\ &-M_4\int_{\partial\Omega}\Sigma^2dA+M_5\int_\Omega w_iw_idx[\beta A_3^\frac{1}{2}(t)+A_4^\frac{1}{2}(t)]\\ &+M_6\sigma^2\Big[\int_\Omega v^*_{3,j}v^*_{3,j}dx+\int_\Omega v^*_{i,j}v^*_{i,j}dx\Big]\Big[\beta A_3^\frac{1}{2}(t)+A_4^\frac{1}{2}(t)\Big], \end{split} \end{equation} | (3.24) |
where
\begin{equation*} \begin{split} M_1& = \beta-\frac{\gamma}{\beta_1}-12g^2M\delta^{-\frac{1}{3}}[\beta A_3^\frac{1}{2}(t)+A_4^\frac{1}{2}(t)], \\ M_2& = 1-\gamma\beta_1-12h^2M\delta^{-\frac{1}{3}}[\beta A_3^\frac{1}{2}(t)+A_4^\frac{1}{2}(t)],\\ M_3& = k(2\beta-\frac{\gamma}{\beta_2}),\ M_4 = 2\tau-k\gamma\beta_2,\\ M_5& = M(1+\frac{1}{4}\delta+\frac{3}{4}\delta^{-\frac{1}{3}}),\ M_6 = 12M\delta^{-\frac{1}{3}}B^4_0. \end{split} \end{equation*} |
Choosing \beta_1 = \frac{1}{2\gamma} , \beta_2 = \frac{2\tau}{k\gamma} and \beta = \max\{\frac{k\gamma^2}{4\tau}, 2\gamma^2 \}, we note that M_3 > 0 , M_4 = 0 , \beta-\frac{\gamma}{\beta_1} > 0 and 1-\gamma\beta_1 > 0 . Since the constant \delta is at our disposal then provided A_3(t) and A_4(t) are bounded, we may choose \delta so large that M_1\geq0 and M_2\geq0 . Dropping the non-positive terms in (3.24) and using Lemma 2.5 and (3.11), we have
\begin{equation} \begin{split} \frac{d}{dt}\Big(\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\Big)&\leq \mathcal{F}_1(t)\Big(\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\Big)+\sigma^2\mathcal{F}_2(t), \end{split} \end{equation} | (3.25) |
where
\begin{equation*} \begin{split} \mathcal{F}_1(t)& = 4M_5(\beta A_3^\frac{1}{2}(t)+A_4^\frac{1}{2}(t))\max\{\frac{g^2}{\beta},h^2\},\\ \mathcal{F}_2(t)& = 8M_5(\beta A_3^\frac{1}{2}(t)+A_4^\frac{1}{2}(t))B_0^4A_5(t)+2M_6(\beta A_3^\frac{1}{2}(t)+A_4^\frac{1}{2}(t))B_0^4A_6(t). \end{split} \end{equation*} |
From (3.25), we have
\begin{equation*} \begin{split} \frac{d}{dt}\Big\{\Big(\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\Big)\exp\Big(-\int_0^t\mathcal{F}_1(\eta)d\eta\Big)\Big\}\leq \sigma^2\mathcal{F}_2(t)\exp\Big(-\int_0^t\mathcal{F}_1(\eta)d\eta\Big), \end{split} \end{equation*} |
which follows that
\begin{equation} \begin{split} \beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\leq\sigma^2\int_0^t\mathcal{F}_2(t)\exp\Big(-\int_\eta^t\mathcal{F}_1(\zeta)d\zeta\Big)d\eta. \end{split} \end{equation} | (3.26) |
This is the continuous dependence result we want to prove. By (3.11), we may obtain the continuous dependence for {\textbf{v}} ,
\begin{equation} \begin{split} \int_\Omega w_iw_idx\leq\sigma^2\Big[\int_0^t\mathcal{F}_2(t)\exp\Big(-\int_\eta^t\mathcal{F}_1(\zeta)d\zeta\Big)d\eta+8B_0^4A_5(t)\Big]. \end{split} \end{equation} | (3.27) |
In this section, we derive the continuous dependence on the cooling coefficients and we let (u_i, p, T, C) and (u^*_i, p^*, T^*, C^*) be the solutions to the problem (1.1)–(1.3) for the same initial-boundary data and the same F and G , but for different the cooling coefficients k_1 , k_2 , \tau_1 and \tau_2 , respectively. As in Section 3, we still set
\begin{equation*} \begin{split} w_i = v_i-v^*_i,\quad \theta = T-T^*,\quad \Sigma = C-C^*,\quad \pi = p-p^*,\quad k = k_1-k_2, \quad \tau = \tau_1-\tau_2. \end{split} \end{equation*} |
Then (w_i, \theta, \Sigma, \pi) satisfy
\begin{align} & w_i = -\pi_{,i}+g_i\theta+h_i\Sigma+\sigma[({\textbf{w}}\times{\textbf{B}}_0)\times{\textbf{B}}_0]_i, \end{align} | (4.1) |
\begin{align} &\theta_{,t}+v^*_i\theta_{,i}+w_iT_{,i} = \Delta \theta, \end{align} | (4.2) |
\begin{align} &\Sigma_{,t}+v^*_i\Sigma_{,i}+w_iC_{,i} = \Delta\Sigma+\gamma\Delta\theta, \end{align} | (4.3) |
\begin{align} &w_{i,i} = 0, \end{align} | (4.4) |
with the initial-boundary conditions
\begin{equation} \begin{split} w_in_i = 0,\quad \frac{\partial\theta}{\partial n}+k_1\theta = -kT^*,\quad \frac{\partial\Sigma}{\partial n}+\tau_1\Sigma = -\tau C^*, \quad on \ \ \partial\Omega \times\{t > 0\}, \end{split} \end{equation} | (4.5) |
\begin{equation} \begin{split} \theta(x,0) = \Sigma(x,0) = 0,\ x\in\Omega. \end{split} \end{equation} | (4.6) |
We now prove the following theorem.
Theorem 4.1. If T_0, C_0\in L^\infty(\Omega) , F, G\in C^4({\partial\Omega\times\{t > 0\}}) , then the solution of Eq (1.1)–(1.3) withinitial-boundary conditions (1.5) and (1.6) dependscontinuously on the boundary parameters k and \tau in thesense that
\begin{equation*} \begin{split} \beta\int_\Omega \theta^2dx+\int_\Omega\Sigma^2dx\leq L_3k^2+L_4\tau^2. \end{split} \end{equation*} |
Further, {\boldsymbol{v}} depends continuously on k and \tau inthe manner
\begin{equation*} \begin{split} \int_\Omega w_iw_idx\leq L_5k^2+L_6\tau^2, \end{split} \end{equation*} |
where L_3 – L_6 are a priori constants.
Proof. Employing a similar methods of the last section, we have
\begin{equation} \begin{split} \int_\Omega w_iw_idx\leq4g^2\int_\Omega \theta^2dx+4h^2\int_\Omega\Sigma^2dx, \end{split} \end{equation} | (4.7) |
and
\begin{equation} \begin{split} \int_\Omega w_{i,j}w_{i,j}dx\leq16g^2\int_\Omega\theta_{,j}\theta_{,j}dx+16h^2\int_\Omega\Sigma_{,j}\Sigma_{,j}dx+\frac{8k_0m_3}{f_0}\Big(g^2\int_\Omega \theta^2dx+h^2\int_\Omega\Sigma^2dx\Big). \end{split} \end{equation} | (4.8) |
By using (4.2) , (4.3) and the divergence theorem, as the calculation in (3.12), we get
\begin{equation} \begin{split} &\frac{d}{dt}\Big(\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\Big) \\ = &-2\beta\int_\Omega\theta_{,i}\theta_{,i}dx-2\int_\Omega\Sigma_{,i}\Sigma_{,i}dx-2\beta k_1\int_{\partial\Omega}\theta^2dA\\ &-2\beta k\int_{\partial\Omega}\theta T^*dA-2\tau_1\int_{\partial\Omega}\Sigma^2dA-2\tau\int_{\partial\Omega}\Sigma C^*dA +2\beta\int_\Omega\theta_{,i}w_iTdx\\ &+2\int_\Omega\Sigma_{,i}w_iCdx-2\gamma\int_\Omega\theta_{,i}\Sigma_{,i}dx-2k_1\gamma\int_{\partial\Omega}\theta\Sigma dA-2k\gamma\int_{\partial\Omega}T^*\Sigma dA. \end{split} \end{equation} | (4.9) |
We note that (3.13) and (3.14) are still valid in this section. We inserting them into (4.9) and use Cauchy-Schwarz inequality in the other terms on the right of (4.9) to have
\begin{equation} \begin{split} &\frac{d}{dt}(\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx)\\ \leq&-(\beta-\frac{\gamma}{\beta_1})\int_\Omega\theta_{,i}\theta_{,i}dx-(1-\gamma\beta_1)\int_\Omega\Sigma_{,i}\Sigma_{,i}dx\\ &-(2\beta k_1-\beta\beta_3-\frac{k_1\gamma}{\beta_2})\int_{\partial\Omega}\theta^2dA-(2\tau_1-\beta_4-k_1\gamma\beta_2-\gamma\beta_5)\int_{\partial\Omega}\Sigma^2dA\\ &+\Big(\int_\Omega(w_iw_i)^2dx\Big)^\frac{1}{2}[\beta A_3^\frac{1}{2}(t)+A_4^\frac{1}{2}(t)]+k^2(\frac{\beta}{\beta_3}+\frac{\gamma}{\beta_5})\int_{\partial\Omega}(T^*)^2dA+\frac{\tau^2}{\beta_4}\int_{\partial\Omega}(C^*)^2dA. \end{split} \end{equation} | (4.10) |
We use the inequality (3.16) again and use (4.8) to have
\begin{equation} \begin{split} \int_\Omega(w_iw_i)^2dx\leq M\Big\{\int_\Omega w_iw_idx+\delta^{-\frac{1}{3}}\Big[\int_\Omega\theta_{,i}\theta_{,i}dx+\int_\Omega\Sigma_{,i}\Sigma_{,i}dx\Big]\Big\}, \end{split} \end{equation} | (4.11) |
where M is a positive computable constant. Inserting (4.11) into (4.10) and letting
\beta_1 = \frac{1}{\gamma},\ \beta_2 = \frac{\tau_1}{2k_1\gamma},\ \beta_3 = k_1,\ \beta_4 = \tau_1,\ \beta_5 = \frac{\tau_1}{2\gamma}, |
and then choosing \beta and \delta large enough such that the coefficients of the first four terms of (4.10) are non-positive, we have
\begin{equation} \begin{split} &\frac{d}{dt}\Big(\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\Big)\\ \leq& M\int_\Omega w_iw_idx\Big[\beta A_3^\frac{1}{2}(t)+A_4^\frac{1}{2}(t)\Big] +k^2\Big(\frac{\beta}{\beta_3} +\frac{\gamma}{\beta_5}\Big)\int_{\partial\Omega}(T^*)^2dA+\frac{\tau^2}{\beta_4}\int_{\partial\Omega}(C^*)^2dA, \end{split} \end{equation} | (4.12) |
where we have dropped the non-positive terms. Now, we derive bounds for the integrals on \partial\Omega . Using Lemma 2.1, we find
\begin{equation} \begin{split} \int_{\partial\Omega}(T^*)^2dA\leq\frac{m_3}{f_0}\int_{\Omega}(T^*)^2dx+\int_{\Omega}T^*_{,i}T^*_{,i}dx, \end{split} \end{equation} | (4.13) |
and
\begin{equation} \begin{split} \int_{\partial\Omega}(C^*)^2dA\leq\frac{m_3}{f_0}\int_{\Omega}(C^*)^2dx+\int_{\Omega}C^*_{,i}C^*_{,i}dx, \end{split} \end{equation} | (4.14) |
where we have chosen \alpha = 1 . Inserting (4.13) and (4.14) into (4.12) and recalling (2.8) and (4.7), we have
\begin{equation} \begin{split} \frac{d}{dt}\Big(\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\Big)\leq& \widetilde{\mathcal{F}}_1(t)\Big[\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\Big]+k^2\Big(\frac{\beta}{\beta_3} +\frac{\gamma}{\beta_5}\Big)\frac{m_3}{f_0}A_1(t)\\ &+k^2\Big(\frac{\beta}{\beta_3} +\frac{\gamma}{\beta_5}\Big)\int_{\Omega}T^*_{,i}T^*_{,i}dx+\frac{\tau^2m_3}{f_0\beta_4}A_2(t)+\frac{\tau^2}{\beta_4}\int_{\Omega}C^*_{,i}C^*_{,i}dx, \end{split} \end{equation} | (4.15) |
where
\begin{equation*} \begin{split} \widetilde{\mathcal{F}}_1(t) = 4M\max\{\frac{g^2}{\beta},h^2\}\Big[\beta A_3^\frac{1}{2}(t)+A_4^\frac{1}{2}(t)\Big]. \end{split} \end{equation*} |
It is obvious that (4.15) yields that
\begin{equation} \begin{split} &\frac{d}{dt}\Big[\Big(\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\Big)\cdot\exp\Big(-\int_0^t\widetilde{\mathcal{F}}_1(\eta)d\eta\Big)\Big]\\ \leq& \Big\{k^2\Big(\frac{\beta}{\beta_3} +\frac{\gamma}{\beta_5}\Big)\frac{m_3}{f_0}A_1(t)+k^2\Big(\frac{\beta}{\beta_3}+\frac{\gamma}{\beta_5}\Big)\int_{\Omega}T^*_{,i}T^*_{,i}dx\\ &+\frac{\tau^2m_3}{f_0\beta_4}A_2(t) +\frac{\tau^2}{\beta_4}\int_{\Omega}C^*_{,i}C^*_{,i}dx\}\cdot\exp\Big(-\int_0^t\widetilde{\mathcal{F}}_1(\eta)d\Big)\\ \leq& k^2\Big(\frac{\beta}{\beta_3} +\frac{\gamma}{\beta_5}\Big)\frac{m_3}{f_0}A_1(t)+k^2\Big(\frac{\beta}{\beta_3}+\frac{\gamma}{\beta_5}\Big) \int_{\Omega}T^*_{,i}T^*_{,i}dx+\frac{\tau^2m_3}{f_0\beta_4}A_2(t) +\frac{\tau^2}{\beta_4}\int_{\Omega}C^*_{,i}C^*_{,i}dx, \end{split} \end{equation} | (4.16) |
where we have used the fact \exp\Big(-\int_0^t\widetilde{\mathcal{F}}_1(\eta)d\eta\Big)\leq1 for t > 0 .
Integrating (4.16) from 0 to t leads to
\begin{equation} \begin{split} &\Big(\beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\Big)\cdot\exp\Big(-\int_0^t\widetilde{\mathcal{F}}_1(\eta)d\eta\Big)\\ \leq& k^2\Big(\frac{\beta}{\beta_3} +\frac{\gamma}{\beta_5}\Big)\frac{m_3}{f_0}\int_0^tA_1(\eta)d\eta +k^2\Big(\frac{\beta}{\beta_3}+\frac{\gamma}{\beta_5}\Big)\int_0^t\int_{\Omega}T^*_{,i}T^*_{,i}dxd\eta\\ &+\frac{\tau^2m_3}{f_0\beta_4}\int_0^tA_2(\eta)d\eta +\frac{\tau^2}{\beta_4}\int_0^t\int_{\Omega}C^*_{,i}C^*_{,i}dxd\eta. \end{split} \end{equation} | (4.17) |
Using (2.11) and (2.17) in (4.17) and setting
\begin{equation} \begin{split} \widetilde{\mathcal{F}}_2(t)& = \Big(\frac{\beta}{\beta_3} +\frac{\gamma}{\beta_5}\Big)\Big[\frac{m_3}{f_0}\int_0^tA_1(\eta)d\eta+\frac{1}{2}A_1(t)\Big],\quad \widetilde{\mathcal{F}}_3(t) = \frac{1}{\beta_4}\Big[\frac{m_3}{f_0A_2(t)}+\int_0^tA_2(\eta)d\eta\Big], \end{split} \end{equation} | (4.18) |
we obtain
\begin{equation} \begin{split} \beta\int_\Omega\theta^2dx+\int_\Omega\Sigma^2dx\leq k^2\widetilde{\mathcal{F}}_2(t)\cdot\exp\Big(\int_0^t\widetilde{\mathcal{F}}_1(\eta)d\eta\Big) +\tau^2\widetilde{\mathcal{F}}_3(t)\cdot\exp\Big(\int_0^t\widetilde{\mathcal{F}}_1(\eta)d\eta\Big). \end{split} \end{equation} | (4.19) |
This is the continuous dependence result for T and C . The continuous dependence for v_i follows directly from (4.7).
In this paper, the continuous dependence of the solution is obtained by using the methods of energy estimate and a priori estimates. The main innovation is to deal with the influence of boundary conditions and magnetic field. The structural stability of boundary parameters and magnetic field coefficients is proved.
The work was supported national natural Science Foundation of China (Grant No. 11371175), the science foundation of Guangzhou Huashang College (Grant No. 2019HSDS28).
The authors declare that they have no competing interests.
[1] | International Monetary Fund Staff, Financial soundness indicators: compilation guide, International Monetary Fund, 2006. Available from: https://www.imf.org/en/Publications/Manuals-Guides/Issues/2016/12/31/Financial-Soundness-Indicators-Compilation-Guide-17619. |
[2] | M. T. Kasselaki, A. O. Tagkalakis, Financial soundness indicators and financial crisis episodes, Ann. Finance, 10 (2014), 623-669. https://doi.org/10.1007/s10436-013-0233-6 |
[3] | T. Adrian, J. Kiff, H. S. Shin, Liquidity, leverage, and regulation 10 years after the global financial crisis, Annu. Rev. Financ. Econ., 10 (2018), 1-24. https://doi.org/10.1146/annurev-financial-110217-023113 |
[4] |
L. M. Chen, Z. Q. Du, Y. Tan, Sustainable exchange rates in China: Is there the heterogeneous effect of economic policy uncertainty?, Green Finance, 1 (2019), 346-363. https://doi.org/10.3934/gf.2019.4.346 doi: 10.3934/gf.2019.4.346
![]() |
[5] |
L. M. Chen, Z. Q. Du, Z. H. Hu, Impact of economic policy uncertainty on exchange rate volatility of China, Financ. Res. Lett., 32 (2020), 101266. https://doi.org/10.1016/j.frl.2019.08.014 doi: 10.1016/j.frl.2019.08.014
![]() |
[6] |
L. M. Chen, Z. Zhang, Z. Q. Du, L. L. Deng, Heterogeneous determinants of the exchange rate market in China with structural breaks, Appl. Econ., 53 (2021), 6839-6854. https://doi.org/10.1080/00036846.2021.1949432 doi: 10.1080/00036846.2021.1949432
![]() |
[7] |
M. Hong, X. L. Wang, Z. H. Li, Will oil price volatility cause market panic?, Energies, 15 (2022), 4629. https://doi.org/10.3390/en15134629 doi: 10.3390/en15134629
![]() |
[8] |
Z. Huang, H. Dong, S. Jia, Equilibrium pricing for carbon emission in response to the target of carbon emission peaking, Energ. Econ., 112 (2022), 106160. https://doi.org/10.1016/j.eneco.2022.106160 doi: 10.1016/j.eneco.2022.106160
![]() |
[9] |
Z. H. Li, Z. M. Huang, P. Failler, Dynamic correlation between crude oil price and investor sentiment in China: heterogeneous and asymmetric effect, Energies, 15 (2022), 687. https://doi.org/10.3390/en15030687 doi: 10.3390/en15030687
![]() |
[10] |
G. K. Liao, P. Hou, X. Y. Shen, K. Albitar, The impact of economic policy uncertainty on stock returns: The role of corporate environmental responsibility engagement, Int. J. Financ. Econ., 26 (2021), 4386-4392. https://doi.org/10.1002/ijfe.2020 doi: 10.1002/ijfe.2020
![]() |
[11] | M. N. Utomo, S. Rahayu, K. Kaujan, S. A. Irwandi, Environmental performance, environmental disclosure, and firm value: empirical study of non-financial companies at Indonesia Stock Exchange, Green Finance, 2 (2020), 100-113. https://doi.org/10.3934/gf.2020006 |
[12] |
S. Xu, Z. Q. Du, H. Zhang, Can crude oil serve as a hedging asset for underlying securities?—Research on the heterogenous correlation between crude oil and stock index, Energies, 13 (2020), 3139. https://doi.org/10.3390/en13123139 doi: 10.3390/en13123139
![]() |
[13] |
Z. H. Li, J. H. Zhong, Impact of economic policy uncertainty shocks on China's financial conditions, Financ. Res. Lett., 35 (2020), 101303. https://doi.org/10.1016/j.frl.2019.101303 doi: 10.1016/j.frl.2019.101303
![]() |
[14] |
Z. H. Li, H. Dong, C. Floros, A. Charemis, P. Failler, Re-examining Bitcoin volatility: a caviar-based approach, Emerg. Mark. Financ. Trade, 58 (2022), 1320-1338. https://doi.org/10.1080/1540496x.2021.1873127 doi: 10.1080/1540496x.2021.1873127
![]() |
[15] |
Z. H. Li, L. M. Chen, H. Dong, What are Bitcoin market reactions to its-related events?, Int. Rev. Econ. Financ., 73 (2021), 1-10. https://doi.org/10.1016/j.iref.2020.12.020 doi: 10.1016/j.iref.2020.12.020
![]() |
[16] | International Monetary Fund, Global financial stability report: responding to the financial crisis and measuring systemic risks, 2009. Available from: https://www.imf.org/en/Publications/GFSR/Issues/2016/12/31/Responding-to-the-Financial-Crisis-and-Measuring-Systemic-Risks |
[17] |
T. Adrian, E. Etula, T. Muir, Financial intermediaries and the cross-section of asset returns, J. Financ., 69 (2014), 2557-2596. https://doi.org/10.1111/jofi.12189 doi: 10.1111/jofi.12189
![]() |
[18] |
F. Smets, S. Villa, Slow recoveries: any role for corporate leverage?, J. Econ. Dyn. Control, 70 (2016), 54-85. https://doi.org/10.1016/j.jedc.2016.06.003 doi: 10.1016/j.jedc.2016.06.003
![]() |
[19] |
R. Kollmann, S. Zeugner, Leverage as a predictor for real activity and volatility, J. Econ. Dyn. Control, 36 (2012), 1267-1283. https://doi.org/10.1016/j.jedc.2012.03.010 doi: 10.1016/j.jedc.2012.03.010
![]() |
[20] | V. V. Acharya, L. H. Pedersen, T. Philippon, M. Richardson, Measuring systemic risk, The Review of Financial Studies, 30 (2017), 2-47. https://doi.org/10.1093/rfs/hhw088 |
[21] |
C. Brownlees, R. F. Engle, Srisk: a conditional capital shortfall measure of systemic risk, The Review of Financial Studies, 30 (2017), 48-79. https://doi.org/10.1093/rfs/hhw060 doi: 10.1093/rfs/hhw060
![]() |
[22] |
K. S. Peng, G. F. Yan, A survey on deep learning for financial risk prediction, Quant. Financ. Econ., 5 (2021), 716-737. https://doi.org/10.3934/qfe.2021032 doi: 10.3934/qfe.2021032
![]() |
[23] |
C. Borio, Towards a macroprudential framework for financial supervision and regulation?, CESifo Economic Studies, 49 (2003), 181-215. https://doi.org/10.1093/cesifo/49.2.181 doi: 10.1093/cesifo/49.2.181
![]() |
[24] |
T. Adam, V. K. Goyal, The investment opportunity set and its proxy variables, J. Financ. Res., 31 (2008), 41-63. https://doi.org/10.1111/j.1475-6803.2008.00231.x doi: 10.1111/j.1475-6803.2008.00231.x
![]() |
[25] | S. Puddu, Optimal weights and stress banking indexes, IRENE Working Paper, 2013, 13-02. |
[26] | V. Chirila, C. Chirila, The steel european stock market efficiency, CES Working Papers, VⅡ (2015), 873-880. |
[27] | C. T. Albulescu, Forecasting the Romanian financial system stability using a stochastic simulation model, J. Econ. Forecast., 13 (2010), 81-98. |
[28] | V. C. Morris, Measuring and forecasting financial stability: the composition of an aggregate financial stability index for Jamaica, Business, Finance & Economics in Emerging Economies, 6 (2010), 34-51. |
[29] |
E. P. Davis, D. Karim, Comparing early warning systems for banking crises, J. Financ. Stabil., 4 (2008), 89-120. https://doi.org/10.1016/j.jfs.2007.12.004 doi: 10.1016/j.jfs.2007.12.004
![]() |
[30] |
M. A. Morales, D. Estrada, A financial stability index for Colombia, Ann. Finance, 6 (2010), 555-581. https://doi.org/10.1007/s10436-010-0161-7 doi: 10.1007/s10436-010-0161-7
![]() |
[31] | K. Virolainen, Macro stress testing with a macroeconomic credit risk model for Finland, Bank of Finland Research Discussion Paper, 2004, 18/2004. |
[32] |
M. Hosen, M. Y. Broni, M. N. Uddin, What bank specific and macroeconomic elements influence non-performing loans in Bangladesh? Evidence from conventional and Islamic banks, Green Finance, 2 (2020), 212-226. https://doi.org/10.3934/gf.2020012 doi: 10.3934/gf.2020012
![]() |
[33] |
T. T. X. Huong, T. T. T. Nga, T. T. K. Oanh, Liquidity risk and bank performance in Southeast Asian countries: a dynamic panel approach, Quant. Financ. Econ., 5 (2021), 111-133. https://doi.org/10.3934/qfe.2021006 doi: 10.3934/qfe.2021006
![]() |
[34] |
J. A. P. Antunes, C. O. De Moraes, A. Rodrigues, How financial intermediation impacts on financial stability?, Appl. Econ. Lett., 25 (2018), 1135-1139. https://doi.org/10.1080/13504851.2017.1400647 doi: 10.1080/13504851.2017.1400647
![]() |
[35] | J. Williamson, The Washington consensus and beyond, Economic and Political Weekly, 38 (2003), 1475-1481. |
[36] | F. S. Mishkin, Global financial instability: framework, events, issues, J. Econ. Perspect., 13 (1999), 3-20. https://doi.org/10.1257/jep.13.4.3 |
[37] |
C. W. Granger, B.-N. Huangb, C.-W. Yang, A bivariate causality between stock prices and exchange rates: evidence from recent Asianflu, The Quarterly Review of Economics and Finance, 40 (2000), 337-354. https://doi.org/10.1016/S1062-9769(00)00042-9 doi: 10.1016/S1062-9769(00)00042-9
![]() |
[38] |
E. Farhi, J. Tirole, Deadly embrace: sovereign and financial balance sheets doom loops, The Review of Economic Studies, 85 (2018), 1781-1823. https://doi.org/10.1093/restud/rdx059 doi: 10.1093/restud/rdx059
![]() |
[39] |
T. H. Li, J. H. Zhong, Z. M. Huang, Potential dependence of financial cycles between emerging and developed countries: based on Arima-Garch copula model, Emerg. Mark. Financ. Trade, 56 (2020), 1237-1250. https://doi.org/10.1080/1540496x.2019.1611559 doi: 10.1080/1540496x.2019.1611559
![]() |
[40] | B. J. Moore, Shaking the invisible hand: complexity, endogenous money and exogenous interest rates, Basingstoke: Palgrave Macmillan, 2006. |
[41] |
F. Moscone, E. Tosetti, A. Canepa, Real estate market and financial stability in US metropolitan areas: a dynamic model with spatial effects, Reg. Sci. Urban Econ., 49 (2014), 129-146. https://doi.org/10.1016/j.regsciurbeco.2014.08.003 doi: 10.1016/j.regsciurbeco.2014.08.003
![]() |
[42] |
C. M. Reinhart, K. S. Rogoff, Is the 2007 US sub-prime financial crisis so different? An international historical comparison, Am. Econ. Rev., 98 (2008), 339-344. https://doi.org/10.1257/aer.98.2.339 doi: 10.1257/aer.98.2.339
![]() |
[43] |
S. Chan, G. F. Han, W. L. Zhang, How strong are the linkages between real estate and other sectors in China?, Res. Int. Bus. Financ., 36 (2016), 52-72. https://doi.org/10.1016/j.ribaf.2015.09.018 doi: 10.1016/j.ribaf.2015.09.018
![]() |
[44] | E. Takáts, Ageing and asset prices, BIS Working Papers, 2010,318. |
[45] |
B. Büyükkarabacak, N. T. Valev, The role of household and business credit in banking crises, J. Bank Financ., 34 (2010), 1247-1256. https://doi.org/10.1016/j.jbankfin.2009.11.022 doi: 10.1016/j.jbankfin.2009.11.022
![]() |
[46] | A. Alter, A. X. Feng, N. Valckx, Understanding the macro-financial effects of household debt: a global perspective, IMF Working Papers, 2018, 2018/076. |
[47] | G. Phelan, Financial intermediation, leverage, and macroeconomic instability, Am. Econ. J.: Macroecon., 8 (2016), 199-224. https://doi.org/10.1257/mac.20140233 |
[48] |
Y. Liu, Z. H. Li, M. R. Xu, The influential factors of financial cycle spillover: evidence from China, Emerg. Mark. Financ. Trade, 56 (2020), 1336-1350. https://doi.org/10.1080/1540496x.2019.1658076 doi: 10.1080/1540496x.2019.1658076
![]() |
[49] |
T. H. Li, X. Li, G. K. Liao, Business cycles and energy intensity. Evidence from emerging economies, Borsa Istanb. Rev., 22 (2022), 560-570. https://doi.org/10.1016/j.bir.2021.07.005 doi: 10.1016/j.bir.2021.07.005
![]() |
[50] |
K. Istiak, The nature of shadow bank leverage shocks on the macroeconomy, The North American Journal of Economics and Finance, 50 (2019), 101029. https://doi.org/10.1016/j.najef.2019.101029 doi: 10.1016/j.najef.2019.101029
![]() |
[51] | V. V. Acharya, S. Viswanathan, Leverage, moral hazard, and liquidity, J. Financ., 66 (2011), 99-138. https://doi.org/10.1111/j.1540-6261.2010.01627.x |
[52] | E. G. Mendoza, Sudden stops, financial crises, and leverage, Am. Econ. Rev., 100 (2010), 1941-1966. https://doi.org/10.1257/aer.100.5.1941 |
[53] |
O. Akinci, R. Chahrour, Good news is bad news: leverage cycles and sudden stops, J. Int. Econ., 114 (2018), 362-375. https://doi.org/10.1016/j.jinteco.2018.07.006 doi: 10.1016/j.jinteco.2018.07.006
![]() |
[54] |
A. Boitani, C. Punzo, Banks' leverage behaviour in a two-agent new Keynesian model, J. Econ. Behav. Organ., 162 (2019), 347-359. https://doi.org/10.1016/j.jebo.2018.12.016 doi: 10.1016/j.jebo.2018.12.016
![]() |
[55] |
F. Beltrame, D. Previtali, A. Sclip, Systematic risk and banks leverage: the role of asset quality, Financ. Res. Lett., 27 (2018), 113-117. https://doi.org/10.1016/j.frl.2018.02.015 doi: 10.1016/j.frl.2018.02.015
![]() |
[56] |
M. B. Devereux, J. Yetman, Leverage constraints and the international transmission of shocks, J. Money Credit Bank., 42 (2010), 71-105. https://doi.org/10.1111/j.1538-4616.2010.00330.x doi: 10.1111/j.1538-4616.2010.00330.x
![]() |
[57] |
M. R. Xu, K. Albitar, Z. H. Li, Does corporate financialization affect EVA? Early evidence from China, Green Finance, 2 (2020), 392-408. https://doi.org/10.3934/gf.2020021 doi: 10.3934/gf.2020021
![]() |
[58] | Z. H. Li, F. Q. Zou, B. Mo, Does mandatory CSR disclosure affect enterprise total factor productivity?, Econ. Res.-Ekon. Istraz., in press. https://doi.org/10.1080/1331677x.2021.2019596 |
[59] |
O. I. Bacha, A. Mirakhor, Funding development infrastructure without leverage: a risk-sharing alternative using innovative sukuk structures, World Econ., 41 (2018), 752-762. https://doi.org/10.1111/twec.12512 doi: 10.1111/twec.12512
![]() |
[60] |
Z. H. Li, F. Q. Zou, Y. Tan, J. H. Zhu, Does financial excess support land urbanization—an empirical study of cities in China, Land, 10 (2021), 635. https://doi.org/10.3390/land10060635 doi: 10.3390/land10060635
![]() |
[61] |
Y. S. Liang, K. Shi, L. S. Wang, J. Y. Xu, Local government debt and firm leverage: evidence from China, Asian Econ. Policy Rev., 12 (2017), 210-232. https://doi.org/10.1111/aepr.12176 doi: 10.1111/aepr.12176
![]() |
[62] | X. H. Gu, P. S. Tam, Y. Zhang, C. K. Lei, Inequality, leverage and crises: theory and evidence revisited, World Econ., 42 (2019), 2280-2299. https://doi.org/10.1111/twec.12806 |
[63] | M. Lacoviello, Financial business cycles, Rev. Econ. Dyn., 18 (2015), 140-163. https://doi.org/10.1016/j.red.2014.09.003 |
[64] |
P. Martin, T. Philippon, Inspecting the mechanism: leverage and the great recession in the eurozone, Am. Econ. Rev., 107 (2017), 1904-1937. https://doi.org/10.1257/aer.20150630 doi: 10.1257/aer.20150630
![]() |
[65] | E. A. Ghossoub, Financial market participation, financial intermediation, and monetary policy, Econ. Lett., 117 (2012), 127-130. https://doi.org/10.1016/j.econlet.2012.04.090 |
[66] | C. A. Yepez, Financial intermediation, consumption dynamics, and business cycles, Econ. Model., 60 (2017), 231-243. https://doi.org/10.1016/j.econmod.2016.09.026 |
[67] |
B. McCaig, T. Stengos, Financial intermediation and growth: some robustness results, Econ. Lett., 88 (2005), 306-312. https://doi.org/10.1016/j.econlet.2004.12.031 doi: 10.1016/j.econlet.2004.12.031
![]() |
[68] | T. Adrian, H. S. Shin, Liquidity and leverage, J. Financ. Intermed., 19 (2010), 418-437. https://doi.org/10.1016/j.jfi.2008.12.002 |
[69] | R. Babihuga, Macroeconomic and financial soundness indicators: an empirical investigation, IMF Working Papers, 2007, 2007/115. |
[70] | M. C. Navajas, A. Thegeya, Financial soundness indicators and banking crises, IMF Working Papers, 2013, 2013/263. |
[71] | A. San Jose, A. Georgiou, Financial soundness indicators (FSIs): framework and implementation, In: Proceedings of the IFC Conference on "Measuring financial innovation and its impact", Basel, 26-27 August 2008, 2009,277-282. |
1. | Abdul Ghaffar, Ayyaz Ali, Sarfaraz Ahmed, Saima Akram, Moin-ud-Din Junjua, Dumitru Baleanu, Kottakkaran Sooppy Nisar, A novel analytical technique to obtain the solitary solutions for nonlinear evolution equation of fractional order, 2020, 2020, 1687-1847, 10.1186/s13662-020-02751-5 | |
2. | Haci Mehmet Baskonus, Muzaffer Ercan, Extraction Complex Properties of the Nonlinear Modified Alpha Equation, 2021, 5, 2504-3110, 6, 10.3390/fractalfract5010006 | |
3. | Thilagarajah Mathanaranjan, Solitary wave solutions of the Camassa–Holm-Nonlinear Schrödinger Equation, 2020, 19, 22113797, 103549, 10.1016/j.rinp.2020.103549 | |
4. | Onur Alp Ilhan, M. Nurul Islam, M. Ali Akbar, Construction of Functional Closed Form Wave Solutions to the ZKBBM Equation and the Schrödinger Equation, 2020, 2228-6187, 10.1007/s40997-020-00358-5 | |
5. | Abdulla - Al - Mamun, Samsun Nahar Ananna, Tianqing An, Nur Hasan Mahmud Shahen, , Periodic and solitary wave solutions to a family of new 3D fractional WBBM equations using the two-variable method, 2021, 3, 26668181, 100033, 10.1016/j.padiff.2021.100033 | |
6. | M. Al-Amin, M. Nurul Islam, M. Ali Akbar, Adequate wide-ranging closed-form wave solutions to a nonlinear biological model, 2021, 4, 26668181, 100042, 10.1016/j.padiff.2021.100042 | |
7. | Jiahua Fang, Muhammad Nadeem, Hanan A. Wahash, Arzu Akbulut, A Semianalytical Approach for the Solution of Nonlinear Modified Camassa–Holm Equation with Fractional Order, 2022, 2022, 2314-4785, 1, 10.1155/2022/5665766 | |
8. | Md. Tarikul Islam, Mst. Armina Akter, J. F. Gómez-Aguilar, Md. Ali Akbar, Novel and diverse soliton constructions for nonlinear space–time fractional modified Camassa–Holm equation and Schrodinger equation, 2022, 54, 0306-8919, 10.1007/s11082-022-03602-1 | |
9. | S M Rayhanul Islam, S M Yiasir Arafat, Hanfeng Wang, Abundant closed-form wave solutions to the simplified modified Camassa-Holm equation, 2022, 24680133, 10.1016/j.joes.2022.01.012 | |
10. | Aniqa Zulfiqar, Jamshad Ahmad, Exact solitary wave solutions of fractional modified Camassa-Holm equation using an efficient method, 2020, 59, 11100168, 3565, 10.1016/j.aej.2020.06.002 | |
11. | Ismail Onder, Melih Cinar, Aydin Secer, Mustafa Bayram, Analytical solutions of simplified modified Camassa-Holm equation with conformable and M-truncated derivatives: A comparative study, 2022, 24680133, 10.1016/j.joes.2022.06.012 | |
12. | Mounirah Areshi, Aly R. Seadawy, Asghar Ali, Abdulrahman F. AlJohani, Weam Alharbi, Amal F. Alharbi, Construction of Solitary Wave Solutions to the (3 + 1)-Dimensional Nonlinear Extended and Modified Quantum Zakharov–Kuznetsov Equations Arising in Quantum Plasma Physics, 2023, 15, 2073-8994, 248, 10.3390/sym15010248 | |
13. | M. Al-Amin, M. Nurul Islam, M. Ali Akbar, The closed-form soliton solutions of the time-fraction Phi-four and (2+1)-dimensional Calogero–Bogoyavlenskii–Schiff model using the recent approach, 2022, 5, 26668181, 100374, 10.1016/j.padiff.2022.100374 | |
14. | M. Ayesha Khatun, Mohammad Asif Arefin, M. Hafiz Uddin, Mustafa Inc, Luigi Rodino, Abundant Explicit Solutions to Fractional Order Nonlinear Evolution Equations, 2021, 2021, 1563-5147, 1, 10.1155/2021/5529443 | |
15. | M. Nurul Islam, Onur Alp İlhan, M. Ali Akbar, Fatma Berna Benli, Danyal Soybaş, Wave propagation behavior in nonlinear media and resonant nonlinear interactions, 2022, 108, 10075704, 106242, 10.1016/j.cnsns.2021.106242 | |
16. | Noha M. Rasheed, Mohammed O. Al-Amr, Emad A. Az-Zo’bi, Mohammad A. Tashtoush, Lanre Akinyemi, Stable Optical Solitons for the Higher-Order Non-Kerr NLSE via the Modified Simple Equation Method, 2021, 9, 2227-7390, 1986, 10.3390/math9161986 | |
17. | M. Ayesha Khatun, Mohammad Asif Arefin, M. Ali Akbar, M. Hafiz Uddin, Numerous explicit soliton solutions to the fractional simplified Camassa-Holm equation through two reliable techniques, 2023, 20904479, 102214, 10.1016/j.asej.2023.102214 | |
18. | M. Al-Amin, M. Nurul Islam, Onur Alp İlhan, M. Ali Akbar, Danyal Soybaş, Firdous A. Shah, Solitary Wave Solutions to the Modified Zakharov–Kuznetsov and the (2 + 1)-Dimensional Calogero–Bogoyavlenskii–Schiff Models in Mathematical Physics, 2022, 2022, 2314-4785, 1, 10.1155/2022/5224289 | |
19. | Minzhi Wei, Liping He, Existence of periodic wave for a perturbed MEW equation, 2023, 8, 2473-6988, 11557, 10.3934/math.2023585 | |
20. | Thitthita Iatkliang, Supaporn Kaewta, Nguyen Minh Tuan, Sekson Sirisubtawee, Novel Exact Traveling Wave Solutions for Nonlinear Wave Equations with Beta-Derivatives via the sine-Gordon Expansion Method, 2023, 22, 2224-2880, 432, 10.37394/23206.2023.22.50 | |
21. | Melike Kaplan, Rubayyi T. Alqahtani, Nadiyah Hussain Alharthi, Wave Propagation and Stability Analysis for Ostrovsky and Symmetric Regularized Long-Wave Equations, 2023, 11, 2227-7390, 4030, 10.3390/math11194030 | |
22. | Sujoy Devnath, Shahansha Khan, M. Ali Akbar, Exploring solitary wave solutions to the simplified modified camassa-holm equation through a couple sophisticated analytical approaches, 2024, 59, 22113797, 107580, 10.1016/j.rinp.2024.107580 | |
23. | YANZHI MA, ZENGGUI WANG, BIFURCATION AND EXACT SOLUTIONS OF SPACE-TIME FRACTIONAL SIMPLIFIED MODIFIED CAMASSA–HOLM EQUATION, 2023, 31, 0218-348X, 10.1142/S0218348X23500858 | |
24. | Md. Abde Mannaf, Rajandra Chadra Bhowmik, Mst. Tania Khatun, Md. Ekramul Islam, Udoy S. Basak, M. Ali Akbar, Optical solitons of SMCH model in mathematical physics: impact of wind and friction on wave, 2024, 56, 0306-8919, 10.1007/s11082-023-05641-8 | |
25. | Mrutyunjaya Sahoo, S. Chakraverty, 2024, 9780443154041, 227, 10.1016/B978-0-44-315404-1.00019-9 | |
26. | Ghazala Akram, Maasoomah Sadaf, Saima Arshed, Muhammad Abdaal Bin Iqbal, Simulations of exact explicit solutions of simplified modified form of Camassa–Holm equation, 2024, 56, 1572-817X, 10.1007/s11082-024-06940-4 | |
27. | Md. Tarikul Islam, Shahariar Ryehan, Farah Aini Abdullah, J.F. Gómez-Aguilar, The effect of Brownian motion and noise strength on solutions of stochastic Bogoyavlenskii model alongside conformable fractional derivative, 2023, 287, 00304026, 171140, 10.1016/j.ijleo.2023.171140 | |
28. | Aly R. Seadway, Asghar Ali, Ahmet Bekir, Adem C. Cevikel, Analysis of the(3+1)-Dimensional Fractional Kadomtsev–Petviashvili–Boussinesq Equation: Solitary, Bright, Singular, and Dark Solitons, 2024, 8, 2504-3110, 515, 10.3390/fractalfract8090515 | |
29. | Faisal Yasin, Muhammad Arshad, Ghulam Farid, Mohammad Ali Hoseinzadeh, Hadi Rezazadeh, W-shape and abundant of other solitary wave solutions of the positive Gardner Kadomtsov–Petviashivilli dynamical model with applications, 2024, 56, 1572-817X, 10.1007/s11082-024-06922-6 | |
30. | Aly R. Seadawy, Asghar Ali, Ahmet Bekir, Novel solitary waves solutions of the extended cubic(3+1)-dimensional Schr\ddot{o}dinger equation via applications of three mathematical methods, 2024, 56, 1572-817X, 10.1007/s11082-024-06528-y | |
31. | Jamilu Sabi’u, Mayssam Tarighi Shaayesteh, Ali Taheri, Hadi Rezazadeh, Mustafa Inc, Ali Akgül, New exact solitary wave solutions of the generalized (3 + 1)-dimensional nonlinear wave equation in liquid with gas bubbles via extended auxiliary equation method, 2023, 55, 0306-8919, 10.1007/s11082-023-04870-1 | |
32. | M. Ashikur Rahman, M. Al-Amin, Mst. Kamrunnaher, M. Abul Kawser, Rajaul Haque, M. Ali Akbar, M. Nurul Islam, Mathematical analysis of some new adequate broad-ranging soliton solutions of nonlinear models through the recent technique, 2024, 9, 26668181, 100634, 10.1016/j.padiff.2024.100634 | |
33. | Hassan Almusawa, Musawa Yahya Almusawa, Adil Jhangeer, Zamir Hussain, A Comprehensive Study of Dynamical Behavior and Nonlinear Structures of the Modified α Equation, 2024, 12, 2227-7390, 3809, 10.3390/math12233809 | |
34. | Md. Asaduzzaman, Farhana Jesmin, Construction of the Closed Form Wave Solutions for TFSMCH and (1 1) Dimensional TFDMBBM Equations via the EMSE Technique+, 2025, 9, 2504-3110, 72, 10.3390/fractalfract9020072 | |
35. | Yimin Liu, Xiaoshan Zhao, Application of homotopy analysis method to solve a class of time-fractional order mCH equations, 2025, 2964, 1742-6588, 012043, 10.1088/1742-6596/2964/1/012043 | |
36. | Kang-Jia Wang, Guo-Dong Wang, Feng Shi, Xiao-Lian Liu, Hong-Wei Zhu, Variational principle, Hamiltonian, bifurcation analysis, chaotic behaviors and the diverse solitary wave solutions of the simplified modified Camassa–Holm equation, 2025, 22, 0219-8878, 10.1142/S0219887825500136 | |
37. | H. A. Ashi, Noufe H. Aljahdaly, Investigation of the damped geophysical KdV equation using the explicit exponential time differencing method, 2025, 81, 1573-0484, 10.1007/s11227-025-07289-5 |