Research article

The linear $ k $-arboricity of symmetric directed trees

  • Received: 29 May 2021 Accepted: 26 October 2021 Published: 29 October 2021
  • MSC : 05C70, 05C38

  • A linear $ k $-diforest is a directed forest in which every connected component is a directed path of length at most $ k $. The linear $ k $-arboricity of a digraph $ D $ is the minimum number of arc-disjoint linear $ k $-diforests whose union covers all the arcs of $ D $. In this paper, we study the linear $ k $-arboricity for symmetric directed trees and fully determine the linear $ 2 $-arboricity for all symmetric directed trees.

    Citation: Xiaoling Zhou, Chao Yang, Weihua He. The linear $ k $-arboricity of symmetric directed trees[J]. AIMS Mathematics, 2022, 7(2): 1603-1614. doi: 10.3934/math.2022093

    Related Papers:

  • A linear $ k $-diforest is a directed forest in which every connected component is a directed path of length at most $ k $. The linear $ k $-arboricity of a digraph $ D $ is the minimum number of arc-disjoint linear $ k $-diforests whose union covers all the arcs of $ D $. In this paper, we study the linear $ k $-arboricity for symmetric directed trees and fully determine the linear $ 2 $-arboricity for all symmetric directed trees.



    加载中


    [1] J. Akiyama, G. Exoo, F. Harary, Covering and packing in graphs, III: Cyclic and acyclic invariants, Math. Slovaca, 30 (1980), 405–417.
    [2] N. Alon, Probabilistic methods in coloring and decomposition problems, Discerte Math., 127 (1994), 31–46. doi: 10.1016/0012-365X(92)00465-4. doi: 10.1016/0012-365X(92)00465-4
    [3] N. Alon, V. J. Teague, N. C. Wormald, Linear arboricity and linear k-arboricity of regular graphs, Graphs Combinatorics, 17 (2001), 11–16. doi: 10.1007/PL00007233. doi: 10.1007/PL00007233
    [4] B. Alspach, J. C. Bermond, D. Sotteau, Decomposition into Cycles I: Hamilton decompositions, 3 Eds., Netherlands: Springer, 1990. doi: 10.1007/978-94-009-0517-7_2.
    [5] R. D. Baker, R. M. Wilson, Nearly Kirkman triple systems, Utilitas Math., 11 (1977), 289–296.
    [6] J. C. Bermond, J. Fouquet, M. Habib, B. Péroche, On linear $k$-arboricity, Discrete Math., 52 (1984), 123–132. doi: 10.1016/0012-365X(84)90075-X. doi: 10.1016/0012-365X(84)90075-X
    [7] G. J. Chang, Algorithmic aspects of linear $k$-arboricity, Taiwanese J. Math., 3 (1999), 71–81. doi: 10.11650/twjm/1500407055. doi: 10.11650/twjm/1500407055
    [8] G. J. Chang, B. L. Chen, H. L. Fu, K. C. Huang, Linear $k$-arboricities on trees, Discrete Appl. Math., 103 (2000), 281–287. doi: 10.1016/S0166-218X(99)00247-4. doi: 10.1016/S0166-218X(99)00247-4
    [9] B. L. Chen, K. C. Huang, On the linear $k$-arboricity of $K_n$ and $K_{n, n}$, Discrete Math., 254 (2002), 51–61. doi: 10.1016/S0012-365X(01)00365-X. doi: 10.1016/S0012-365X(01)00365-X
    [10] A. Ferber, J. Fox, V. Jain, Towards the linear arboricity conjecture, J. Comb. Theory, Ser. B, 142 (2020), 56–79. doi: 10.1016/j.jctb.2019.08.009. doi: 10.1016/j.jctb.2019.08.009
    [11] H. L. Fu, K. C. Huang, The Linear $2$-arboricity of complete bipartite graphs, ARS Comb., 38 (1994), 309–318.
    [12] H. L. Fu, K. C. Huang, C. H. Yen, The linear $3$-arboricity of $K_{n, n}$ and $K_{n}$, Discrete Math., 308 (2008), 3816–3823. doi: 10.1016/j.disc.2007.07.067. doi: 10.1016/j.disc.2007.07.067
    [13] M. Habib, B. Péroche, Some problems about linear arboricity, Discrete Math., 41 (1982), 219–220. doi: 10.1016/0012-365X(82)90209-6. doi: 10.1016/0012-365X(82)90209-6
    [14] F. Harary, Coverings and packing in graphs, I, Ann. New York Academy Sci., 175 (1970), 198–205. doi: 10.1111/j.1749-6632.1970.tb45132.x. doi: 10.1111/j.1749-6632.1970.tb45132.x
    [15] W. He, H. Li, Y. Bai, Q. Sun, Linear arboricity of regular digraphs, Acta Math. Sin., Engl. Ser., 33 (2017), 501–508. doi: 10.1007/s10114-016-5071-9. doi: 10.1007/s10114-016-5071-9
    [16] B. Jackson, N. C. Wormald, On the linear $k$-arboricity of cubic graphs, Discrete Math., 162 (1996), 293–297. doi: 10.1016/0012-365X(95)00293-6. doi: 10.1016/0012-365X(95)00293-6
    [17] A. Nakayama, B. Péroche, Linear arboricity of digraphs, Networks, 17 (1987), 39–53. doi: 10.1002/net.3230170104. doi: 10.1002/net.3230170104
    [18] D. K. Ray-Chauduri, R. M. Wilson, Solution of Kirkman's schoolgirl problem, Proc. Symp. Pure Math., 19 (1971), 187–203. doi: 10.1090/pspum/019/9959. doi: 10.1090/pspum/019/9959
    [19] C. Thomassen, Two-coloring the edges of a cubic graph such that each monochromatic component is a path of length at most 5, J. Comb. Theory, Ser. B, 75 (1999), 100–109. doi: 10.1006/jctb.1998.1868. doi: 10.1006/jctb.1998.1868
    [20] J. L. Wu, On the linear arboricity of planar graphs, J. Graph Theory, 31 (1999), 129–134. doi: 10.1002/(SICI)1097-0118(199906)31:21.0.CO; 2-3. doi: 10.1002/(SICI)1097-0118(199906)31:21.0.CO;2-3
    [21] B. Xue, L. Zuo, On the linear $(n-1)$-arboricity of $K_{n(m)}$, Discrete Appl. Math., 158 (2010), 1546–1550. doi: 10.1016/j.dam.2010.04.013. doi: 10.1016/j.dam.2010.04.013
    [22] C. H. Yen, H. L. Fu, Linear $2$-arboricity of the complete graph, Taiwanese J. Math., 14 (2010), 273–286. doi: 10.11650/twjm/1500405741. doi: 10.11650/twjm/1500405741
    [23] X. Zhou, C. Yang, W. He, The linear $k$-arboricity of digraphs, unpublished work.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1422) PDF downloads(105) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog