This paper focuses on the long time dynamics for a class stochastic SEI model with standard incidence and infectivity in incubation period. Firstly, we investigate a unique global positive solution almost surely for any positive initial value. Secondly, we obtain a unique stationary measure and the extinction condition of the epidemic based on the technique of Lyapunov function and inequalities. Thirdly, we explore the asymptotic behavior of the solutions around equilibriums of the corresponding deterministic model from different aspects. Finally, we establish some numerical simulations to illustrate the main presented results.
Citation: Ping Zhu, Yongchang Wei. The dynamics of a stochastic SEI model with standard incidence and infectivity in incubation period[J]. AIMS Mathematics, 2022, 7(10): 18218-18238. doi: 10.3934/math.20221002
[1] | Batirkhan Turmetov, Valery Karachik . On solvability of some inverse problems for a nonlocal fourth-order parabolic equation with multiple involution. AIMS Mathematics, 2024, 9(3): 6832-6849. doi: 10.3934/math.2024333 |
[2] | M. J. Huntul, Kh. Khompysh, M. K. Shazyndayeva, M. K. Iqbal . An inverse source problem for a pseudoparabolic equation with memory. AIMS Mathematics, 2024, 9(6): 14186-14212. doi: 10.3934/math.2024689 |
[3] | Bauyrzhan Derbissaly, Makhmud Sadybekov . Inverse source problem for multi-term time-fractional diffusion equation with nonlocal boundary conditions. AIMS Mathematics, 2024, 9(4): 9969-9988. doi: 10.3934/math.2024488 |
[4] | Arivazhagan Anbu, Sakthivel Kumarasamy, Barani Balan Natesan . Lipschitz stability of an inverse problem for the Kawahara equation with damping. AIMS Mathematics, 2020, 5(5): 4529-4545. doi: 10.3934/math.2020291 |
[5] | Yilihamujiang Yimamu, Zui-Cha Deng, Liu Yang . An inverse volatility problem in a degenerate parabolic equation in a bounded domain. AIMS Mathematics, 2022, 7(10): 19237-19266. doi: 10.3934/math.20221056 |
[6] | Ahmed M.A. El-Sayed, Eman M.A. Hamdallah, Hameda M. A. Alama . Multiple solutions of a Sturm-Liouville boundary value problem of nonlinear differential inclusion with nonlocal integral conditions. AIMS Mathematics, 2022, 7(6): 11150-11164. doi: 10.3934/math.2022624 |
[7] | Murat A. Sultanov, Vladimir E. Misilov, Makhmud A. Sadybekov . Numerical method for solving the subdiffusion differential equation with nonlocal boundary conditions. AIMS Mathematics, 2024, 9(12): 36385-36404. doi: 10.3934/math.20241726 |
[8] | Abdelkader Laiadi, Abdelkrim Merzougui . Free surface flows over a successive obstacles with surface tension and gravity effects. AIMS Mathematics, 2019, 4(2): 316-326. doi: 10.3934/math.2019.2.316 |
[9] | A. M. A. El-Sayed, W. G. El-Sayed, Somyya S. Amrajaa . On a boundary value problem of arbitrary orders differential inclusion with nonlocal, integral and infinite points boundary conditions. AIMS Mathematics, 2022, 7(3): 3896-3911. doi: 10.3934/math.2022215 |
[10] | Lin Fan, Shunchu Li, Dongfeng Shao, Xueqian Fu, Pan Liu, Qinmin Gui . Elastic transformation method for solving the initial value problem of variable coefficient nonlinear ordinary differential equations. AIMS Mathematics, 2022, 7(7): 11972-11991. doi: 10.3934/math.2022667 |
This paper focuses on the long time dynamics for a class stochastic SEI model with standard incidence and infectivity in incubation period. Firstly, we investigate a unique global positive solution almost surely for any positive initial value. Secondly, we obtain a unique stationary measure and the extinction condition of the epidemic based on the technique of Lyapunov function and inequalities. Thirdly, we explore the asymptotic behavior of the solutions around equilibriums of the corresponding deterministic model from different aspects. Finally, we establish some numerical simulations to illustrate the main presented results.
Modern problems of natural science lead to the need to generalize the classical problems of mathematical physics, as well as to the formulation of qualitatively new problems, which include non-local problems for differential equations. Among nonlocal problems, problems with integral conditions are of great interest. Integral conditions are encountered in the study of physical phenomena in the case when the boundary of the process flow region is inaccessible for direct measurements. Inverse problems arise in various fields of human activity, such as seismology, mineral exploration, biology, medical visualization, computed tomography, earth remote sensing, spectral analysis, nondestructive control, etc. Various inverse problems for certain types of partial differential equations have been studied in many works. A more detailed bibliography and a classification of problems are found in [1,2,3,4,5]. Inverse problems for one-dimensional pseudo-parabolic equations of third-order were studied in [6]. The existence and uniqueness of the solution of the inverse problem for the third order pseudoparabolic equation with integral over-determination condition is studied in [7]. Khompysh [8] investigated the reconstruction of unknown coefficient in pseudo-parabolic inverse problem with the integral over determination condition and studied the uniqueness and existence of solution by means of method of successive approximations. Studies of wave propagation in cold plasma and magnetohydrodynamics also reduce to the partial differential equations of fourth-order. To the study of nonlocal boundary value problems (including integral conditions) for partial differential equations of the fourth-order are devoted large number of works, see, for example, [9,10]. It should be noted that boundary value problems with integral conditions are of particular interest. From physical considerations, the integral conditions are completely natural, and they arise in mathematical modelling in cases where it is impossible to obtain information about the process occurring at the boundary of the region of its flow using direct measurements or when it is possible to measure only some averaged (integral) characteristics of the desired quantity.
In this article, we study the an inverse boundary value problem for a fourth order pseudo parabolic equation with periodic and integral condition to identify the time-dependent coefficients along with the solution function theoretically, i.e. existence and uniqueness.
Statement of the problem and its reduction to an equivalent problem. In the domain DT={(x,t):0≤x≤1,0≤t≤T}, we consider an inverse boundary value problem of recovering the timewise dependent coefficients p(t) in the pseudo-parabolic equation of the fourth-order
ut(x,t)−butxx(x,t)+a(t)uxxxx(x,t)=p(t)u(x,t)+f(x,t) | (1.1) |
with the initial condition
u(x,0)+δu(x,T)=φ(x)(0≤x≤1), | (1.2) |
boundary conditions
u(0,t)=u(1,t),ux(0,t)=ux(1,t),uxx(0,t)=uxx(1,t)(0≤t≤T), | (1.3) |
nonlocal integral condition
∫10u(x,t)dx=0(0≤t≤T) | (1.4) |
and with an additional condition
u(0,t)=∫t0γ(τ)u(1,τ)dτ+h(t)(0≤t≤T), | (1.5) |
where b>0, δ≥0-given numbers, a(t)>0,f(x,t),φ(x),γ(τ),h(t) -given functions, u(x,t) and p(t) - required functions.
Denote
ˉC4,1(DT)={u(x,t):u(x,t)∈C2,1(DT),utxx,uxxxx∈C(DT)}. |
Definition.By the classical solution of the inverse boundary value problem (1.1)-(1.5)we mean the pair {u(x,t),p(t)} functions u(x,t)∈ˉC4,1(DT), p(t)∈C[0,T] satisfying equation (1.1) in DT, condition (1.2) in [0, 1] and conditions (1.3)-(1.5) in [0, T].
Theorem 1. Let be b>0,δ≥0,φ(x)∈C[0,1],f(x,t)∈C(DT), ∫10f(x,t)dx=0, 0<a(t)∈C[0,T], h(t)∈C1[0,T], h(t)≠0(0≤t≤T), γ(t)∈C[0,T],δγ(t)=0 (0≤t≤T) and
∫10φ(x)dx=0,φ(0)=h(0)+δh(T). |
Then the problem of finding a solution to problem (1.1)-(1.5) is equivalent to the problem of determining the functions u(x,t)∈ˉC4,1(DT) and p(t)∈C[0,T], from (1.1)-(1.3) and
uxxx(0,t)=uxxx(1,t)(0≤t≤T), | (1.6) |
γ(t)u(1,t)+h′(t)−butxx(0,t)+a(t)uxxxx(0,t)= |
=p(t)(∫t0γ(τ)u(1,τ)dτ+h(t))+f(0,t)(0≤t≤T). | (1.7) |
Proof. Let be {u(x,t),p(t)} is a classical solution to problem (1.1)-(1.5). Integrating equation (1.1) with respect to x from 0 to 1, we get:
ddt∫10u(x,t)dx−b(utx(1,t)−utx(0,t))+a(t)(uxxx(1,t)−uxxx(0,t))= |
=p(t)∫10u(x,t)dx+∫10f(x,t)dx(0≤t≤T). | (1.8) |
Assuming that ∫10f(x,t)dx=0, taking into account (1.3) and (1.4), we arrive at the fulfillment of (1.6).
Further, considering h(t)∈C1[0,T] and differentiating with respect to t (1.5), we get:
ut(0,t)=γ(t)u(1,t)+h′(t)(0≤t≤T) | (1.9) |
Substituting x=0 into equation (1.1), we have:
ut(0,t)−butxx(0,t)+a(t)uxxxx(0,t)=p(t)u(0,t)+f(0,t)(0≤t≤T). | (1.10) |
Now, suppose that {u(x,t),p(t)} is a solution to problem (1.1)-(1.3), (1.6), (1.7). Then from (1.8), taking into account (1.3) and (1.6), we find:
ddt∫10u(x,t)dx−p(t)∫10u(x,t)dx=0(0≤t≤T). | (1.11) |
Due to (1.2) and ∫10φ(x)dx=0, it's obvious that
∫10u(x,0)dx+δ∫10u(x,T)dx=∫10φ(x)dx=0. | (1.12) |
Obviously, the general solution(1.11) has the form:
∫10u(x,t)dx=ce−∫t0p(τ)dτ(0≤t≤T). | (1.13) |
From here, taking into account (1.12), we obtain:
∫10u(x,0)dx+δ∫10u(x,T)dx=c(1+δe−∫T0p(τ)dτ)=0. | (1.14) |
By virtue of δ≥0, from (1.14) we get that c=0, and substituting into (1.13) we conclude, that ∫10u(x,t)dx=0(0≤t≤T). Therefore, condition (1.4) is also satisfied.
Further, from (1.7) and (1.10), we obtain:
ddt[u(0,t)−(∫t0γ(τ)u(1,τ)dτ+h(t))]= |
=p(t)[u(0,t)−(∫t0γ(τ)u(1,τ)dτ+h(t))](0≤t≤T). | (1.15) |
Let introduce the notation:
y(t)≡u(0,t)−(∫t0γ(τ)u(1,τ)dτ+h(t))(0≤t≤T) | (1.16) |
and rewrite the last relation in the form:
y′(t)+p(t)y(t)=0(0≤t≤T). | (1.17) |
From (1.16), taking into account (1.2), δγ(t)=0 (0≤t≤T) and φ(0)=h(0)+δh(T), it is easy to see that
y(0)+δy(T)=u(0,0)−h(0)+δ[u(0,T)−(∫T0γ(τ)u(1,τ)dτ+h(T))]=u(0,0)+ |
+δu(0,T)−(h(0)+δh(T))−δ∫T0γ(τ)u(1,τ)dτ=φ(0)−(h(0)+δh(T))=0. | (1.18) |
Obviously, the general solution (1.17) has the form:
y(t)=ce−∫t0p(τ)dτ(0≤t≤T). | (1.19) |
From here, taking into account (1.18), we obtain:
y(0)+δy(T)=c(1+δe−∫T0a0(τ)a1(τ)dτ)=0. | (1.20) |
By virtue of δ≥0, from (1.20) we get that c=0, and substituting into (1.19) we conclude that y(t)=0(0≤t≤T). Therefore, from (1.16) it is clear that the condition (1.5). The theorem has been proven.
It is known [5] that the system
1,cosλ1x,sinλ1x,...,cosλkx,sinλkx,... | (2.1) |
forms the basis of L2(0,1), where λk=2kπ(k=0,1,...).
Since system (2.1) forms a basis in L2(0,1), it is obvious that for each solution {u(x,t),a(t)} problem (1.1)–(1.3), (1.6), (1.7):
u(x,t)=∞∑k=0u1k(t)cosλkx+∞∑k=1u2k(t)sinλkx(λk=2πk), | (2.2) |
where
u10(t)=∫10u(x,t)dx,u1k(t)=2∫10u(x,t)cosλkxdx(k=1,2,...), |
u2k(t)=2∫10u(x,t)sinλkxdx(k=1,2,...). |
Applying the formal scheme of the Fourier method, to determine the desired coefficients u1k(t)(k=0,1,...) and u2k(t)(k=1,2,...) functions u(x,t) from (1.1) and (1.2) we get:
u″10(t)=F10(t;u,p)(0≤t≤T), | (2.3) |
(1+bλ2k)u′ik(t)+a(t)λ4kuik(t)=Fik(t;u,p)(i=1,2;0≤t≤T;k=1,2,...), | (2.4) |
u10(0)+δu10(T)=φ10, | (2.5) |
uik(0)+δuik(T)=φik(i=1,2;k=1,2,...), | (2.6) |
where
F1k(t;u,a,b)=p(t)u1k(t)+f1k(t)(k=0,1,...), |
f10(t)=∫10f(x,t)dx,f1k(t)=2∫10f(x,t)cosλkxdx(k=1,2,...), |
φ10=∫10φ(x)dx,φ1k=2∫10φ(x)cosλkxdx(k=1,2,...), |
F2k(t;u,a,b)=p(t)u2k(t)+f2k(t), |
f2k(t)=2∫10f(x,t)sinλkxdx(k=1,2,...),φ2k=2∫10φ(x)sinλkxdx(k=1,2,...). |
Solving problem (2.3)-(2.6), we find:
u10(t)=(1+δ)−1(φ10−δ∫T0F0(τ;u,p)dτ)+∫t0F10(τ;u,p)dτ(0≤t≤T), | (2.7) |
uik(t)=e−∫t0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kdssφik+11+bλ2k∫t0Fik(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ− |
−δe−∫T0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kds11+bλ2k∫T0Fik(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ(i=1,2;0≤t≤T;k=1,2,...). | (2.8) |
After substituting the expression u1k(t)(k=0,1,...), u2k(t)(k=1,2,...) in (2.2), to define a component u(x,t) solution of problem (1.1)-(1.3), (1.6), (1.7), we obtain:
u(x,t)=(1+δ)−1(φ0−δ∫T0F0(τ;u,p)dτ)+∫t0F0(τ;u,p)dτ+ |
+∞∑k=1{e−∫t0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kdssφ1kk+11+bλ2k∫t0F1k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ− |
−δe−∫T0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kds11+bλ2k∫T0F1k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ}cosλkx+ |
+∞∑k=1{e−∫t0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kdssφ2kk+11+bλ2k∫t0F2k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ− |
−δe−∫T0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kds11+bλ2k∫T0F2k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ}sinλkx. | (2.9) |
Now from (1.7), taking into account (2.2), we have:
p(t)=[h(t)]−1{h′(t)−f(0,t)+γ(t)u10(t)−p(t)∫t0γ(τ)u10(τ)dτ+ |
+∞∑k=1(bλ2ku′1k(t)+a(t)λ4ku1k(t)+γ(t)u1k(t)−p(t)∫t0γ(τ)u1k(τ)dτ). | (2.10) |
Further, from (2.4), taking into account (2.8), we obtain:
bλ2ku′1k(t)+a(t)λ4ku1k(t)+γ(t)u1k(t)=F1k(t;u,p)−u′1k(t)+γ(t)u1k(t)= |
=bλ2k1+bλ2kF1k(t;u,p)+(a(t)λ4k1+bλ2k+γ(t))u1k(t)= |
=bλ2k1+bλ2kFk(t;u,p)+(a(t)λ4k1+bλ2k+γ(t))[e−∫t0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kdssφ1k+ |
+11+bλ2k∫t0F1k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ− |
−δe−∫T0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kds11+bλ2k∫T0F1k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ](0≤t≤T;k=1,2,...). | (2.11) |
p(t)=[h(t)]−1{h′(t)−f(0,t)+ |
+γ(t))[(1+δ)−1(φ10−δ∫T0F0(τ;u,p)dτ)+∫t0F10(τ;u,p)dτ]− |
−p(t)∫t0γ(τ)u10(τ)dτ+∞∑k=1[bλ2k1+bλ2kF1k(t;u,p)+ |
+(a(t)λ4k1+bλ2k+γ(t))[e−∫t0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kdssφ1k+11+bλ2k∫t0F1k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ− |
+11+bλ2k∫t0F1k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ− |
−δe−∫T0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kds11+bλ2k∫T0F1k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ]+ |
+p(t)∫t0γ(τ)u1k(τ)dτ]}. | (2.12) |
Thus, the solution of problem (1.1)–(1.3), (1.6), (1.7)is reduced to the solution of system (2.9), (2.12) with respect to unknown functions u(x,t) and p(t).
To study the question of the uniqueness of the solution of problem (1.1)–(1.3), (1.6), (1.7) the following plays an important role.
Lemma 1. If {u(x,t),p(t)}-any solution of problem (1.1)–(1.3), (1.6), (1.7), then the functions
u10(t)=∫10u(x,t)dx,u1k(t)=2∫10u(x,t)cosλkxdx(k=1,2,...), |
u2k(t)=2∫10u(x,t)sinλkxdx(k=1,2,...) |
satisfy the system consisting of equations (27), (28) on [0,T].
It is obvious that if u10(t)=∫10u(x,t)dx, u1k(t)=2∫10u(x,t)cosλkxdx(k=1,2,...), u2k(t)=2∫10u(x,t)sinλkxdx(k=1,2,...) is a solution to system (2.7), (2.8), then the pair {u(x,t),p(t)} functions u(x,t)=∑∞k=0u1k(t)cosλkx+∑∞k=1u2k(t)sinλkx(λk=2πk) and p(t) is a solution to system (2.9), (2.12).
Consequence. Let system (29), (32) have a unique solution. Then problem (1.1)–(1.3), (1.6), (1.7) cannot have more than one solution, i.e. if problem (1.1)-(1.3), (1.6), (1.7) has a solution, then it is unique.
In order to study the problem (1.1)–(1.3), (1.6), (1.7) consider the following spaces.
Denote by Bα2,T [6] the set of all functions of the form
u(x,t)=∞∑k=0u1k(t)cosλkx+∞∑k=1u2k(t)sinλkx(λk=2πk), |
considered in DT, where each of the functions u1k(t)(k=0,1,...), u2k(t)(k=1,2,...) continuous on [0,T] and
J(u)=‖u10(t)‖C[0,T]+{∞∑k=1(λαk‖u1k(t)‖C[0,T])2}12+{∞∑k=1(λαk‖u2k(t)‖C[0,T])2}12<+∞, |
α≥0. We define the norm in this set as follows:
‖u(x,t)‖Bα2,T=J(u). |
Through EαT denote the space Bα2,T×C[0,T] vector - functions z(x,t)={u(x,t),p(t)} with norm
‖z(x,t)‖EαT=‖u(x,t)‖Bα2,T+‖p(t)‖C[0,T]. |
It is known that Bα2,T and EαT are Banach spaces.
Now consider in space E5T operator
Φ(u,p)={Φ1(u,p),Φ2(u,p)}, |
operator
Φ1(u,p))=˜u(x,t)≡∞∑k=0˜u1k(t)cosλkx+∞∑k=1˜u2k(t)sinλkx,Φ2(u,p)=˜p(t), |
˜u10(t),˜uik(t)(i=1,2;k=1,2,...),˜p(t) are equal to the right-hand sides of (2.7), (2.8) and (2.12), respectively.
It is easy to see that
1+bλ2k>bλ2k,1+δ≥1,.1+δe−∫T0a(s)λ4k1+bλ2kds≥1. |
Then, we have:
‖˜u0(t)‖C[0,T]≤|φ10|+(1+δ)√T(∫T0|f10(τ)|2dτ)12+(1+δ)T‖p(t)‖C[0,T]‖u10(t)‖C[0,T], | (2.13) |
(∞∑k=1(λ5k‖˜uik(t)‖C[0,T])2)12≤√3(∞∑k=1(λ5k|φik|)2)12+√3(1+δ)b√T(∫T0∞∑k=1(λ3k|fik(τ)|)2dτ)12+ |
+√3(1+δ)bT‖p(t)‖C[0,T](∞∑k=1(λ5k‖uik(t)‖C[0,T])2)12(i=1,2), | (2.14) |
‖˜p(t)‖C[0,T]≤‖[h(t)]−1‖C[0,T]{‖h′(t)−f(0,t)‖C[0,T]+ |
+‖γ(t)‖C[0,T][|φ0|+(1+δ)√T(∫T0|f0(τ)|2dτ)12+(1+δ)T‖p(t)‖C[0,T]‖u0(t)‖C[0,T]]+ |
+T‖γ(t)‖C[0,T]‖p(t)‖C[0,T]‖u10(t)‖C[0,T]+ |
+(∞∑k=1λ−2k)12[(∞∑k=1(λk‖f1k(t)‖)2C[0,T])12+‖p(t)‖C[0,T](∞∑k=1(λ3k‖u1k(t)‖C[0,T])2)12+ |
+(‖γ(t)‖C[0,T]+1b‖a(t)‖C[0,T])[(∞∑k=1(λ3k|φ1k|)2)12+√T(1+δ)b(∫T0∞∑k=1(λk|f1k(τ)|)2dτ)12+ |
+T(1+δ)b‖p(t)‖C[0,T](∞∑k=1(λ5k‖u1k(t)‖C[0,T])2)12]++T‖γ(t)‖C[0,T]‖p(t)‖C[0,T](∞∑k=1(λ5k‖u1k(t)‖C[0,T])2)12]}. | (2.15) |
Let us assume that the data of problem (1.1)–(1.3), (1.6), (1.7) satisfy the following conditions:
1.φ(x)∈W2(5)(0,1),φ(0)=φ(1),φ′(0)=φ′(1), |
φ″(0)=φ″(1),φ‴(0)=φ‴(1),φ(4)(0)=φ(4)(1); |
2.f(x,t),fx(x,t),fxx(x,t)∈C(DT),fxxx(x,t)∈L2(DT), |
f(0,t)=f(1,t),fx(0,t)=fx(1,t),fxx(0,t)=fxx(1,t)(0≤t≤T); |
3.b>0,δ≥0,γ(t),a(t)∈C[0,T],h(t)∈C1[0,T],h(t)≠0(0≤t≤T). |
Then from (2.10)–(2.12), we have:
‖˜u(x,t)‖B52,T≤A1(T)+B1(T)‖p(t)‖C[0,T]‖u(x,t)‖B52,T, | (2.16) |
‖˜p(t)‖C[0,T]≤A2(T)+B2(T)‖p(t)‖C[0,T]‖u(x,t)‖B52,T, | (2.17) |
where
A1(T)=‖φ(x)‖L2(0,1)+(1+δ)√T‖f(x,t)‖L2(DT)+2√3‖φ(5)(x)‖L2(0,1)+ |
+2√3b(1+δ)√T‖fxxx(x,t)‖L2(DT),B1(T)=(1+δ)(1+√3b)T, |
A2(T)=‖[h(t)]−1‖C[0,T]{‖h′(t)−f(0,t)‖C[0,T]+ |
+‖γ(t)‖C[0,T](‖φ(x)‖L2(0,1)+(1+δ)√T‖f(x,t)‖L2(DT))+ |
+(∞∑k=1λ−2k)12[‖‖fx(x,t)‖C[0,T]‖L2(0,1)+ |
+(‖γ(t)‖C[0,T]+1b‖a(t)‖C[0,T])(‖φ(3)(x)‖L2(0,1)+√T(1+δ)b‖fx(x,t)‖L2(DT))]}, |
B2(T)=‖[h(t)]−1‖C[0,T](∑∞k=1λ−2k)12[(‖γ(t)‖C[0,T]+1b‖a(t)‖C[0,T])T(2+δ)b+ |
+T‖γ(t)‖C[0,T]+1]. |
From inequalities (2.16), (2.17) we conclude:
‖u(x,t)‖B52,T+‖˜p(t)‖C[0,T]≤A(T)+B(T)‖p(t)‖C[0,T]‖u(x,t)‖B52,T, | (2.18) |
A(T)=A1(T)+A2(T),B(T)=B1(T)+B2(T). |
We can prove the following theorem.
Theorem 2. Let conditions 1-3 be satisfied and
(A(T)+2)2B(T)<1. | (2.19) |
Then problem (1.1)–(1.3), (1.6), (1.7) has in K=KR(‖z‖E5T≤R=A(T)+2) in the space E5T only one solution.
Proof. In space E5T consider the equation
z=Φz, | (2.20) |
where z={u,p}, components P Φ1(u,p),Φ2(u,p) of operators Φ(u,p) are defined by the right-hand sides of equations (2.9) and (2.12).
Consider the operator Φ(u,p) in a ball K=KR from E5T. Similarly to (2.18) we obtain that for any z={u,p}, z1={u1,p1}, z2={u2,p2}∈KR :
‖Φz‖E5T≤A(T)+B(T)‖p(t)‖C[0,T]‖u(x,t)‖B52,T, | (2.21) |
‖Φz1−Φz2‖E5T≤B(T)R(‖p1(t)−p2(t)‖C[0,T]+‖u1(x,t)−u2(x,t)‖B52,T). | (2.22) |
Then from estimates (2.21), (2.22), taking into account (2.19), it follows that the operator Φ acts in a ball K=KR and is contractive. Therefore, in the ball K=KR operator Φ has a single fixed point {u,p}, which is the only one in the ball K=KR solution of equation (2.20), i.e. is the only one solution in the ball K=KR of system (2.9), (2.12) in the ball.
Functions u(x,t), as an element of space B52,T is continuous and has continuous derivatives ux(x,t),uxx(x,t), uxxx(x,t),uxxxx(x,t) in DT.
From (2.4), it is easy to see that
(∞∑k=1(λk‖u′ik(t)‖C[0,T])2)12≤√2b‖a(t)‖C[0,T](∞∑k=1(λ5k‖uik(t)‖C[0,T])2)12+ |
+√2b‖‖fx(x,t)+p(t)ux(x,t)‖C[0,T]‖L2(0,1)(i=1,2). |
Hence it follows that ut(x,t) and utxx continuous in DT.
It is easy to check that equation (1.1) and conditions (1.2), (1.3), (1.6), (1.7) are satisfied in the usual sense. Consequently, {u(x,t),p(t)} is a solution to problem (1.1)–(1.3), (1.6), (1.7). By the corollary of Lemma 1, it is unique in the ball K=KR. The theorem has been proven.
With the help of Theorem 1, the unique solvability of the original problem (1.1)–(1.5) immediately follows from the last theorem.
Theorem 3. Let all the conditions of Theorem 1 be satisfied, ∫10f(x,t)dx=0(0≤t≤T), δγ(t)=0 (0≤t≤T) and the matching condition is met:
∫10φ(x)dx=0,φ(0)=h(0)+δh(T). |
Then problem (1.1)–(1.5) has in the ball K=KR(‖z‖E5T≤R=A(T)+2) from E5T the only classical solution.
The article considered an inverse boundary value problem with a periodic and integral condition, when the unknown coefficient depends on time for a linear pseudoparabolic equation of the fourth order. An existence and uniqueness theorem for the classical solution of the problem is proved.
The authors have declared no conflict of interest.
[1] |
P. Arguin, A. Navin, S. Steele, L. Weld, P. Kozarsky, Health communication during SARS, Emerg. Infect. Dis., 10 (2004), 377–380. http://dx.doi.org/10.3201/eid1002.030812 doi: 10.3201/eid1002.030812
![]() |
[2] |
J. Lou, T. Ruggeri, The dynamics of spreading and immune strategies of sexually transmitted diseases on scale-free network, J. Math. Anal. Appl., 365 (2010), 210–219. http://dx.doi.org/10.1016/j.jmaa.2009.10.044 doi: 10.1016/j.jmaa.2009.10.044
![]() |
[3] |
S. Gao, Y. Liu, J. Nieto, H. Andrade, Seasonality and mixed vaccination strategy in an epidemic model with vertical transmission, Math. Comput. Simulat., 81 (2011), 1855–1868. http://dx.doi.org/10.1016/j.matcom.2010.10.032 doi: 10.1016/j.matcom.2010.10.032
![]() |
[4] | D. Wanduku, G. Ladde, Global stability of two-scale network human epidemic dynamic model, Neural Parallel Sci. Comput., 19 (2011), 65–90. |
[5] | R. Anderson, R. May, Infectious diseases of humans: dynamics and control, New York: Oxford University Press, 1991. |
[6] |
K. Cooke, P. van den Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math. Biol., 35 (1996), 240–260. http://dx.doi.org/10.1007/s002850050051 doi: 10.1007/s002850050051
![]() |
[7] |
Z. Zhao, L. Chen, X. Song, Impulsive vaccination of SEIR epidemic model with time delay and nonlinear incidence rate, Math. Comput. Simulat., 79 (2008), 500–510. http://dx.doi.org/10.1016/j.matcom.2008.02.007 doi: 10.1016/j.matcom.2008.02.007
![]() |
[8] | A. Abta, A. Kaddar, H. Alaoui, Global stability for delay SIR and SEIR epidemic models with saturated incidence rates, Electron. J. Differ. Eq., 2012 (2012), 1–13. |
[9] |
M. De la Sen, S. Alonso-Quesada, A. Ibeas, On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules, Appl. Math. Comput., 270 (2015), 953–976. http://dx.doi.org/10.1016/j.amc.2015.08.099 doi: 10.1016/j.amc.2015.08.099
![]() |
[10] |
N. Sharma, A. Gupta, Impact of time delay on the dynamics of SEIR epidemic model using cellular automata, Physica A, 471 (2017), 114–125. http://dx.doi.org/10.1016/j.physa.2016.12.010 doi: 10.1016/j.physa.2016.12.010
![]() |
[11] |
B. Tian, R. Yuan, Traveling waves for a diffusive SEIR epidemic model with non-local reaction and with standard incidences, Nonlinear Anal.-Real, 37 (2017), 162–181. http://dx.doi.org/10.1016/j.nonrwa.2017.02.007 doi: 10.1016/j.nonrwa.2017.02.007
![]() |
[12] |
F. Wei, R. Xue, Stability and extinction of SEIR epidemic models with generalized nonlinear incidence, Math. Comput. Simulat., 170 (2020), 1–15. http://dx.doi.org/10.1016/j.matcom.2018.09.029 doi: 10.1016/j.matcom.2018.09.029
![]() |
[13] |
S. Han, C. Lei, Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear incidence, Appl. Math. Lett., 98 (2019), 114–120. http://dx.doi.org/10.1016/j.aml.2019.05.045 doi: 10.1016/j.aml.2019.05.045
![]() |
[14] | World Health Organization, Proceedings of coronavirus disease 2019 (COVID-19) situation report, 2020, 51. |
[15] | World Health Organization, Proceedings of coronavirus disease 2019 (COVID-19) situation report, 2020, 94. |
[16] |
N. Sharma, A. Verma, A. Gupta, Spatial network based model forecasting transmission and control of COVID-19, Physica A, 581 (2021), 126223. http://dx.doi.org/10.1016/j.physa.2021.126223 doi: 10.1016/j.physa.2021.126223
![]() |
[17] |
J. Jiao, Z. Liu, S. Cai, Dynamics of an SEIR model with infectivity in incubation period and homestead-isolation on the susceptible, Appl. Math. Lett., 107 (2020), 106442. http://dx.doi.org/10.1016/j.aml.2020.106442 doi: 10.1016/j.aml.2020.106442
![]() |
[18] |
E. White, C. Comiskey, Heroin epidemics, treatment and ODE modelling, Math. Biosci., 208 (2007), 312–324. http://dx.doi.org/10.1016/j.mbs.2006.10.008 doi: 10.1016/j.mbs.2006.10.008
![]() |
[19] |
R. Liptser, A strong law of large numbers for local martingales, Stachastics, 3 (1980), 217–228. http://dx.doi.org/10.1080/17442508008833146 doi: 10.1080/17442508008833146
![]() |
[20] |
D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. http://dx.doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
![]() |
[21] | N. Dalal, Applications of stochastic and ordinary differential equations to HIV dynamics, Ph. D Thesis, University of Strathclyde, 2006. |
[22] |
Q. Yang, D. Jiang, N. Shi, C. Ji, The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence, J. Math. Anal. Appl., 388 (2012), 248–271. http://dx.doi.org/10.1016/j.jmaa.2011.11.072 doi: 10.1016/j.jmaa.2011.11.072
![]() |
[23] |
M. Liu, C. Bai, K. Wang, Asymptotic stability of a two-group stochastic SEIR model with infinite delays, Commun. Nonlinear Sci., 19 (2014), 3444–3453. http://dx.doi.org/10.1016/j.cnsns.2014.02.025 doi: 10.1016/j.cnsns.2014.02.025
![]() |
[24] |
Y. Lin, D. Jiang, T. Liu, Nontrivial periodic solution of a stochastic epidemic model with seasonal variation, Appl. Math. Lett., 45 (2015), 103–107. http://dx.doi.org/10.1016/j.aml.2015.01.021 doi: 10.1016/j.aml.2015.01.021
![]() |
[25] |
Q. Liu, D. Jiang, N. Shi, T. Hayatce, A. Alsaedi, Asymptotic behavior of a stochastic delayed SEIR epidemic model with nonlinear incidence, Physica A, 462 (2016), 870–882. http://dx.doi.org/10.1016/j.physa.2016.06.095 doi: 10.1016/j.physa.2016.06.095
![]() |
[26] |
Y. Wei, Q. Yang, G. Li, Dynamics of the stochastically perturbed Heroin epidemic model under non-degenerate noises, Physica A, 526 (2019), 120914. http://dx.doi.org/10.1016/j.physa.2019.04.150 doi: 10.1016/j.physa.2019.04.150
![]() |
[27] |
Y. Ding, X. Ren, C. Jiang, Q. Zhang, Periodic solution of a stochastic SIQR epidemic model incorporating media coverage, J. Appl. Anal. Comput., 10 (2020), 2439–2458. http://dx.doi.org/10.11948/20190333 doi: 10.11948/20190333
![]() |
[28] |
D. Shangguan, Z. Liu, L. Wang, R. Tan, A stochastic epidemic model with infectivity in incubation period and homestead-isolation on the susceptible, J. Appl. Math. Comput., 67 (2021), 785–805. http://dx.doi.org/10.1007/s12190-021-01504-1 doi: 10.1007/s12190-021-01504-1
![]() |
[29] |
W. Tan, X. Zhu, A stochastic model of the HIV epidemic for heterosexual transmission involving married couples and prostitutes: Ⅰ. the probabilities of HIV transmission and pair formation, Math. Comput. Model., 24 (1996), 47–107. http://dx.doi.org/10.1016/S0895-7177(96)00172-0 doi: 10.1016/S0895-7177(96)00172-0
![]() |
[30] |
W. Tan, Z. Xiang, A state space model for the HIV epidemic in homosexual populations and some applications, Math. Biosci., 152 (1998), 29–61. http://dx.doi.org/10.1016/S0025-5564(98)10013-5 doi: 10.1016/S0025-5564(98)10013-5
![]() |
[31] |
N. Dalal, D. Greenhalgh, X. Mao, A stochastic model for internal HIV dynamics, J. Math. Anal. Appl., 341 (2008), 1084–1101. http://dx.doi.org/10.1016/j.jmaa.2007.11.005 doi: 10.1016/j.jmaa.2007.11.005
![]() |
[32] |
A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A stochastic differnetial equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876–902. http://dx.doi.org/10.1137/10081856X doi: 10.1137/10081856X
![]() |
[33] |
E. Beretta, V. Kolmanovskii, L. Shaikhet, Stability of epidemic model with time delays influenced by stochastic perturbations, Math. Comput. Simulat., 45 (1998), 269–277. http://dx.doi.org/10.1016/S0378-4754(97)00106-7 doi: 10.1016/S0378-4754(97)00106-7
![]() |
[34] |
M. Carletti, On the stability properties of a stochastic model for phage-bacteria interaction in open marine environment, Math. Biosci., 175 (2002), 117–131. http://dx.doi.org/10.1016/S0025-5564(01)00089-X doi: 10.1016/S0025-5564(01)00089-X
![]() |
[35] |
J. Beddington, R. May, Harvesting natural populations in a randomly fluctuating environment, Science, 197 (1977), 463–465. http://dx.doi.org/10.1126/science.197.4302.463 doi: 10.1126/science.197.4302.463
![]() |
[36] |
L. Imhof, S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differ. Equations, 217 (2005), 26–53. http://dx.doi.org/10.1016/j.jde.2005.06.017 doi: 10.1016/j.jde.2005.06.017
![]() |
[37] | R. Khasminskii, Stochastic stability of differential equations, Berlin: Springer, 2012. http://dx.doi.org/10.1007/978-3-642-23280-0 |
[38] |
X. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Proc. Appl., 97 (2002), 95–110. http://dx.doi.org/10.1016/S0304-4149(01)00126-0 doi: 10.1016/S0304-4149(01)00126-0
![]() |
[39] | X. Mao, Stochastic differential equations and applications, Cambridge: Woodhead Publishing, 2007. |
1. | Batirkhan Turmetov, Valery Karachik, On solvability of some inverse problems for a nonlocal fourth-order parabolic equation with multiple involution, 2024, 9, 2473-6988, 6832, 10.3934/math.2024333 | |
2. | İrem Bağlan, Ahmet Akdemir, Mustafa Dokuyucu, Inverse coefficient problem for quasilinear pseudo-parabolic equation by fourier method, 2023, 37, 0354-5180, 7217, 10.2298/FIL2321217B |