For generalizations of concepts of different fields fractional derivative operators as well as fractional integral operators are useful notions. Our aim in this paper is to discuss boundedness of the integral operators which contain Mittag-Leffler function in their kernels. The results are obtained for strongly (α,h−m)-convex functions which hold for different kinds of convex functions at the same time. They also give improvements/refinements of many already published results.
Citation: Yonghong Liu, Ghulam Farid, Dina Abuzaid, Hafsa Yasmeen. On boundedness of fractional integral operators via several kinds of convex functions[J]. AIMS Mathematics, 2022, 7(10): 19167-19179. doi: 10.3934/math.20221052
[1] | Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379 |
[2] | Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab . k-Fractional inequalities associated with a generalized convexity. AIMS Mathematics, 2023, 8(12): 28540-28557. doi: 10.3934/math.20231460 |
[3] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[4] | Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067 |
[5] | Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297 |
[6] | Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469 |
[7] | Wenfeng He, Ghulam Farid, Kahkashan Mahreen, Moquddsa Zahra, Nana Chen . On an integral and consequent fractional integral operators via generalized convexity. AIMS Mathematics, 2020, 5(6): 7632-7648. doi: 10.3934/math.2020488 |
[8] | Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly (α,m)-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661 |
[9] | Ye Yue, Ghulam Farid, Ayșe Kübra Demirel, Waqas Nazeer, Yinghui Zhao . Hadamard and Fejér-Hadamard inequalities for generalized k-fractional integrals involving further extension of Mittag-Leffler function. AIMS Mathematics, 2022, 7(1): 681-703. doi: 10.3934/math.2022043 |
[10] | Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407 |
For generalizations of concepts of different fields fractional derivative operators as well as fractional integral operators are useful notions. Our aim in this paper is to discuss boundedness of the integral operators which contain Mittag-Leffler function in their kernels. The results are obtained for strongly (α,h−m)-convex functions which hold for different kinds of convex functions at the same time. They also give improvements/refinements of many already published results.
Fractional integral operators have great significance in extensive fields of science and engineering. They are widely used to construct and solve fractional order models and fractional dynamical systems. In recent decades fractional integral operators are frequently used to study different types of integral inequalities including well known inequalities of Hadamard [1,2,3,4,5], Ostrowski [6,7,8,9], Grüss [10,11], Opial [12], Chebsheve [13,14] and Minkowski [15,16].
We have motivated by ongoing research in integral inequalities, and interested to establish inequalities for fractional integral operators defined in [17]. To attain the desired results, we have used a generalized class of functions called strongly (α,h−m)-convex functions. The findings of this paper simultaneously give generalizations as well as refinements of many recently published inequalities.
The unified Mittag-Leffler function is defined as follows:
Definition 1.1. [17] For a_=(a1,a2,...,an), b_=(b1,b2,...,bn), c_=(c1,c2,...,cn), where ai, bi, ci∈C;i=1,2,3,...,n such that ℜ(ai),ℜ(bi),ℜ(ci)>0, ∀i. Also let α,β,γ,δ,μ,ν,λ,ρ,θ,t∈C, min{ℜ(α),ℜ(β),ℜ(γ),ℜ(δ),ℜ(θ)}>0 and k∈(0,1)∪N with k+ℜ(ρ)<ℜ(δ+ν+α), Im(ρ)=Im(δ+ν+α), then Mittag-Leffler function is defined by
Mλ,ρ,θ,k,nα,β,γ,δ,μ,ν(z;a_,b_,c_,ϱ)=∞∑l=0∏ni=1βϱ(bi,ai)(λ)ρl(θ)klzl∏ni=1β(ci,ai)(γ)δl(μ)νlΓ(αl+β), | (1.1) |
where Γ(μ) is the gamma function, Γ(μ)=∫∞0e−zzμ−1dz, (θ)kl is the Pochhammer symbol, (θ)kl=Γ(θ+lk)Γ(θ) and βϱ is the extension of beta function and it is defined as follows:
βϱ(ϑ,y)=∫10ϑζ−1(1−ϑ)y−1e−(ϱϑ(1−ϑ))dϑ. | (1.2) |
Along with the convergence conditions of the unified Mittag-Leffler function given in Definition 1.1, the unified fractional operators are defined as follows:
Definition 1.2. [17] Let Φ∈L1[ξ1,ξ2]. Then ∀ζ∈[ξ1,ξ2], the fractional integral operator containing the unified Mittag-Leffler function Mλ,ρ,θ,k,nα,β,γ,δ,μ,ν(z;a_,b_,c_,ϱ) satisfying all the convergence conditions is defined as follows:
(Υω,λ,ρ,k,nξ+1,α,β,γ,δ,μ,νΦ)(ζ;a_,b_,c_,ϱ)=∫ζξ1(ζ−ϑ)α−1Mλ,ρ,k,nα,β,γ,δ,μ,ν(ω(ζ−ϑ)μ;a_,b_,c_,ϱ)Φ(ϑ)dϑ, | (1.3) |
(Υω,λ,ρ,k,nξ−2,α,β,γ,δ,μ,νΦ)(ζ;a_,b_,c_,ϱ)=∫ξ2ζ(ϑ−ζ)α−1Mλ,ρ,k,nα,β,γ,δ,μ,ν(ω(ζ−ϑ)μ;a_,b_,c_,ϱ)Φ(ϑ)dϑ. | (1.4) |
By setting ai=l, ϱ=0 and ℜ(ϱ)>0 in (1.3) and (1.4), we get the fractional integral operator associated with generalized Q function as (see [18]):
(QΥω,λ,ρ,k,nξ+1,α,β,γ,δ,μ,νΦ)(ζ;a_,b_)=∫ζξ1(ζ−ϑ)α−1Qλ,ρ,k,nα,β,γ,δ,μ,ν(ω(ζ−ϑ)μ;a_,b_)Φ(ϑ)dϑ, | (1.5) |
(QΥω,λ,ρ,k,nξ−2,α,β,γ,δ,μ,νΦ)(ζ;a_,b_)=∫ξ2ζ(ϑ−ζ)α−1Qλ,ρ,k,nα,β,γ,δ,μ,ν(ω(ϑ−ζ)μ;a_,b_)Φ(ϑ)dϑ, | (1.6) |
where
Qλ,ρ,θ,k,nα,β,γ,δ,μ,ν(z;a_,b_)=∞∑l=0n∏i=1β(bi,l)(λ)ρl (θ)klzln∏i=1β(ai,l)(γ)δl(μ)νl Γ(αl+β) |
is a generalized Q function defined in [19].
The more generalized and extended version of integral operator given in Definition 1.2 is defined as follows:
Definition 1.3. [20] Let Δ∈L1[ξ1,ξ2], 0<ξ1,ξ2<∞ be a positive function and let Ψ:[ξ1,ξ2]→R be a differentiable and strictly increasing function. Also let Δζ be an increasing function on [ξ1,∞). Then for ζ∈[ξ1,ξ2] the unified integral operator in its generalized form satisfying all the convergence conditions is defined by:
(ΔΨΥω,λ,ρ,θ,k,nξ+1,α,β,γ,δ,μ,νΦ)(ζ;ϱ)=∫ζuΛϑζ(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)Φ(ϑ)d(Ψ(ϑ)), | (1.7) |
(ΔΨΥω,λ,ρ,θ,k,nξ−2,α,β,γ,δ,μ,νΦ)(ζ;ϱ)=∫vζΛζϑ(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)Φ(ϑ)d(Ψ(ϑ)), | (1.8) |
where
Λϑζ(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)=Δ(Ψ(ζ)−Ψ(ϑ))Ψ(ζ)−Ψ(ϑ)Mλ,ρ,θ,k,nα,β,γ,δ,μ,ν(ω(Ψ(ζ)−Ψ(ϑ))μ;a_,b_,c_,ϱ). | (1.9) |
Definition 1.4. [18] By setting ai=l, ϱ=0 and ℜ(ϱ)>0 in (1.7) and (1.8), we get the fractional integral operator associated with generalized Q function as follows:
(ΨQΥΔ,ω,λ,ρ,θ,k,nξ+1,α,β,γ,δ,μ,νΦ)(ζ;a_,b_)=∫ζξ1Λyζ(Qλ,ρ,k,nα,β,γ,μ,νΨ;Δ)Φ(ϑ)d(Ψ(ϑ)), | (1.10) |
(ΨQΥΔ,ω,λ,ρ,θ,k,nξ−2,α,β,γ,δ,μ,νΦ)(ζ;a_,b_)=∫bζΛyζ(Qλ,ρ,k,nα,β,γ,μ,νΨ;Δ)Φ(ϑ)d(Ψ(ϑ)), | (1.11) |
where Λϑζ(Qλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)=Δ(Ψ(ζ)−Ψ(ϑ))Ψ(ζ)−Ψ(ϑ)Qλ,ρ,θ,k,nα,β,γ,δ,μ,ν(ω(Ψ(ζ)−Ψ(ϑ))μ,a_,b_,ϱ).
One can note that if Ψ and Δζ are increasing functions, then for u<ϑ<v,u,v∈[ξ1,ξ2], the kernel Λϑζ(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ) satisfies the following inequality:
Λuϑ(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)≤Λuv(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ). | (1.12) |
For more details, one can see [21]. In the whole paper we will use
I(ξ1,ξ2,Ψ)=1ξ2−ξ1∫ξ2ξ1Ψ(ϑ)dϑ. | (1.13) |
Convex functions are extensively utilized in mathematics, physics, mathematical statistics and economics. The geometrical visualization of a convex function can be seen in the Hadamard inequality. Several new classes of functions have been defined to prove generalizations and refinements of many known mathematical inequalities. The definition of strongly (α,h−m)-convex function is defined as follows:
Definition 1.5. [22] Let J⊆R be an interval containing (0,1) and let h:J→R be a non-negative function. A function Φ:[0,ξ2]→R is called strongly (α,h−m)-convex function with modulus C≥0, if f is non-negative and for all ζ,y∈[0,ξ2], ϑ∈(0,1) and m∈(0,1], one have the inequality
Φ(ζϑ+m(1−ϑ)y)≤h(ϑα)Φ(ζ)+mh(1−ϑα)f(y)−mCh(ϑα)h(1−ϑα)|y−ζ|2. | (1.14) |
Remark 1. The above definition produces several types of convex functions like (h−m)-convex, (s,m)-convex, strongly (α,m)-convex, (α,m)-convex functions etc.
The upcoming section consists of bounds of fractional integral operators given in (1.7) and (1.8). They are constructed by using definition of strongly (α,h−m)-convex function. We have established a Hadamard type inequality, by using a lemma for strongly (α,h−m)-convex functions. The results of this paper are connected with various inequalities that have been published in recent decades. Finally, by using strongly (α,h−m)-convexity of the function |Φ′| further bounds are given.
Theorem 2.1. Let Φ∈L1[ξ1,ξ2] be an integrable strongly (α,h−m)-convex function. Also let Δζ be an increasing function on [ξ1,ξ2] and, let Ψ:[ξ1,ξ2]⟶R be differentiable and strictly increasing function, also let Δζ be an increasing function on [ξ1,ξ2]. Then ∀ζ∈[ξ1,ξ2], we have the following inequality containing the unified Mittag-Leffler function Mλ,ρ,θ,k,nα,β,γ,δ,μ,ν(z;a_,b_,c_,ϱ) satisfying all the convergence conditions:
(ΔΨΥω,λ,ρ,θ,k,nξ+1,α,β,γ,μ,νΦ)(ζ;ϱ)+(ΔΨΥω,λ,ρ,θ,k,nξ−2,α,β,γ,μ,νΦ)(ζ;ϱ)≤Λξ1ζ(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)(ζ−ξ1)×(Φ(ξ1)Xξ1ζ(rα,h,Ψ′)+mΦ(ζm)Xξ1ζ(rα,h,Ψ′)−C(ζ−ξ1m)2h(1)(Ψ(ζ)−Ψ(ξ1))m(ζ−ξ1))+Λζξ2(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)(Φ(ξ2)Xξ1ζ(rα,h,Ψ′)+mΦ(ζm)Xξ1ζ(1−rα,h,Ψ′)−C(ξ2m−ζ)2h(1)(Ψ(ξ2)−Ψ(x)m(ξ2−ζ)), | (2.1) |
where Xξ1ζ(rα,h,Ψ′)=∫ζξ1h(rα)Ψ′(ζ−r(ζ−ξ1))dr, Xξ1ζ(1−rα,h,Ψ′)=∫ζξ1h(1−rα)Ψ′(ζ−r(ζ−ξ1))dr.
Proof. Using (1.12), we can write the following inequalities:
Λϑζ(Mλ,ρ,θ,k,nα,β,γ,δ,μ,νΨ;Δ)Ψ′(ϑ)≤Λξ1ζ(Mλ,ρ,θ,k,nα,β,γ,δ,μ,νΨ;Δ)Ψ′(ϑ), | (2.2) |
Λζϑ(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)Ψ′(ϑ)≤Λζξ2(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)Ψ;Δ)Ψ′(ϑ). | (2.3) |
Using strongly (α,h−m)-convexity of Φ, we have
Φ(ϑ)≤h(ζ−ϑζ−ξ1)αΦ(ξ1)+mh(1−(ζ−ϑζ−ξ1)α)Φ(ζm)−C(ζ−ξ1m)2mh(ζ−ϑζ−ξ1)αh(1−(ζ−ϑζ−ξ1)α), | (2.4) |
Φ(ϑ)≤h(ϑ−ζξ2−ζ)αΦ(ξ1)+mh(1−(ϑ−ζξ2−ζ)α)Φ(ζm)−C(ζ−ξ1m)2mh(ϑ−ζξ2−ζ)αh(1−(ϑ−ζξ2−ζ)α). | (2.5) |
From (2.2) and (2.4), one can obtain the following inequality
∫ζξ1Λϑζ(Mλ,ρ,θ,k,nα,β,γ,δ,μ,νΨ;Δ)Φ(ϑ)d(Ψ(ϑ))≤Λξ1ζ(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)(Φ(ξ1)∫ζξ1h(ζ−ϑζ−ξ1)αd(Ψ(ϑ))+mΦ(ζm)∫ζξ1h(1−(ζ−ϑζ−ξ1)α)d(Ψ(ϑ))−C(ζ−ξ1m)2m∫ζξ1h(ζ−ϑζ−ξ1)αh(1−(ζ−ϑζ−ξ1)α)d(Ψ(ϑ))). |
Using Definition 1.3 and setting r=ζ−ϑζ−ξ1, we obtain
(ΔΨΥω,λ,ρ,θ,k,nξ+1,α,β,γ,μ,νΦ)(ζ;ϱ)≤Λξ1ζ(Mλ,ρ,θ,k,nα,β,γ,δ,μ,νΨ;Δ)(ζ−ξ1)(Φ(ξ1)∫10h(rα)Ψ(ζ−r(ζ−ξ1))dr+mΦ(ζm)∫10h(1−rα)Ψ′(ζ−r(ζ−ξ1)))dr−C(ζ−ξ1m)2m∫10h(rα)h(1−rα)Ψ′(ζ−r(ζ−ξ1))dr). | (2.6) |
The above inequality will become
(ΔΨΥω,λ,ρ,θ,k,nξ+1,α,β,γ,μ,νΦ)(ζ;ϱ)≤Λξ1ζ(Mλ,ρ,θ,k,nα,β,γ,δ,μ,νΨ;Δ)(Φ(ξ1)Xξ1ζ(rα,h,Ψ′)+mΦ(ζm)Xξ1ζ(rα,h,Ψ′)−C(ζ−ξ1m)2h(1)(Ψ(ζ)−Ψ(ξ1))m(ζ−ξ1). | (2.7) |
On the other hand, using the same technique that we did for (2.2) and (2.4), the following inequality from (2.3) and (2.5) can be obtained:
(ΔΨΥω,λ,ρ,θ,k,nξ−2,α,β,γ,μ,νΦ)(ζ;ϱ)≤Λζξ2(Mλ,ρ,θ,k,nα,β,γ,μ,νΦ;Δ)(ξ2−ζ)(Φ(ξ1)∫10h(rα)Ψ′(ζ−r(ξ2−ζ))dr+mΦ(ζm)∫10h(1−rα)Ψ′(ζ−r(ξ2−ζ)))dr−C(mξ2−ζ)2m∫10h(rα)h(1−rα)Ψ′(ζ−r(ξ1−ζ))dr). | (2.8) |
The above inequality can takes the following form
(ΔΨΥω,λ,ρ,θ,k,nξ−2,α,β,γ,μ,νΦ)(ζ;ϱ)≤Λζξ2(Mλ,ρ,θ,k,nα,β,γ,μ,νΦ;Δ)(ξ2−ζ)(Φ(ξ2)Xξ2ζ(rα,h,Ψ′)+mΦ(ζm)Xξ2ζ(1−rα,h,Ψ′)−C(ζ−ξ1m)2h(1)(Ψ(ξ2)−Ψ(ζ))m(ξ2−ζ)). | (2.9) |
By adding (2.7) and (2.9), (2.1) can be obtained.
Remark 2. (i) If n=1, b1=λ+lk, a1=θ−λ, c1=λ, ρ=ν=0 in (2.1), [22,Theorem 1] is obtained.
(ii) If h(ζ)=ζ in the result of (i), then [23,Theorem 7] is obtained.
(iii) If C=0, Δ(ϑ)=ϑβ, Ψ(ζ)=ζ, h(ζ)=ζs and (α,m)=(1, 1) in the result of (i), then [24,Theorem 2.1] is obtained.
(iv) If Δ(ϑ)=ϑβ, h(ζ)=Ψ(ζ)=ζ in the result of (i), then [25,Theorem 4] can be obtained.
(v) If Δ(ϑ)=ϑβ, Ψ(ζ)=ζ and C=0 in the result of (i), then [26,Theorem 1] can be obtained.
(vi) If C=0 and h(ζ)=ζ in (2.1), then [4,Theorem 1] is obtained.
(vii) If C=0 in the result of (i), [27,Theorem 1] is obtained.
Corollary 1. If h(ζ)=ζ, then the following inequality holds for strongly (α,m)-convex function:
(ΥΨΩω,λ,ρ,θ,k,ησ+,α,β,γ,μ,νΦ)(ϑ;ϱ)+(ΥΨΩω,λ,ρ,θ,k,ηξ−2,α,β,γ,μ,νΦ)(ϑ;ϱ)≤Λξ1ϑ(Mλ,ρ,θ,k,ηα,β,γ,μ,νΨ;Υ)((mΦ(ϑm)Ψ(ϑ)−Φ(ξ1)Ψ(ξ1))−Γ(α+1)(ϑ−ξ1)α(mΦ(ϑm)−Φ(ξ1))αIξ+1Ψ(ϑ))−C(ζ−mξ1)m(ζ−ξ1)α(Γ(α+1)αIξ+1Ψ(ϑ)−Γ(2α+1)2αIξ+1Ψ(ϑ)(ζ−ξ1)α)+Λϑξ2(Mω,λ,ρ,θ,k,ηα,β,γ,μ,νΨ;Υ)((Φ(ξ2)Ψ(ξ2)−mΦ(ϑm)Ψ(ϑ))−Γ(α+1)(ξ2−ϑ)α(Φ(ξ2)−mΦ(ϑm))αIξ−2Ψ(ϑ))−C(mξ2−ζ)m(ξ2−ζ)α(Γ(2α+1)2αIξ−2Ψ(ϑ)(ξ2−ζ)α−Γ(α+1)αIξ−2Ψ(ϑ)). |
Corollary 2. If (α,m)=(1,1) and h(ζ)=ζ, then the following inequality holds for strongly convex function:
(ΥΨΩω,λ,ρ,θ,k,ησ+,α,β,γ,μ,νΦ)(ϑ;ϱ)+(ΥΨΩω,λ,ρ,θ,k,ηξ−2,α,β,γ,μ,νΦ)(ϑ;ϱ)≤Λξ1ϑ(Mλ,ρ,θ,k,ηα,β,γ,μ,νΨ;Υ)((Ψ(ϑ)−Ψ(ξ1))(Φ(ϑ)+Φ(ξ1))−C(ζ−ξ1)(2I(ξ1,ζ,IdΨ)−(ξ1+ζ)I(ξ1,ζ,Ψ)+Λϑξ2(Mω,λ,ρ,θ,k,ηα,β,γ,μ,νΨ;Υ)((Ψ(ξ2)−Ψ(ϑ))(Φ(ξ2)+Φ(ϑ))−C(ξ2−ζ)(2I(ζ,ξ2,IdΨ)−(ξ2+ζ)I(ζ,ξ2,Ψ)), |
where Id is the identity function.
For positive values of C all the results obtained in the aforementioned Remarks/Corollaries get their refinements. The following lemma is required to establish the next result.
Lemma 2.1. [22] Let Φ:[ξ1,ξ2]⟶R, be a strongly (α,h−m)-convex function with modulus C≥0, m∈(0,1], 0≤ξ1≤mξ2. If Φ(ζ)=Φ(ξ1+mξ2−ζm), then the following inequality holds:
Φ(ξ1+mξ22)≤(h(12α)+mh(2α−12α))Φ(ζ)−Cmh(12α)h(2α−12α)(ξ1−ζ+mξ2−mζ)2. | (2.10) |
The following result provides upper and lower bounds of sum of operators (1.7) and (1.8) in the form of a Hadamard type inequality.
Theorem 2.2. Under the assumptions of Theorem 2.1 in addition, if Φ(ζ)=Φ(ξ1+mξ2−ζm), then we have
1h(12α)+mh(2α−12α)(Φ(ξ1+ξ22)((ΔΨΥω,λ,ρ,θ,k,nξ−2,α,β,γ,μ,ν1)(ξ1;ϱ)+(ΔΨΥω,λ,ρ,θ,k,nξ+1,α,β,γ,μ,ν1)(ξ2;ϱ))+Cmh(12α)h(2α−12α)((ΔΨΥω,λ,ρ,θ,k,nξ−2,α,β,γ,μ,ν(ξ1−ζ+mξ2−mζ)2)(ξ1;ϱ)+(ΔΨΥω,λ,ρ,θ,k,nξ−2,α,β,γ,μ,ν(ξ1−ζ+mξ2−mζ)2)(ξ1;ϱ)))≤(ΔΨΥω,λ,ρ,θ,k,nξ−2,α,β,γ,μ,νΦ)(ξ1;ϱ)+(ΔΨΥω,λ,ρ,θ,k,nξ+1,α,β,γ,μ,νΦ)(ξ2;ϱ)≤(ξ2−ξ1)(Λξ1ξ2(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)+Λξ1ξ2(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ))×(Φ(ξ2)Xξ1ξ2(rα,h;Ψ′)+mΦ(ξ1m)Xξ1ξ2(1−rα,h;Ψ′)−C(ξ1−mξ2)2h(1)(Ψ(ξ2)−Ψ(ξ1))m(ξ2−ξ1)). | (2.11) |
Proof. Using (1.12), we can write the following inequalities
Λξ1ζ(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)Ψ′(ζ)≤Λξ1ξ2(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)Ψ′(ζ), | (2.12) |
Λζξ2(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)Ψ′(ζ)≤Λξ1ξ2(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)Ψ′(ζ). | (2.13) |
Using strongly (α,h−m)-convexity of Φ for ζ∈[ξ1,ξ2], we have
Φ(ζ)≤h(ζ−ξ1ξ2−ξ1)αΦ(ξ2)+mh(1−(ζ−ξ1ξ2−ξ1)α)Φ(ξ1m)−C(ξ1−mξ2)2mh(ζ−ξ1ξ2−ξ1)αh(1−(ζ−ξ1ξ2−ξ1)α). | (2.14) |
Multiplying (2.12) and (2.14) and integrating the resulting inequality over [ξ1,ξ2], one can obtain
∫ξ2ξ1Λξ1ζ(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)Φ(ζ)d(Ψ(ζ))≤Λξ1ξ2(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)(mΦ(ξ1m)×∫ξ2ξ1h(1−(ζ−ξ1ξ2−ξ1)α)d(Ψ(ζ))+Φ(ξ2)∫ξ2ξ1h(ζ−ξ1ξ2−ξ1)αd(Ψ(ζ))−C(ξ1−mξ2)2m∫ξ2ξ1h(ζ−ξ1ξ2−ξ1)αh(1−(ζ−ξ1ξ2−ξ1)α)d(Ψ(ζ))). |
By using Definition 1.3 and setting r=ζ−ξ1ξ2−ξ1, the following inequality is obtained:
(ΔΨΥω,λ,ρ,θ,k,nξ−2,α,β,γ,μ,νΦ)(ξ1;ϱ)≤Λξ1ξ2(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)(ξ2−ξ1)((Φ(ξ2)Xξ1ξ2(rα,h;Ψ′)+mΦ(ξ1m)Xξ1ξ2(1−rα,h;Ψ′)−C(ξ1−mξ2)2h(1)(Ψ(ξ2)−Ψ(ξ1))m(ξ2−ξ1)). | (2.15) |
Using the same technique that we did for (2.12) and (2.14), the following inequality can be observed from (2.14) and (2.13)
(ΔΨΥω,λ,ρ,θ,k,nξ+1,α,β,γ,μ,νΦ)(b;ϱ)≤Λξ1ξ2(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)(ξ2−ξ1)(Φ(ξ2)Xξ1ξ2(rα,h;Ψ′)+mΦ(ξ1m)Xξ1ξ2(1−rα,h;Ψ′)−C(ξ1−mξ2)2h(1)(Ψ(ξ2)−Ψ(ξ1))m(ξ2−ξ1)). | (2.16) |
By adding (2.15) and (2.16), following inequality can be obtained:
(ΔΨΥω,λ,ρ,θ,k,nξ−2,α,β,γ,μ,νΦ)(ξ1;ϱ)+(ΔΨΥω,λ,ρ,θ,k,nξ+1,α,β,γ,μ,νΦ)(ξ2;ϱ)≤(ξ2−ξ1)×(Λξ1ξ2(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)+Λξ1ξ2(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ))(Φ(ξ2)Xξ1ξ2(rα,h;Ψ′)+mΦ(ξ1m)Xξ1ξ2(1−rα,h;Ψ′)−C(ξ1−mξ2)2h(1)(Ψ(ξ2)−Ψ(ξ1))m(ξ2−ξ1)). | (2.17) |
Multiplying both sides of (2.10) by Λξ1ζ(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)d(Ψ(ζ)), and integrating over [ξ1,ξ2] we have
Φ(ξ1+mξ22)∫ξ2ξ1Λξ1ζ(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)d(Ψ(ζ))≤h(12α)h(2α−12α)∫ξ2ξ1Λξ1ζ(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)Φ(ζ)d(Ψ(ζ))−Cmh(12α)h(2α−12α)∫ξ2ξ1Λξ1ζ(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)(ξ1−ζ+mξ2−mζ)2d(Ψ(ζ)). |
From Definition 1.3, the following inequality is obtained:
1h(12α)+mh(2α−12α)(Φ(ξ1+ξ22)(ΔΨΥω,λ,ρ,θ,k,nξ−2,α,β,γ,μ,ν1)(ξ1;ϱ)+Cmh(12α)h(2α−12α)×(ΔΨΥω,λ,ρ,θ,k,nξ−2,α,β,γ,μ,ν(ξ1−ζ+mξ2−mζ)2)(ξ1;ϱ))≤(ΔΨΥω,λ,ρ,θ,k,nξ−2,α,β,γ,μ,νΦ)(ξ1;ϱ). | (2.18) |
Similarly multiplying both sides of (2.10) by Λζξ2(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)Ψ′(ζ), and integrating over [ξ1,ξ2] we have
1h(12α)+mh(2α−12α)(Φ(ξ1+ξ22)(ΔΨΥω,λ,ρ,θ,k,nξ+1,α,β,γ,μ,ν1)(ξ2;ϱ)+Cmh(12α)h(2α−12α)×(ΔΨΥω,λ,ρ,θ,k,nξ+1,α,β,γ,μ,ν(ξ1−ζ+mξ2−mζ)2)(ξ2;ϱ))≤(ΔΨΥω,λ,ρ,θ,k,nξ+1,α,β,γ,μ,νΦ)(ξ1;ϱ). | (2.19) |
From (2.17)–(2.19), inequality (2.11) can be achieved.
Remark 3. (i) If n=1, b1=λ+lk, a1=θ−λ, c1=λ, ρ=ν=0, in (2.11), then [22,Theorem 23] is obtained.
(ii) If h(ζ)=ζ in the result of (i), then [23,Theorem 11] is obtained.
(iii) If ω=ϱ=C=0, (α,m) = (1, 1), Φ(ϑ)=Γ(β)ϑβ+1 and h(ζ)=Ψ(ζ)=ζ in the result of (i), then [28,Theorem 3] is obtained.
(iv) If Δ(ϑ)=ϑβ+1 and h(ϑ)=Ψ(ϑ)=ϑ in the result of (i), then [25,Theorem 6] can be obtained.
(v) If Δ(ϑ)=ϑβ+1, Ψ(ϑ)=ϑ and C=0 in the result of (i), then [26,Theorem 4] can be obtained.
(vi) If C=0 and h(ζ)=ζ in (2.11), then [4,Theorem 2] is obtained.
Corollary 3. If h(ζ)=ζ in (2.11), then the following inequality holds for strongly (α,m)-convex function:
2α(1+m(2α−1))(Φ(ξ1+mξ22)((ΥΨΩω,λ,ρ,θ,k,ηξ−2,α,β,γ,μ,ν1)(ξ1;ϱ)+(ΥΨΩω,λ,ρ,θ,k,ηξ+1,α,β,γ,μ,ν1)(ξ2;ϱ))+C(2α−1)22αm((ΔΨΥω,λ,ρ,θ,k,nξ+1,α,β,γ,μ,ν(ξ1−ζ+mξ2−mζ)2)(ξ1;ϱ)+(ΔΨΥω,λ,ρ,θ,k,nξ−2,α,β,γ,μ,ν(ξ1−ζ+mξ2−mζ)2)(ξ1;ϱ)))≤(ΥΨΩω,λ,ρ,θ,k,ηξ−2,α,β,γ,μ,νΦ)(a;ϱ)+(ΥΨΩω,λ,ρ,θ,k,ηξ+1,α,β,γ,μ,νΦ)(b;ϱ)≤2Λξ1ξ2(Mλ,ρ,θ,k,ηα,β,γ,μ,νΨ;Υ)((Φ(ξ2)Ψ(ξ2)−mΦ(ξ1m)Ψ(ξ1))−Γ(α+1)(ξ2−ξ1)α(Φ(ξ2)−mΦ(ξ1m))αIξ−2Ψ(ϑ)))−C(mξ2−ξ1)m(ξ2−ξ1)α(Γ(2α+1)I2αξ−2Ψ(ξ1)(ξ2−ξ)α−Γ(α+1)Iαξ−2Ψ(ξ1)). |
Corollary 4. If (α,m)=(1,1) and h(ζ)=ζ in (2.11), then the following inequality holds for strongly convex function:
(Φ(ξ1+ξ22)((ΥΨΩω,λ,ρ,θ,k,ηξ−2,α,β,γ,μ,ν1)(ξ1;ϱ)+(ΥΨΩω,λ,ρ,θ,k,ηξ+1,α,β,γ,μ,ν1)(ξ2;ϱ))+C4((ΔΨΥω,λ,ρ,θ,k,nξ+1,α,β,γ,μ,ν(ξ1−ζ+ξ2−ζ)2)(ξ1;ϱ)+(ΔΨΥω,λ,ρ,θ,k,nξ−2,α,β,γ,μ,ν(ξ1−ζ+ξ2−ζ)2)(ξ1;ϱ)))≤(ΥΨΩω,λ,ρ,θ,k,ηξ−2,α,β,γ,μ,νΦ)(a;ϱ)+(ΥΨΩω,λ,ρ,θ,k,ηξ+1,α,β,γ,μ,νΦ)(b;ϱ)≤2Λξ1ξ2(Mλ,ρ,θ,k,ηα,β,γ,μ,νΨ;Υ)×((Ψ(ξ2)−Ψ(ξ1))(Φ(ξ2)+Φ(ξ1))–(ξ2−ξ1)λ2I(ξ1,ξ2,IdΨ)−(ξ1+ξ2)I(ξ1,ξ2,g)) |
For positive values of λ all the results obtained in the aforementioned Remarks/Corollaries got their refinements.
Theorem 2.3. Let Φ:[ξ1,ξ2]⟶R be a differentiable function. If |Φ′| is (s,m)-convex and let Ψ:[ξ1,ξ2]⟶R be differentiable and strictly increasing function, also let Δζ be an increasing function on [ξ1,ξ2]. Then ∀ζ∈[ξ1,ξ2], we have the following inequality containing the unified Mittag-Leffler function Mλ,ρ,θ,k,nα,β,γ,δ,μ,ν(z;a_,b_,c_,ϱ) satisfying all the convergence conditions:
|(ΔΨΥω,λ,ρ,θ,k,nξ+1,α,β,γ,δ,μ,νΦ∗Ψ)(ζ;ϱ)+(ΔΨΥω,λ,ρ,θ,k,nξ−2,α,β,γ,δ,μ,νΦ∗Ψ)(ζ;ϱ)|≤Λξ1ζ(Mω,λ,ρ,θ,k,nα,β,γ,δ,μ,νΨ;Δ)(ζ−ξ1)×((m|Φ′(ζm)|Xξ1ζ(1−rα,h,Ψ′)−|Φ′(ξ1)|Xξ1ζ(rα,h,Ψ′))−C(ζ−ξ1m)2h(1)(Ψ(ζ)−Ψ(ξ1))m(ζ−ξ1))+Λζξ2(Mλ,ρ,θ,k,nα,β,γ,δ,μ,ν,Ψ;Δ)(ξ2−ζ)((m|Φ′(ζm)|Xξ2ζ(1−rα,h,Ψ′)−|Φ′(ξ2)|Xξ2ζ(rα,h,Ψ′))−C(ξ2m−ζ)2h(1)(Ψ(ξ2)−Ψ(ζ))m(ξ2−ζ)), | (2.20) |
where
(ΔΨΥω,λ,ρ,θ,k,nξ+1,α,β,γ,δ,μ,νΦ∗Ψ)(ζ;ϱ):=∫ζξ1Λϑζ(Mλ,ρ,θ,k,nα,β,γ,δ,μ,ν,Ψ;Δ)Φ′(ϑ)d(Ψ(ϑ)), |
(ΔΨΥω,λ,ρ,θ,k,nξ−2,α,β,γ,δ,μ,νΦ∗Ψ)(ζ;ϱ):=∫ξ2ζΛζt(Mλ,ρ,θ,k,nα,β,γ,δ,μ,νΨ;Δ)Φ′(ϑ)d(Ψ(ϑ)). |
Proof. Let ζ∈[ξ1,ξ2] and ϑ∈[ξ1,ζ]. Then using strongly (α,h−m)-convexity of |Φ′| we have
|Φ′(ϑ)|≤h(ζ−ϑζ−ξ1)α|Φ′(ξ1)|+mh(1−(ζ−ϑζ−ξ1)α)|Φ′(ζm)|−C(ϑ−ξ1m)mh(ζ−ϑζ−ξ1)αh(1−(ζ−ϑζ−ξ1)α). | (2.21) |
The inequality (2.21) can be written as follows:
−(h(ζ−ϑζ−ξ1)α|Φ′(ξ1)|+mh(1−(ζ−ϑζ−ξ1)α)|Φ′(ζm)|−C(ϑ−ξ1m)mh(ζ−ϑζ−ξ1)αh(1−(ζ−ϑζ−ξ1)α))≤Φ′(ϑ)≤h(ζ−ϑζ−ξ1)α|Φ′(ξ1)|+mh(1−(ζ−ϑζ−ξ1)α)|Φ′(ζm)|−C(ϑ−ξ1m)mh(ζ−ϑζ−ξ1)αh(1−(ζ−ϑζ−ξ1)α). | (2.22) |
Let we consider the second inequality of (2.22)
Φ′(ϑ)≤h(ζ−ϑζ−ξ1)α|Φ′(ξ1)|+mh(1−(ζ−ϑζ−ξ1)α)|Φ′(ζm)|−C(ϑ−ξ1m)mh(ζ−ϑζ−ξ1)αh(1−(ζ−ϑζ−ξ1)α). | (2.23) |
Multiplying (2.2) and (2.23) and integrating over [ξ1,x], we can obtain:
∫ζξ1Λϑζ(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)d(Ψ(ϑ))≤Λξ1ζ(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)(|Φ(ξ1)|∫ζξ1h(ζ−ϑζ−ξ1)αd(Ψ(ϑ))+m|Φ(ζm)|∫ζξ1h(1−(ζ−ϑζ−ξ1)α)d(Ψ(ϑ))−C(ϑ−ξ1m)m∫ζξ1h(ζ−ϑζ−ξ1)αh(1−(ζ−ϑζ−ξ1)α)d(Ψ(ϑ))). |
This gives
(ΔΨΥω,λ,ρ,θ,k,nξ+1,α,β,γ,μ,νΦ∗Ψ)(ζ;ϱ)≤Λξ1ζ(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)(ζ−ξ1)×((m|Φ′(ζm)|Xξ1ζ(1−rα,h,Ψ′)−|Φ′(ξ1)|Xξ1ζ(rα,h,Ψ′))−C(ζ−ξ1m)2h(1)(Ψ(ζ)−Ψ(ξ1))m(ζ−ξ1)). | (2.24) |
Considering the left hand side from the inequality (2.22) and adopt the same pattern as did for the right hand side inequality, then
(ΔΨΥω,λ,ρ,θ,k,nξ+1,α,β,γ,μ,ν(Φ∗Ψ))(ζ;ϱ)≥−Λξ1ζ(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)(ζ−ξ1)×((m|Φ′(ζm)|Xξ1ζ(1−rα,h,Ψ′)−|Φ′(ξ1)|Xξ1ζ(rα,h,Ψ′))−C(ζ−ξ1m)2h(1)(Ψ(ζ)−Ψ(ξ1))m(ζ−ξ1)). | (2.25) |
From (2.24) and (2.25), following inequality is observed:
|(ΔΨΥω,λ,ρ,θ,k,nξ+1,α,β,γ,μ,ν(Φ∗Ψ))(ζ;ϱ)|≤Λξ1ζ(Mλ,ρ,θ,k,nα,β,γ,μ,νΨ;Δ)(ζ−ξ1)×((m|Φ′(ζm)|Xξ1ζ(1−rα,h,Ψ′)−|Φ′(ξ1)|Xξ1ζ(rα,h,Ψ′))−C(ζ−ξ1m)2h(1)(Ψ(ζ)−Ψ(ξ1))m(ζ−ξ1)). | (2.26) |
Now using strongly (α,h−m)-convexity of |Φ′| on (ζ,ξ2] for ζ∈[ξ1,ξ2] we have
|Φ′(ϑ)|≤h(ϑ−ζξ2−ζ)α|Φ′(ξ2)|+mh(1−(ϑ−ζξ2−ζ)α)|Φ′(ζm)|−C(ζ−ξ1m)2mh(ϑ−ζξ2−ζ)αh(1−(ϑ−ζξ2−ζ)α). | (2.27) |
On the same procedure as we did for (2.2) and (2.21), one can obtain following inequality from (2.3) and (2.27):
|(ΔΨΥω,λ,ρ,θ,k,nξ−2,α,β,γ,μ,ν(Φ∗Ψ))(ζ;ϱ)|≤Λζξ2(Mλ,ρ,θ,k,nα,β,γ,δ,μ,ν,Ψ;Δ)(ξ2−ζ)×((m|Φ′(ζm)|Xξ2ζ(1−rα,h,Ψ′)−|Φ′(ξ2)|Xξ2ζ(rα,h,Ψ′))−C(ξ2m−ζ)2h(1)(Ψ(ξ2)−Ψ(ζ))m(ξ2−ζ)). | (2.28) |
By adding (2.26) and (2.28), inequality (2.20) can be achieved.
Remark 4. (i) If n=1, b1=λ+lk, a1=θ−λ, c1=λ, ρ=ν=0, in (2.20), [22,Theorem 26].
(ii) If C=0 in the result of (i), [27,Theorem 4] is obtained.
(iii) If h(ζ)=ζ in the result of (i), then [23,Theorem 14] is obtained.
(iv) If Δ(ϑ)=ϑβ and Ψ(ζ)=h(ζ)=ζ in the result of (i), then [25,Theorem 5] is obtained.
(v) If Δ(ϑ)=ϑβ+1, Ψ(ζ)=ζ and C=0 in the result of (i), then [26,Theorem 2] is obtained.
(vi) If C=0 and h(ζ)=ζ in (2.20), then [4,Theorem 3] is obtained.
Corollary 5. If h(ζ)=ζ in (2.20), then the following inequality holds for strongly (α,m)-convex function:
|(ΥΨΩω,λ,ρ,θ,k,ηξ+1,α,β,γ,δ,μ,νΦ∗Ψ)(ζ;ϱ)+(ΥΨΩω,λ,ρ,θ,k,ηξ−2,α,β,γ,δ,μ,νΦ∗Ψ)(ζ;ϱ)|≤Λξ1ζ(Mω,λ,ρ,θ,k,ηα,β,γ,δ,μ,νΨ;Υ)((m|Φ′(ζm)|Ψ(ζ)−|Φ′(ξ1)|Ψ(ξ1))−Γ(α+1)(ζ−ξ1)α(m|Φ′(ζm)|−|Φ′(ξ1)|)αIξ+1Ψ(ζ))−C(ζ−mξ1)2m(ζ−ξ1)α(Γ(α+1)αIξ+1Ψ(ζ)−Γ(2α+1)αIξ+1Ψ(ζ)(ζ−ξ1)α)+Λζξ2(Mλ,ρ,θ,k,ηα,β,γ,δ,μ,ν,Ψ;Υ)((|Φ′(ξ2)|Ψ(ξ2)−m|Φ′(ζm)|Ψ(ζ))−Γ(α+1)(ξ2−ζ)α(|Φ′(ξ2)|−m|Φ′(ζm)|)αIξ−2Ψ(ζ))−C(mξ2−ζ)2m(ξ2−ζ)α(Γ(2α+1)2αIξ−2Ψ(ζ)(ξ2−ζ)α−Γ(α+1)αIξ−2Ψ(ζ)). |
Corollary 6. If (α,m)=(1,1) and h(ζ)=ζ in (2.20), then the following inequality holds for strongly convex function:
|(ΥΨΩω,λ,ρ,θ,k,ηξ+1,α,β,γ,δ,μ,νΦ∗Ψ)(ζ;ϱ)+(ΥΨΩω,λ,ρ,θ,k,ηξ−2,α,β,γ,δ,μ,νΦ∗Ψ)(ζ;ϱ)|≤Λξ1ζ(Mλ,ρ,θ,k,ηα,β,γ,δ,μ,νΨ;Υ)((|Φ′(ζ)|+|Φ′(ξ1)|)(Ψ(ζ)−Ψ(ξ1))−C(ζ−ξ1)2I(ξ1,ζ,IdΨ)−(ξ1+ζ)I(ξ1,ζ,Ψ)+Λζξ2(Mλ,ρ,θ,k,ηα,β,γ,δ,μ,ν,Ψ;Υ)((|Φ′(ξ2)|+|Φ′(ζ)|)(Ψ(ξ2)−Ψ(ζ))−C(ξ2−ζ)(2I(ζ,ξ2,IdΨ)−(ζ+ξ2)I(ζ,ξ2,Ψ))). |
For positive values of C all the results obtained in the aforementioned Remarks/Corollaries get their refinements.
This article investigates the bounds of fractional integral operators containing unified Mittag-Leffler function via strongly (α,h−m)-convex function. The proved results are more generalized and refined as compared to existing inequalities in the literature. Also, they hold implicitly for various classes of functions such as (α,m)-convex, (s,m)-convex, (h−m)-convex, strongly convex, strongly (α,m)-convex and strongly (h−m)-convex functions.
This work was supported by the National Key Research and Development Program under Grant 2018YFB0904205.
It is declared that authors have no competing interests.
[1] |
A. Fernandez, P. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag‐Leffler kernels, Math. Method. Appl. Sci., 44 (2021), 8414–8431. http://dx.doi.org/10.1002/mma.6188 doi: 10.1002/mma.6188
![]() |
[2] |
M. Khan, Y. Chu, A. Kashuri, R. Liko, G. Ali, Conformable fractional integrals versions of Hermite-Hadamard inequalities and their generalizations, J. Funct. Space., 2018 (2018), 6928130. http://dx.doi.org/10.1155/2018/6928130 doi: 10.1155/2018/6928130
![]() |
[3] |
P. Mohammed, T. Abdeljawad, A. Kashuri, Fractional Hermite-Hadamard-Fejér inequalities for a convex function with respect to an increasing function involving a positive weighted symmetric function, Symmetry, 12 (2020), 1503. http://dx.doi.org/10.3390/sym12091503 doi: 10.3390/sym12091503
![]() |
[4] |
K. Nonlaopon, G. Farid, H. Yasmeen, F. Shah, C. Jung, Generalization of some fractional integral operator inequalities for convex functions via unified Mittag-Leffler function, Symmetry, 14 (2022), 922. http://dx.doi.org/10.3390/sym14050922 doi: 10.3390/sym14050922
![]() |
[5] |
E. Set, A. Akdemir, B. Çelik, On generalization of Fejér type inequalities via fractional integral operators, Filomat, 32 (2018), 5537–5547. http://dx.doi.org/10.2298/FIL1816537S doi: 10.2298/FIL1816537S
![]() |
[6] |
H. Ahmad, M. Tariq, S. Sahoo, S. Askar, A. Abouelregal, K. Khedher, Refinements of Ostrowski type integral inequalities involving Atangana-Baleanu fractional integral operator, Symmetry, 13 (2021), 2059. http://dx.doi.org/10.3390/sym13112059 doi: 10.3390/sym13112059
![]() |
[7] |
M. Gurbuz, Y. Tasdan, E. Set, Ostrowski type inequalities via the Katugampola fractional integrals, AIMS Mathematics, 5 (2020), 42–53. http://dx.doi.org/10.3934/math.2020004 doi: 10.3934/math.2020004
![]() |
[8] |
S. Sahoo, M. Tariq, H. Ahmad, J. Nasir, H. Aydi, A. Mukheimer, New Ostrowski-type fractional integral inequalities via generalized exponential-type convex functions and applications, Symmetry, 13 (2021), 1429. http://dx.doi.org/10.3390/sym13081429 doi: 10.3390/sym13081429
![]() |
[9] |
H. Budak, F. Hezenci, H. Kara, On generalized Ostrowski, Simpson and Trapezoidal type inequalities for co-ordinated convex functions via generalized fractional integrals, Adv. Differ. Equ., 2021 (2021), 312. http://dx.doi.org/10.1186/s13662-021-03463-0 doi: 10.1186/s13662-021-03463-0
![]() |
[10] |
K. Jangid, S. Purohit, R. Agarwal, On Grüss type inequality involving a fractional integral operator with a multi-index Mittag-Leffler function as a kernel, Appl. Math. Inf. Sci., 16 (2022), 269–276. http://dx.doi.org/10.18576/amis/160214 doi: 10.18576/amis/160214
![]() |
[11] | E. Set, A. Akdemir, F. Demirci, Grüss type inequalities for fractional integral operator involving the extended generalized Mittag-Leffler function, Appl. Comput. Math., 19 (2020), 402–414. |
[12] | M. Samraiz, M. Afzal, S. Iqbal, A. Kashuri, Opial-type inequalities for generalized integral operators with special kernels in fractional calculus, Commun. Math. Appl., 9 (2018), 421–431. |
[13] |
A. Akdemir, S. Butt, M. Nadeem, M. Ragusa, New general variants of Chebyshev type inequalities via generalized fractional integral operators, Mathematics, 9 (2021), 122. http://dx.doi.org/10.3390/math9020122 doi: 10.3390/math9020122
![]() |
[14] |
H. Srivastava, A. Kashuri, P. Mohammed, A. Alsharif, J. Guirao, New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel, AIMS Mathematics, 6 (2021), 11167–11186. http://dx.doi.org/10.3934/math.2021648 doi: 10.3934/math.2021648
![]() |
[15] |
J. Delgado, J. Valdes, E. Reyes, M. Vivas-Cortez, The Minkowski inequality for generalized fractional integrals, Appl. Math. Inf. Sci., 15 (2021), 1–7. http://dx.doi.org/10.18576/amis/150101 doi: 10.18576/amis/150101
![]() |
[16] |
R. Liko, P. Mohammed, A. Kashuri, Y. Hamed, Reverse Minkowski inequalities pertaining to new weighted generalized fractional integral operators, Fractal Fract., 6 (2022), 131. http://dx.doi.org/10.3390/fractalfract6030131 doi: 10.3390/fractalfract6030131
![]() |
[17] |
Y. Zhang, G. Farid, Z. Salleh, A. Ahmad, On a unified Mittag-Leffler function and associated fractional integral operator, Math. Probl. Eng., 2021 (2021), 6043769. http://dx.doi.org/10.1155/2021/6043769 doi: 10.1155/2021/6043769
![]() |
[18] |
S. Zhou, G. Farid, A. Ahmad, Fractional versions of Minkowski-type integral inequalities via unified Mittag-Leffler function, Adv. Cont. Discr. Mod., 2022 (2022), 9. http://dx.doi.org/10.1186/s13662-022-03681-0 doi: 10.1186/s13662-022-03681-0
![]() |
[19] | D. Bhatnagar, R. Pandey, A study of some integral transforms on Q function, South East Asian Journal of Mathematics and Mathematical Sciences, 16 (2020), 99–110. |
[20] |
T. Gao, G. Farid, A. Ahmad, W. Luangboon, K. Nonlaopon, Fractional Minkowski-type integral inequalities via the unified generalized fractional integral operator, J. Funct. Space., 2022 (2022), 2890981. http://dx.doi.org/10.1155/2022/2890981 doi: 10.1155/2022/2890981
![]() |
[21] |
Z. He, X. Ma, G. Farid, A. Haq, K. Mahreen, Bounds of a unified integral operator for (s,m)-convex functions and their consequences, AIMS Mathematics, 5 (2020), 5510–5520. http://dx.doi.org/10.3934/math.2020353 doi: 10.3934/math.2020353
![]() |
[22] |
Z. Zhang, G. Farid, K. Mahreen, Inequalities for unified integral operators via strongly (α,h‐m)-convexity, J. Funct. Space., 2021 (2021), 6675826. http://dx.doi.org/10.1155/2021/6675826 doi: 10.1155/2021/6675826
![]() |
[23] |
C. Jung, G. Farid, K. Mahreen, S. Shim, Inequalities for a unified integral operator for strongly (α,m)-convex function and related results in fractional calculus, J. Funct. Space., 2021 (2021), 6610836. http://dx.doi.org/10.1155/2021/6610836 doi: 10.1155/2021/6610836
![]() |
[24] | L. Chen, G. Farid, S. Butt, S. Akbar, Boundedness of fractional integral operators containing Mittag-Leffler functions, Turkish J. Ineq, 4 (2020), 14–24. |
[25] |
Y. Dong, M. Saddiqa, S. Ullah, G. Farid, Study of fractional integral operators containing Mittag-Leffler functions via strongly (α,m)-convex functions, Math. Probl. Eng., 2021 (2021), 6693914. http://dx.doi.org/10.1155/2021/6693914 doi: 10.1155/2021/6693914
![]() |
[26] |
Z. Chen, G. Farid, M. Saddiqa, S. Ullah, N. Latif, Study of fractional integral inequalities involving Mittag-Leffler functions via convexity, J. Inequal. Appl., 2020 (2020), 206. http://dx.doi.org/10.1186/s13660-020-02465-y doi: 10.1186/s13660-020-02465-y
![]() |
[27] |
G. Farid, K. Mahreen, Y. Chu, Study of inequalities for unified integral operators of generalized convex functions, Open Journal of Mathematical Sciences, 5 (2021), 80–93. http://dx.doi.org/10.30538/oms2021.0147 doi: 10.30538/oms2021.0147
![]() |
[28] |
G. Farid, Some Riemann-Liouville fractional integral for inequalities for convex functions, J. Anal., 27 (2019), 1095–1102. http://dx.doi.org/10.1007/s41478-0079-4 doi: 10.1007/s41478-0079-4
![]() |
1. | Dong Chen, Matloob Anwar, Ghulam Farid, Hafsa Yasmeen, Further Generalizations of Some Fractional Integral Inequalities, 2023, 7, 2504-3110, 489, 10.3390/fractalfract7060489 |