Research article

Least squares estimation for non-ergodic weighted fractional Ornstein-Uhlenbeck process of general parameters

  • Received: 01 April 2021 Accepted: 02 September 2021 Published: 07 September 2021
  • MSC : 62F12, 60F05, 60G15, 60H05

  • Let Ba,b:={Ba,bt,t0} be a weighted fractional Brownian motion of parameters a>1, |b|<1, |b|<a+1. We consider a least square-type method to estimate the drift parameter θ>0 of the weighted fractional Ornstein-Uhlenbeck process X:={Xt,t0} defined by X0=0; dXt=θXtdt+dBa,bt. In this work, we provide least squares-type estimators for θ based continuous-time and discrete-time observations of X. The strong consistency and the asymptotic behavior in distribution of the estimators are studied for all (a,b) such that a>1, |b|<1, |b|<a+1. Here we extend the results of [1,2] (resp. [3]), where the strong consistency and the asymptotic distribution of the estimators are proved for 12<a<0, a<b<a+1 (resp. 1<a<0, a<b<a+1). Simulations are performed to illustrate the theoretical results.

    Citation: Abdulaziz Alsenafi, Mishari Al-Foraih, Khalifa Es-Sebaiy. Least squares estimation for non-ergodic weighted fractional Ornstein-Uhlenbeck process of general parameters[J]. AIMS Mathematics, 2021, 6(11): 12780-12794. doi: 10.3934/math.2021738

    Related Papers:

    [1] Kailash C. Misra, Sutida Patlertsin, Suchada Pongprasert, Thitarie Rungratgasame . On derivations of Leibniz algebras. Electronic Research Archive, 2024, 32(7): 4715-4722. doi: 10.3934/era.2024214
    [2] Yizheng Li, Dingguo Wang . Lie algebras with differential operators of any weights. Electronic Research Archive, 2023, 31(3): 1195-1211. doi: 10.3934/era.2023061
    [3] Shanshan Liu, Abdenacer Makhlouf, Lina Song . The full cohomology, abelian extensions and formal deformations of Hom-pre-Lie algebras. Electronic Research Archive, 2022, 30(8): 2748-2773. doi: 10.3934/era.2022141
    [4] Xueru Wu, Yao Ma, Liangyun Chen . Abelian extensions of Lie triple systems with derivations. Electronic Research Archive, 2022, 30(3): 1087-1103. doi: 10.3934/era.2022058
    [5] Pengliang Xu, Xiaomin Tang . Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, 2021, 29(4): 2771-2789. doi: 10.3934/era.2021013
    [6] Neşet Deniz Turgay . On the mod p Steenrod algebra and the Leibniz-Hopf algebra. Electronic Research Archive, 2020, 28(2): 951-959. doi: 10.3934/era.2020050
    [7] Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124
    [8] Margarida Camarinha . A natural 4th-order generalization of the geodesic problem. Electronic Research Archive, 2024, 32(5): 3396-3412. doi: 10.3934/era.2024157
    [9] Baoling Guan, Xinxin Tian, Lijun Tian . Induced 3-Hom-Lie superalgebras. Electronic Research Archive, 2023, 31(8): 4637-4651. doi: 10.3934/era.2023237
    [10] Jinguo Jiang . Algebraic Schouten solitons associated to the Bott connection on three-dimensional Lorentzian Lie groups. Electronic Research Archive, 2025, 33(1): 327-352. doi: 10.3934/era.2025017
  • Let Ba,b:={Ba,bt,t0} be a weighted fractional Brownian motion of parameters a>1, |b|<1, |b|<a+1. We consider a least square-type method to estimate the drift parameter θ>0 of the weighted fractional Ornstein-Uhlenbeck process X:={Xt,t0} defined by X0=0; dXt=θXtdt+dBa,bt. In this work, we provide least squares-type estimators for θ based continuous-time and discrete-time observations of X. The strong consistency and the asymptotic behavior in distribution of the estimators are studied for all (a,b) such that a>1, |b|<1, |b|<a+1. Here we extend the results of [1,2] (resp. [3]), where the strong consistency and the asymptotic distribution of the estimators are proved for 12<a<0, a<b<a+1 (resp. 1<a<0, a<b<a+1). Simulations are performed to illustrate the theoretical results.



    The concept of embedded tensors initially emerged in the research on gauged supergravity theory [1]. Using embedding tensors, the N=8 supersymmetric gauge theories as well as the Bagger-Lambert theory of multiple M2-branes were investigated in [2]. See [3,4,5] and the references therein for a great deal of literature on embedding tensors and related tensor hierarchies. In [6], the authors first observed the mathematical essence behind the embedding tensor and proved that the embedding tensor naturally produced Leibniz algebra. In the application of physics, they observed that in the construction of the corresponding gauge theory, they focused more on Leibniz algebra than on embedding tensor.

    In [7], Sheng et al. considered cohomology, deformations, and homotopy theory for embedding tensors and Lie-Leibniz triples. Later on, the deformation and cohomology theory of embedding tensors on 3-Lie algebras were extensively elaborated in [8]. Tang and Sheng [9] first proposed the concept of a nonabelian embedding tensor on Lie algebras, which is a nonabelian generalization of the embedding tensors, and gave the algebraic structures behind the nonabelian embedding tensors as Leibniz-Lie algebras. This generalization for embedding tensors on associative algebras has been previously explored in [10,11], where they are referred to as average operators with any nonzero weights. Moreover, the nonabelian embedding tensor on Lie algebras has been extended to the Hom setting in [12].

    On the other hand, Filippov [13] first introduced the concepts of 3-Lie algebras and, more generally, n-Lie algebras (also called Filippov algebras). Over recent years, the study and application of 3-Lie algebras have expanded significantly across the realms of mathematics and physics, including string theory, Nambu mechanics [14], and M2-branes [15,16]. Further research on 3-Lie algebras could be found in [17,18,19] and references cited therein.

    Drawing inspiration from Tang and Sheng's [9] terminology of nonabelian embedding tensors and recognizing the significance of 3-Lie algebras, cohomology, and deformation theories, this paper primarily investigates the nonabelian embedding tensors on 3-Lie algebras, along with their fundamental algebraic structures, cohomology, and deformations.

    This paper is organized as follows: Section 2 first recalls some basic notions of 3-Lie algebras and 3-Leibniz algebras. Then we introduce the coherent action of a 3-Lie algebra on another 3-Lie algebra and the notion of nonabelian embedding tensors on 3-Lie algebras with respect to a coherent action. In Section 3, the concept of 3-Leibniz-Lie algebra is presented as the fundamental algebraic structure for a nonabelian embedding tensor on the 3-Lie algebra. Naturally, a 3-Leibniz-Lie algebra induces a 3-Leibniz algebra. Subsequently, we study 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras. In Section 4, the cohomology theory of nonabelian embedding tensors on 3-Lie algebras is introduced. As an application, we characterize the infinitesimal deformation using the first cohomology group.

    All vector spaces and algebras considered in this paper are on the field K with the characteristic of 0.

    This section recalls some basic notions of 3-Lie algebras and 3-Leibniz algebras. After that, we introduce the coherent action of a 3-Lie algebra on another 3-Lie algebra, and we introduce the concept of nonabelian embedding tensors on 3-Lie algebras by its coherent action as a nonabelian generalization of embedding tensors on 3-Lie algebras [8].

    Definition 2.1. (see [13]) A 3-Lie algebra is a pair (L,[,,]L) consisting of a vector space L and a skew-symmetric ternary operation [,,]L:3LL such that

    [l1,l2,[l3,l4,l5]L]L=[[l1,l2,l3]L,l4,l5]L+[l3,[l1,l2,l4]L,l5]L+[l3,l4,[l1,l2,l5]L]L, (2.1)

    for all liL,1i5.

    A homomorphism between two 3-Lie algebras (L1,[,,]L1) and (L2,[,,]L2) is a linear map f:L1L2 that satisfies f([l1,l2,l3]L1)=[f(l1),f(l2),f(l3)]L2, for all l1,l2,l3L1.

    Definition 2.2. 1) (see [20]) A representation of a 3-Lie algebra (L,[,,]L) on a vector space H is a skew-symmetric linear map ρ:2LEnd(H), such that

    ρ([l1,l2,l3]L,l4)=ρ(l2,l3)ρ(l1,l4)+ρ(l3,l1)ρ(l2,l4)+ρ(l1,l2)ρ(l3,l4), (2.2)
    ρ(l1,l2)ρ(l3,l4)=ρ(l3,l4)ρ(l1,l2)+ρ([l1,l2,l3]L,l4)+ρ(l3,[l1,l2,l4]L), (2.3)

    for all l1,l2,l3,l4L. We also denote a representation of L on H by (H;ρ).

    2) A coherent action of a 3-Lie algebra (L,[,,]L) on another 3-Lie algebra (H,[,,]H) is defined by a skew-symmetric linear map ρ:2LDer(H) that satisfies Eqs (2.2) and (2.3), along with the condition that

    [ρ(l1,l2)h1,h2,h3]H=0, (2.4)

    for all l1,l2L and h1,h2,h3H. We denote a coherent action of L on H by (H,[,,]H;ρ).

    Note that Eq (2.4) and ρ(l1,l2)Der(H) imply that

    ρ(l1,l2)[h1,h2,h3]H=0. (2.5)

    Example 2.3. Let (H,[,,]H) be a 3-Lie algebra. Define ad:2HDer(H) by

    ad(h1,h2)h:=[h1,h2,h]H, for all h1,h2,hH.

    Then (H;ad) is a representation of (H,[,,]H), which is called the adjoint representation. Furthermore, if the ad satisfies

    [ad(h1,h2)h1,h2,h3]H=0, for allh1,h2,h3H,

    then (H,[,,]H;ad) is a coherent adjoint action of (H,[,,]H).

    Definition 2.4. (see [21]) A 3-Leibniz algebra is a vector space L together with a ternary operation [,,]L:LLLL such that

    [l1,l2,[l3,l4,l5]L]L=[[l1,l2,l3]L,l4,l5]L+[l3,[l1,l2,l4]L,l5]L+[l3,l4,[l1,l2,l5]L]L,

    for all liL,1i5.

    Proposition 2.5. Let (L,[,,]L) and (H,[,,]H) be two 3-Lie algebras, and let ρ be a coherent action of L on H. Then, LH is a 3-Leibniz algebra under the following map:

    [l1+h1,l2+h2,l3+h3]ρ:=[l1,l2,l3]L+ρ(l1,l2)h3+[h1,h2,h3]H,

    for all l1,l2,l3L and h1,h2,h3H. This 3-Leibniz algebra (LH,[,,]ρ) is called the nonabelian hemisemidirect product 3-Leibniz algebra, which is denoted by LρH.

    Proof. For any l1,l2,l3,l4,l5L and h1,h2,h3,h4,h5H, by Eqs (2.1)–(2.5), we have

    [l1+h1,l2+h2,[l3+h3,l4+h4,l5+h5]ρ]ρ[[l1+h1,l2+h2,l3+h3]ρ,l4+h4,l5+h5]ρ[l3+h3,[l1+h1,l2+h2,l4+h4]ρ,l5+h5]ρ[l3+h3,l4+h4,[l1+h1,l2+h2,l5+h5]ρ]ρ=[l1,l2,[l3,l4,l5]L]L+ρ(l1,l2)ρ(l3,l4)h5+ρ(l1,l2)[h3,h4,h5]H+[h1,h2,ρ(l3,l4)h5]H+[h1,h2,[h3,h4,h5]H]H[[l1,l2,l3]L,l4,l5]Lρ([l1,l2,l3]L,l4)h5[ρ(l1,l2)h3,h4,h5]H[[h1,h2,h3]H,h4,h5]H[l3,[l1,l2,l4]L,l5]Lρ(l3,[l1,l2,l4]L)h5[h3,ρ(l1,l2)h4,h5]H[h3,[h1,h2,h4]H,h5]H[l3,l4,[l1,l2,l5]L]Lρ(l3,l4)ρ(l1,l2)h5ρ(l3,l4)[h1,h2,h5]H[h3,h4,ρ(l1,l2)h5]H[h3,h4,[h1,h2,h5]H]H=[h1,h2,ρ(l3,l4)h5]Hρ(l3,l4)[h1,h2,h5]H=0.

    Thus, (LH,[,,]ρ) is a 3-Leibniz algebra.

    Definition 2.6. 1) A nonabelian embedding tensor on a 3-algebra (L,[,,]L) with respect to a coherent action (H,[,,]H;ρ) is a linear map Λ:HL that satisfies the following equation:

    [Λh1,Λh2,Λh3]L=Λ(ρ(Λh1,Λh2)h3+[h1,h2,h3]H), (2.6)

    for all h1,h2,h3H.

    2) A nonabelian embedding tensor 3-Lie algebra is a triple (H,L,Λ) consisting of a 3-Lie algebra (L,[,,]L), a coherent action (H,[,,]H;ρ) of L and a nonabelian embedding tensor Λ:HL. We denote a nonabelian embedding tensor 3-Lie algebra (H,L,Λ) by the notation HΛL.

    3) Let HΛ1L and HΛ2L be two nonabelian embedding tensor 3-Lie algebras. Then, a homomorphism from HΛ1L to HΛ2L consists of two 3-Lie algebras homomorphisms fL:LL and fH:HH, which satisfy the following equations:

    Λ2fH=fLΛ1, (2.7)
    fH(ρ(l1,l2)h)=ρ(fL(l1),fL(l2))fH(h), (2.8)

    for all l1,l2L and hH. Furthermore, if fL and fH are nondegenerate, (fL,fH) is called an isomorphism from HΛ1L to HΛ2L.

    Remark 2.7. If (H,[,,]H) is an abelian 3-Lie algebra, then we can get that Λ is an embedding tensor on 3-Lie algebra (see [8]). In addition, If ρ=0, then Λ is a 3-Lie algebra homomorphism from H to L.

    Example 2.8. Let H be a 4-dimensional linear space spanned by α1,α2,α3 and α4. We define a skew-symmetric ternary operation [,,]H:3HH by

    [α1,α2,α3]H=α4.

    Then (H,[,,]H) is a 3-Lie algebra. It is obvious that (H,[,,]H;ad) is a coherent adjoint action of (H,[,,]H). Moreover,

    Λ=(1000010000000000)

    is a nonabelian embedding tensor on (H,[,,]H).

    Next, we use graphs to describe nonabelian embedding tensors on 3-Lie algebras.

    Theorem 2.9. A linear map Λ:HL is a nonabelian embedding tensor on a 3-Lie algebra (L,[,,]L) with respect to the coherent action (H,[,,]H;ρ) if and only if the graph Gr(Λ)={Λh+h|hH} forms a subalgebra of the nonabelian hemisemidirect product 3-Leibniz algebra LρH.

    Proof. Let Λ:HL be a linear map. Then, for any h1,h2,h3H, we have

    [Λh1+h1,Λh2+h2,Λh3+h3]ρ=[Λh1,Λh2,Λh3]L+ρ(Λh1,Λh2)h3+[h1,h2,h3]H,

    Thus, the graph Gr(Λ)={Λh+h|hH} is a subalgebra of the nonabelian hemisemidirect product 3-Leibniz algebra LρH if and only if Λ satisfies Eq (2.6), which implies that Λ is a nonabelian embedding tensor on L with respect to the coherent action (H,[,,]H;ρ).

    Because H and Gr(Λ) are isomorphic as linear spaces, there is an induced 3-Leibniz algebra structure on H.

    Corollary 2.10. Let HΛL be a nonabelian embedding tensor 3-Lie algebra. If a linear map [,,]Λ:3HH is given by

    [h1,h2,h3]Λ=ρ(Λh1,Λh2)h3+[h1,h2,h3]H, (2.9)

    for all h1,h2,h3H, then (H,[,,]Λ) is a 3-Leibniz algebra. Moreover, Λ is a homomorphism from the 3-Leibniz algebra (H,[,,]Λ) to the 3-Lie algebra (L,[,,]L). This 3-Leibniz algebra (H,[,,]Λ) is called the descendent 3-Leibniz algebra.

    Proposition 2.11. Let (fL,fH) be a homomorphism from HΛ1L to HΛ2L. Then fH is a homomorphism of descendent 3-Leibniz algebra from (H,[,,]Λ1) to (H,[,,]Λ2).

    Proof. For any h1,h2,h3H, by Eqs (2.7)–(2.9), we have

    fH([h1,h2,h3]Λ1)=fH(ρ(Λ1h1,Λ1h2)h3+[h1,h2,h3]H)=ρ(fL(Λ1h1),fL(Λ1h2))fH(h3)+fH([h1,h2,h3]H)=ρ(Λ2fL(h1),Λ2fL(h2))fH(h3)+[fH(h1),fH(h2),fH(h3)]H=[fH(h1),fH(h2),fH(h3)]Λ2.

    The proof is finished.

    In this section, we present the concept of the 3-Leibniz-Lie algebra, which serves as the fundamental algebraic framework for the nonabelian embedding tensor 3-Lie algebra. Then we study 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras.

    Definition 3.1. A 3-Leibniz-Lie algebra (H,[,,]H,{,,}H) encompasses a 3-Lie algebra (H,[,,]H) and a ternary operation {,,}H:3HH, which satisfies the following equations:

    {h1,h2,h3}H={h2,h1,h3}H, (3.1)
    {h1,h2,{h3,h4,h5}H}H={{h1,h2,h3}H,h4,h5}H+{h3,{h1,h2,h4}H,h5}H+{h3,h4,{h1,h2,h5}H}H+{[h1,h2,h3]H,h4,h5}H+{h3,[h1,h2,h4]H,h5}H, (3.2)
    {h1,h2,[h3,h4,h5]H}H=[{h1,h2,h3}H,h4,h5]H=0, (3.3)

    for all h1,h2,h3,h4,h5H.

    A homomorphism between two 3-Leibniz-Lie algebras (H1,[,,]H1,{,,}H1) and (H2,[,,]H2,{,,}H2) is a 3-Lie algebra homomorphism f:(H1,[,,]H1)(H2,[,,]H2) such that f({h1,h2,h3}H1)={f(h1),f(h2),f(h3)}H2, for all h1,h2,h3H1.

    Remark 3.2. A 3-Lie algebra (H,[,,]H) naturally constitutes a 3-Leibniz-Lie algebra provided that the underlying ternary operation {h1,h2,h3}H=0, for all h1,h2,h3H.

    Example 3.3. Let (H,[,,]H) be a 4-dimensional 3-Lie algebra given in Example 2.8. We define a nonzero operation {,,}H:3HH by

    {α1,α2,α3}H={α2,α1,α3}H=α4.

    Then (H,[,,]H,{,,}H) is a 3-Leibniz-Lie algebra.

    The subsequent theorem demonstrates that a 3-Leibniz-Lie algebra inherently gives rise to a 3-Leibniz algebra.

    Theorem 3.4. Let (H,[,,]H,{,,}H) be a 3-Leibniz-Lie algebra. Then the ternary operation ,,H:3HH, defined as

    h1,h2,h3H:=[h1,h2,h3]H+{h1,h2,h3}H, (3.4)

    for all h1,h2,h3H, establishes a 3-Leibniz algebra structure on H. This structure is denoted by (H,,,H) and is referred to as the subadjacent 3-Leibniz algebra.

    Proof. For any h1,h2,h3,h4,h5H, according to (H,[,,]H) is a 3-Lie algebra and Eqs (3.2)–(3.4), we have

    h1,h2,h3,h4,h5HHh1,h2,h3H,h4,h5Hh3,h1,h2,h4H,h5Hh3,h4,h1,h2,h5HH=[h1,h2,[h3,h4,h5]H]H+[h1,h2,{h3,h4,h5}H]H+{h1,h2,[h3,h4,h5]H}H+{h1,h2,{h3,h4,h5}H}H[[h1,h2,h3]H,h4,h5]H[{h1,h2,h3}H,h4,h5]H{[h1,h2,h3]H,h4,h5}H{{h1,h2,h3}H,h4,h5}H[h3,[h1,h2,h4]H,h5]H[h3,{h1,h2,h4}H,h5]H{h3,[h1,h2,h4]H,h5}H{h3,{h1,h2,h4}H,h5}H[h3,h4,[h1,h2,h5]H]H[h3,h4,{h1,h2,h5}H]H{h3,h4,[h1,h2,h5]H}H{h3,h4,{h1,h2,h5}H}H={h1,h2,{h3,h4,h5}H}H{[h1,h2,h3]H,h4,h5}H{{h1,h2,h3}H,h4,h5}H{h3,[h1,h2,h4]H,h5}H{h3,{h1,h2,h4}H,h5}H{h3,h4,{h1,h2,h5}H}H=0.

    Hence, (H,,,H) is a 3-Leibniz algebra.

    The following theorem shows that a nonabelian embedding tensor 3-Lie algebra induces a 3-Leibniz-Lie algebra.

    Theorem 3.5. Let HΛL be a nonabelian embedding tensor 3-Lie algebra. Then (H,[,,]H,{,,}Λ) is a 3-Leibniz-Lie algebra, where

    {h1,h2,h3}Λ:=ρ(Λh1,Λh2)h3, (3.5)

    for all h1,h2,h3H.

    Proof. For any h1,h2,h3,h4,h5H, by Eqs (2.3), (2.6), and (3.5), we have

    {h1,h2,h3}Λ=ρ(Λh1,Λh2)h3=ρ(Λh2,Λh1)h3={h2,h1,h3}Λ,{{h1,h2,h3}Λ,h4,h5}Λ+{h3,{h1,h2,h4}Λ,h5}Λ+{h3,h4,{h1,h2,h5}Λ}Λ+{[h1,h2,h3]H,h4,h5}Λ+{h3,[h1,h2,h4]H,h5}Λ{h1,h2,{h3,h4,h5}Λ}Λ=ρ(Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,Λρ(Λh1,Λh2)h4)h5+ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ(Λ[h1,h2,h3]H,Λh4)h5+ρ(Λh3,Λ[h1,h2,h4]H)h5ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=ρ(Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,Λρ(Λh1,Λh2)h4)h5+ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ([Λh1,Λh2,Λh3]LΛρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,[Λh1,Λh2,Λh4]LΛρ(Λh1,Λh2)h4)h5ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ([Λh1,Λh2,Λh3]L,Λh4)h5+ρ(Λh3,[Λh1,Λh2,Λh4]L)h5ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=0.

    Furthermore, by Eqs (2.4), (2.5), and (3.5), we have

    [{h1,h2,h3}Λ,h4,h5]H=[ρ(Λh1,Λh2)h3,h4,h5]H=0,{h1,h2,[h3,h4,h5]H}Λ=ρ(Λh1,Λh2)[h3,h4,h5]H=0.

    Thus, (H,[,,]H,{,,}Λ) is a 3-Leibniz-Lie algebra.

    Proposition 3.6. Let (fL,fH) be a homomorphism from HΛ1L to HΛ2L. Then fH is a homomorphism of 3-Leibniz-Lie algebras from (H,[,,]H,{,,}Λ1) to (H,[,,]H,{,,}Λ2).

    Proof. For any h1,h2,h3H, by Eqs (2.7), (2.8), and (3.5), we have

    fH({h1,h2,h3}Λ1)=fH(ρ(Λ1h1,Λ1h2)h3)=ρ(fL(Λ1h1),fL(Λ1h2))fH(h3)=ρ(Λ2fH(h1),Λ2fH(h2))fH(h3)={fH(h1),fH(h2),fH(h3)}Λ2.

    The proof is finished.

    Motivated by the construction of 3-Lie algebras from Lie algebras [17], at the end of this section, we investigate 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras.

    Definition 3.7. (see [9]) A Leibniz-Lie algebra (H,[,]H,) encompasses a Lie algebra (H,[,]H) and a binary operation ⊳:HHH, ensuring that

    h1(h2h3)=(h1h2)h3+h2(h1h3)+[h1,h2]Hh3,h1[h2,h3]H=[h1h2,h3]H=0,

    for all h1,h2,h3H.

    Theorem 3.8. Let (H,[,]H,) be a Leibniz-Lie algebra, and let ςH be a trace map, which is a linear map that satisfies the following conditions:

    ς([h1,h2]H)=0,ς(h1h2)=0,for allh1,h2H.

    Define two ternary operations by

    [h1,h2,h3]Hς=ς(h1)[h2,h3]H+ς(h2)[h3,h1]H+ς(h3)[h1,h2]H,{h1,h2,h3}Hς=ς(h1)h2h3ς(h2)h1h3,for allh1,h2,h3H.

    Then (H,[,,]Hς,{,,}Hς) is a 3-Leibniz-Lie algebra.

    Proof. First, we know from [17] that (H,[,,]Hς) is a 3-Lie algebra. Next, for any h1,h2,h3,h4,h5H, we have

    {h1,h2,h3}Hς=ς(h1)h2h3ς(h2)h1h3=(ς(h2)h1h3ς(h1)h2h3)={h2,h1,h3}Hς

    and

    {{h1,h2,h3}Hς,h4,h5}Hς+{h3,{h1,h2,h4}Hς,h5}Hς+{h3,h4,{h1,h2,h5}Hς}Hς+{[h1,h2,h3]Hς,h4,h5}Hς+{h3,[h1,h2,h4]Hς,h5}Hς{h1,h2,{h3,h4,h5}Hς}Hς=ς(h1)ς(h2h3)h4h5ς(h4)ς(h1)(h2h3)h5ς(h2)ς(h1h3)h4h5+ς(h4)ς(h2)(h1h3)h5+ς(h3)ς(h1)(h2h4)h5ς(h1)ς(h2h4)h3h5ς(h3)ς(h2)(h1h4)h5+ς(h2)ς(h1h4)h3h5+ς(h1)ς(h3)h4(h2h5)ς(h1)ς(h4)h3(h2h5)ς(h2)ς(h3)h4(h1h5)+ς(h2)ς(h4)h3(h1h5)+ς(h1)ς([h2,h3]H)h4h5ς(h4)ς(h1)[h2,h3]Hh5+ς(h2)ς([h3,h1]H)h4h5ς(h4)ς(h2)[h3,h1]Hh5+ς(h3)ς([h1,h2]H)h4h5ς(h4)ς(h3)[h1,h2]Hh5+ς(h3)ς(h1)[h2,h4]Hh5ς(h1)ς([h2,h4]H)h3h5+ς(h3)ς(h2)[h4,h1]Hh5ς(h2)ς([h4,h1]H)h3h5+ς(h3)ς(h4)[h1,h2]Hh5ς(h4)ς([h1,h2]H)h3h5ς(h1)ς(h3)h2(h4h5)+ς(h2)ς(h3)h1(h4h5)+ς(h1)ς(h4)h2(h3h5)ς(h2)ς(h4)h1(h3h5)=ς(h4)ς(h1)(h2h3)h5+ς(h4)ς(h2)(h1h3)h5+ς(h3)ς(h1)(h2h4)h5ς(h3)ς(h2)(h1h4)h5+ς(h1)ς(h3)h4(h2h5)ς(h1)ς(h4)h3(h2h5)ς(h2)ς(h3)h4(h1h5)+ς(h2)ς(h4)h3(h1h5)ς(h4)ς(h1)[h2,h3]Hh5ς(h4)ς(h2)[h3,h1]Hh5+ς(h3)ς(h1)[h2,h4]Hh5+ς(h3)ς(h2)[h4,h1]Hh5ς(h1)ς(h3)h2(h4h5)+ς(h2)ς(h3)h1(h4h5)+ς(h1)ς(h4)h2(h3h5)ς(h2)ς(h4)h1(h3h5)=0.

    Similarly, we obtain

    {h1,h2,[h3,h4,h5]Hς}Hς=ς(h1)ς(h3)h2[h4,h5]Hς(h2)ς(h3)h1[h4,h5]H+ς(h1)ς(h4)h2[h5,h3]Hς(h2)ς(h4)h1[h5,h3]H+ς(h1)ς(h5)h2[h3,h4]Hς(h2)ς(h5)h1[h3,h4]H=0

    and

    [{h1,h2,h3}Hς,h4,h5]Hς=ς(h1)ς(h2h3)[h4,h5]H+ς(h4)ς(h1)[h5,h2h3]H+ς(h5)ς(h1)[h2h3,h4]Hς(h2)ς(h1h3)[h4,h5]Hς(h4)ς(h2)[h5,h1h3]Hς(h5)ς(h2)[h1h3,h4]H=0.

    Hence Eqs (3.1)–(3.3) hold and we complete the proof.

    In this section, we revisit fundamental results pertaining to the representations and cohomologies of 3-Leibniz algebras. We construct a representation of the descendent 3-Leibniz algebra (H,[,,]Λ) on the vector space L and define the cohomologies of a nonabelian embedding tensor on 3-Lie algebras. As an application, we characterize the infinitesimal deformation using the first cohomology group.

    Definition 4.1. (see [22]) A representation of the 3-Leibniz algebra (H,[,,]H) is a vector space V equipped with 3 actions

    l:HHVV,m:HVHV,r:VHHV,

    satisfying for any a1,a2,a3,a4,a5H and uV

    l(a1,a2,l(a3,a4,u))=l([a1,a2,a3]H,a4,u)+l(a3,[a1,a2,a4]H,u)+l(a3,a4,l(a1,a2,u)), (4.1)
    l(a1,a2,m(a3,u,a5))=m([a1,a2,a3]H,u,a5)+m(a3,l(a1,a2,u),a5)+m(a3,u,[a1,a2,a5]H), (4.2)
    l(a1,a2,r(u,a4,a5))=r(l(a1,a2,u),a4,a5)+r(u,[a1,a2,a4]H,a5)+r(u,a4,[a1,a2,a5]H), (4.3)
    m(a1,u,[a3,a4,a5]H)=r(m(a1,u,a3),a4,a5)+m(a3,m(a1,u,a4),a5)+l(a3,a4,m(a1,u,a5)), (4.4)
    r(u,a2,[a3,a4,a5]H)=r(r(u,a2,a3),a4,a5)+m(a3,r(u,a2,a4),a5)+l(a3,a4,r(u,a2,a5)). (4.5)

    For n1, denote the n-cochains of 3-Leibniz algebra (H,[,,]H) with coefficients in a representation (V;l,m,r) by

    Cn3Leib(H,V)=Hom(n12H2HH,V).

    The coboundary map δ:Cn3Leib(H,V)Cn+13Leib(H,V), for Ai=aibi2H,1in and cH, as

    (δφ)(A1,A2,,An,c)=1j<kn(1)jφ(A1,,^Aj,,Ak1,ak[aj,bj,bk]H+[aj,bj,ak]Hbk,,An,c)+nj=1(1)jφ(A1,,^Aj,,An,[aj,bj,c]H)+nj=1(1)j+1l(Aj,φ(A1,,^Aj,,An,c))+(1)n+1(m(an,φ(A1,,An1,bn),c)+r(φ(A1,,An1,an),bn,c)).

    It was proved in [23,24] that δ2=0. Therefore, (+n=1Cn3Leib(H,V),δ) is a cochain complex.

    Let HΛL be a nonabelian embedding tensor 3-Lie algebra. By Corollary 2.10, (H,[,,]Λ) is a 3-Leibniz algebra. Next we give a representation of (H,[,,]Λ) on L.

    Lemma 4.2. With the above notations. Define 3 actions

    lΛ:HHLL,mΛ:HLHL,rΛ:LHHL,

    by

    lΛ(h1,h2,l)=[Λh1,Λh2,l]L,mΛ(h1,l,h2)=[Λh1,l,Λh2]LΛρ(Λh1,l)h2,rΛ(l,h1,h2)=[l,Λh1,Λh2]LΛρ(l,Λh1)h2,

    for all h1,h2H,lL. Then (L;lΛ,mΛ,rΛ) is a representation of the descendent 3-Leibniz algebra (H,[,,]Λ).

    Proof. For any h1,h2,h3,h4,h5H and lL, by Eqs (2.1), (2.3)–(2.6), and (2.9), we have

    lΛ(h1,h2,lΛ(h3,h4,l))lΛ([h1,h2,h3]Λ,h4,l)lΛ(h3,[h1,h2,h4]Λ,l)lΛ(h3,h4,lΛ(h1,h2,l))=[Λh1,Λh2,[Λh3,Λh4,l]L]L[[Λh1,Λh2,Λh3]L,Λh4,l]L[Λh3,[Λh1,Λh2,Λh4]L,l]L[Λh3,Λh4,[Λh1,Λh2,l]L]L=0

    and

    lΛ(h1,h2,mΛ(h3,l,h5))mΛ([h1,h2,h3]Λ,l,h5)mΛ(h3,lΛ(h1,h2,l),h5)mΛ(h3,l,[h1,h2,h5]Λ)=[Λh1,Λh2,[Λh3,l,Λh5]L]L[Λh1,Λh2,Λρ(Λh3,l)h5]L[[Λh1,Λh2,Λh3]L,l,Λh5]L+Λρ([Λh1,Λh2,Λh3]L,l)h5[Λh3,[Λh1,Λh2,l]L,Λh5]L+Λρ(Λh3,[Λh1,Λh2,l]L)h5[Λh3,l,[Λh1,Λh2,Λh5]L]L+Λρ(Λh3,l)ρ(Λh1,Λh2)h5+Λρ(Λh3,l)[h1,h2,h5]H=[Λh1,Λh2,Λρ(Λh3,l)h5]L+Λρ([Λh1,Λh2,Λh3]L,l)h5+Λρ(Λh3,[Λh1,Λh2,l]L)h5+Λρ(Λh3,l)ρ(Λh1,Λh2)h5+Λρ(Λh3,l)[h1,h2,h5]H=Λ(ρ(Λh1,Λh2)ρ(Λh3,l)h5+[h1,h2,ρ(Λh3,l)h5]H)+Λρ(Λh1,Λh2)ρ(Λh3,l)h5+Λρ(Λh3,l)[h1,h2,h5]H=Λ[h1,h2,ρ(Λh3,l)h5]H+Λρ(Λh3,l)[h1,h2,h5]H=0,

    which imply that Eqs (4.1) and (4.2) hold. Similarly, we can prove that Eqs (4.3)–(4.5) are true. The proof is finished.

    Proposition 4.3. Let HΛ1L and HΛ2L be two nonabelian embedding tensor 3-Lie algebras and (fL,fH) a homomorphism from HΛ1L to HΛ2L. Then the induced representation (L;lΛ1,mΛ1,rΛ1) of the descendent 3-Leibniz algebra (H,[,,]Λ1) and the induced representation (L;lΛ2,mΛ2,rΛ2) of the descendent 3-Leibniz algebra (H,[,,]Λ2) satisfying the following equations:

    fL(lΛ1(h1,h2,l))=lΛ2(fH(h1),fH(h2),fL(l)), (4.6)
    fL(mΛ1(h1,l,h2))=mΛ2(fH(h1),fL(l),fH(h2)), (4.7)
    fL(rΛ1(l,h1,h2))=rΛ2(fL(l),fH(h1),fH(h2)), (4.8)

    for all h1,h2H,lL. In other words, the following diagrams commute:

    Proof. For any h1,h2H,lL, by Eqs (2.7) and (2.8), we have

    fL(lΛ1(h1,h2,l))=fL([Λ1h1,Λ1h2,l]L)=[fL(Λ1h1),fL(Λ1h2),fL(l)]L=[Λ2fH(h1),Λ2fH(h2),fL(l)]L=lΛ2(fH(h1),fH(h2),fL(l)),fL(mΛ1(h1,l,h2))=fL([Λ1h1,l,Λ1h2]LΛ1ρ(Λ1h1,l)h2)=[fL(Λ1h1),fL(l),fL(Λ1h2)]LfL(Λ1ρ(Λ1h1,l)h2)=[Λ2fH(h1),fL(l),Λ2fH(h2)]LΛ2fH(ρ(Λ1h1,l)h2)=[Λ2fH(h1),fL(l),Λ2fH(h2)]LΛ2ρ(Λ2fH(h1),fL(l))fH(h2)=mΛ2(fH(h1),fL(l),fH(h2)).

    And the other equation is similar to provable.

    For n1, let δΛ:Cn3Leib(H,L)Cn+13Leib(H,L) be the coboundary operator of the 3-Leibniz algebra (H,[,,]Λ) with coefficients in the representation (L;lΛ,mΛ,rΛ). More precisely, for all ϕCn3Leib(H,L),Hi=uivi2H,1in and wH, we have

    (δΛϕ)(H1,H2,,Hn,w)=1j<kn(1)jϕ(H1,,^Hj,,Hk1,uk[uj,vj,vk]Λ+[uj,vj,uk]Λvk,,Hn,w)+nj=1(1)jϕ(H1,,^Hj,,Hn,[uj,vj,w]Λ)+nj=1(1)j+1lΛ(Hj,ϕ(H1,,^Hj,,Hn,w))+(1)n+1(mΛ(un,ϕ(H1,,Hn1,vn),w)+rΛ(ϕ(H1,,Hn1,un),vn,w)).

    In particular, for ϕC13Leib(H,L):=Hom(H,L) and u1,v1,wH, we have

    (δΛϕ)(u1,v1,w)=ϕ([u1,v1,w]Λ)+lΛ(u1,v1,ϕ(w))+mΛ(u1,ϕ(v1),w)+rΛ(ϕ(u1),v1,w)=ϕ([u1,v1,w]Λ)+[Λu1,Λv1,ϕ(w)]L+[Λu1,ϕ(v1),Λw]LΛρ(Λu1,ϕ(v1))w+[ϕ(u1),Λv1,Λw]LΛρ(ϕ(u1),Λv1)w.

    For any (a1,a2)C03Leib(H,L):=2L, we define δΛ:C03Leib(H,L)C13Leib(H,L),(a1,a2)δΛ(a1,a2) by

    δΛ(a1,a2)u=Λρ(a1,a2)u[a1,a2,Λu]L,uH.

    Proposition 4.4. Let HΛL be a nonabelian embedding tensor 3-Lie algebra. Then δΛ(δΛ(a1,a2))=0, that is, the composition C03Leib(H,L)δΛC13Leib(H,L)δΛC23Leib(H,L) is the zero map.

    Proof. For any u1,v1,wV, by Eqs (2.1)–(2.6) and (2.9) we have

    δΛ(δΛ(a1,a2))(u1,v1,w)=δΛ(a1,a2)([u1,v1,w]Λ)+[Λu1,Λv1,δΛ(a1,a2)(w)]L+[Λu1,δΛ(a1,a2)(v1),Λw]LΛρ(Λu1,δΛ(a1,a2)(v1))w+[δΛ(a1,a2)(u1),Λv1,Λw]LΛρ(δΛ(a1,a2)(u1),Λv1)w=Λρ(a1,a2)[u1,v1,w]Λ+[a1,a2,[Λu1,Λv1,Λw]L]L+[Λu1,Λv1,Λρ(a1,a2)w]L[Λu1,Λv1,[a1,a2,Λw]L]L+[Λu1,Λρ(a1,a2)v1,Λw]L[Λu1,[a1,a2,Λv1]L,Λw]LΛρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+[Λρ(a1,a2)u1,Λv1,Λw]L[[a1,a2,Λu1]L,Λv1,Λw]LΛρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=Λρ(a1,a2)ρ(Λu1,Λv1)wΛρ(a1,a2)[u1,v1,w]H+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λ[u1,v1,ρ(a1,a2)w]H+Λρ(Λu1,Λρ(a1,a2)v1)w+Λ[u1,ρ(a1,a2)v1,w]HΛρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λ(Λρ(a1,a2)u1,Λv1)w+Λ[ρ(a1,a2)u1,v1,w]HΛρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=Λρ(a1,a2)ρ(Λu1,Λv1)w+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λρ(Λu1,Λρ(a1,a2)v1)wΛρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λ(Λρ(a1,a2)u1,Λv1)wΛρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=Λρ(a1,a2)ρ(Λu1,Λv1)w+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λρ([a1,a2,Λu1]L,Λv1)w=0.

    Therefore, we deduce that δΛ(δΛ(a1,a2))=0.

    Now we develop the cohomology theory of a nonabelian embedding tensor Λ on the 3-Lie algebra (L,[,,]L) with respect to the coherent action (H,[,,]H;ρ).

    For n0, define the set of n-cochains of Λ by CnΛ(H,L):=Cn3Leib(H,L). Then (n=0CnΛ(H,L),δΛ) is a cochain complex.

    For n1, we denote the set of n-cocycles by ZnΛ(H,L), the set of n-coboundaries by BnΛ(H,L), and the n-th cohomology group of the nonabelian embedding tensor Λ by

    HHnΛ(H,L)=ZnΛ(H,L)BnΛ(H,L).

    Proposition 4.5. Let HΛ1L and HΛ2L be two nonabelian embedding tensor 3-Lie algebras and let (fL,fH) be a homomorphism from HΛ1L to HΛ2L in which fH is invertible. We define a map Ψ:CnΛ1(H,L)CnΛ2(H,L) by

    Ψ(ϕ)(H1,H2,,Hn1,w)=fL(ϕ(f1H(u1)f1H(v1),,f1H(un1)f1H(vn1),f1H(w))),

    for all ϕCnΛ1(H,L),Hi=uivi2H,1in1, and wH. Then Ψ:(Cn+1Λ1(H,L),δΛ1)(Cn+1Λ2(H,L),δΛ2) is a cochain map.

    That is, the following diagram commutes:

    Consequently, it induces a homomorphism Ψ from the cohomology group HHn+1Λ1(H,L) to HHn+1Λ2(H,L).

    Proof. For any ϕCnΛ1(H,L),Hi=uivi2H,1in, and wH, by Eqs (4.6)–(4.8) and Proposition 2.11, we have

    (δΛ2Ψ(ϕ))(H1,H2,,Hn,w)=1j<kn(1)jΨ(ϕ)(H1,,^Hj,,Hk1,uk[uj,vj,vk]Λ2+[uj,vj,uk]Λ2vk,,Hn,w)+nj=1(1)jΨ(ϕ)(H1,,^Hj,,Hn,[uj,vj,w]Λ2)+nj=1(1)j+1lΛ2(Hj,Ψ(ϕ)(H1,,^Hj,,Hn,w))+(1)n+1mΛ2(un,Ψ(ϕ)(H1,,Hn1,vn),w)+(1)n+1rΛ2(Ψ(ϕ)(H1,,Hn1,un),vn,w)=1j<kn(1)jfL(ϕ(f1H(u1)f1H(v1),,^Hj,,f1H(uk1)f1H(vk1),f1H(uk)f1H([uj,vj,vk]Λ2)+f1H([uj,vj,uk]Λ2)f1H(vk),,f1H(un)f1H(vn),f1H(w)))+nj=1(1)jfL(ϕ(f1H(u1)f1H(v1),,^Hj,,f1H(un)f1H(vn),f1H([uj,vj,w]Λ2)))+nj=1(1)j+1lΛ2(Hj,fL(ϕ(f1H(u1)f1H(v1),,^Hj,,f1H(un)f1H(vn),f1H(w))))+(1)n+1mΛ2(un,fL(ϕ(f1H(u1)f1H(v1),,f1H(un1)f1H(vn1),f1H(vn))),w)+(1)n+1rΛ2(fL(ϕ(f1H(u1)f1H(v1),,f1H(un1)f1H(vn1),f1H(un))),vn,w)=fL(1j<kn(1)jϕ(f1H(u1)f1H(v1),,^Hj,,f1H(uk1)f1H(vk1),f1H(uk)[f1H(uj),f1H(vj),f1H(vk)]Λ1+[f1H(uj),f1H(vj),f1H(uk)]Λ1f1H(vk),,f1H(un)f1H(vn),f1H(w))+nj=1(1)jϕ(f1H(u1)f1H(v1),,^Hj,,f1H(un)f1H(vn),[f1H(uj),f1H(vj),f1H(w)]Λ1)+nj=1(1)j+1lΛ1(f1H(uj),f1H(vj),ϕ(f1H(u1)f1H(v1),,^Hj,,f1H(un)f1H(vn),f1H(w)))+(1)n+1mΛ1(f1H(un),ϕ(f1H(u1),f1H(v1),,f1H(un1)f1H(vn1),f1H(vn)),f1H(w))+(1)n+1rΛ1(ϕ(f1H(u1)f1H(v1),,f1H(un1)f1H(vn1),f1H(un)),f1H(vn),f1H(w)))=fL(δΛ1ϕ)(f1H(u1)f1H(v1),,f1H(un)f1H(vn),f1H(w))=Ψ(δΛ1ϕ)(H1,H2,,Hn,w).

    Hence, Ψ is a cochain map and induces a cohomology group homomorphism Ψ:HHn+1Λ1(H,L) HHn+1Λ2(H,L).

    At the conclusion of this section, we employ the well-established cohomology theory to describe the infinitesimal deformations of nonabelian embedding tensors on 3-Lie algebras.

    Definition 4.6. Let Λ:HL be a nonabelian embedding tensor on a 3-Lie algebra (L,[,,]L) with respect to a coherent action (H,[,,]H;ρ). An infinitesimal deformation of Λ is a nonabelian embedding tensor of the form Λt=Λ+tΛ1, where t is a parameter with t2=0.

    Let Λt=Λ+tΛ1 be an infinitesimal deformation of Λ, then we have

    [Λtu1,Λtu2,Λtu3]L=Λtρ(Λtu1,Λtu2)u3+Λt[u1,u2,u3]H,

    for all u1,u2,u3H. Therefore, we obtain the following equation:

    [Λ1u1,Λu2,Λu3]L+[Λu1,Λ1u2,Λu3]L+[Λu1,Λu2,Λ1u3]L=Λ1ρ(Λu1,Λu2)u3+Λρ(Λ1u1,Λu2)u3+Λρ(Λu1,Λ1u2)u3+Λ1[u1,u2,u3]H. (4.9)

    It follows from Eq (4.9) that Λ1C1Λ(H,L) is a 1-cocycle in the cohomology complex of Λ. Thus the cohomology class of Λ1 defines an element in HH1Λ(H,L).

    Let Λt=Λ+tΛ1 and Λt=Λ+tΛ1 be two infinitesimal deformations of Λ. They are said to be equivalent if there exists a1a22L such that the pair (idL+tad(a1,a2),idH+tρ(a1,a2)) is a homomorphism from HΛtL to HΛtL. That is, the following conditions must hold:

    1) The maps idL+tad(a1,a2):LL and idH+tρ(a1,a2):HH are two 3-Lie algebra homomorphisms,

    2) The pair (idL+tad(a1,a2),idH+tρ(a1,a2)) satisfies:

    (idH+tρ(a1,a2))(ρ(a,b)u)=ρ((idL+tad(a1,a2))a,(idL+tad(a1,a2))b)(idH+tρ(a1,a2))(u),(Λ+tΛ1)(idH+tρ(a1,a2))(u)=(idL+tad(a1,a2))((Λ+tΛ1)u), (4.10)

    for all a,bL,uH. It is easy to see that Eq (4.10) gives rise to

    Λ1uΛ1u=Λρ(a1,a2)u[a1,a2,Λu]=δΛ(a1,a2)uC1Λ(H,L).

    This shows that Λ1 and Λ1 are cohomologous. Thus, their cohomology classes are the same in HH1Λ(H,L).

    Conversely, any 1-cocycle Λ1 gives rise to the infinitesimal deformation Λ+tΛ1. Furthermore, we have arrived at the following result.

    Theorem 4.7. Let Λ:HL be a nonabelian embedding tensor on (L,[,,]L) with respect to (H,[,,]H;ρ). Then, there exists a bijection between the set of all equivalence classes of infinitesimal deformations of Λ and the first cohomology group HH1Λ(H,L).

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research is supported by the National Natural Science Foundation of China (Grant No. 12361005) and the Universities Key Laboratory of System Modeling and Data Mining in Guizhou Province (Grant No. 2023013).

    The authors declare there is no conflicts of interest.



    [1] G. Shen, X. Yin, L. Yan, Least squares estimation for Ornstein-Uhlenbeck processes driven by the weighted fractional brownian motion, Acta Math. Sci., 36B (2016), 394–408.
    [2] G. Shen, X. Yin, L. Yan, Erratum to: least squares estimation for Ornstein-Uhlenbeck processes driven by the weighted fractional brownian motion (Acta Mathematica Scientia 2016, 36B(2): 394-408), Acta Math. Sci., 37 (2017), 1173–1176. doi: 10.1016/S0252-9602(17)30065-6
    [3] P. Cheng, G. Shen, Q. Chen, Parameter estimation for nonergodic Ornstein-Uhlenbeck process driven by the weighted fractional Brownian motion, Adv. Differ. Equ., 366 (2017). Available from: https://doi.org/10.1186/s13662-017-1420-y.
    [4] I. V. Basawa, D. J. Scott, Asymptotic Optimal Inference for Non-Ergodic Models, New York: Springer 1983.
    [5] H. M. Dietz, Y. A. Kutoyants, Parameter estimation for some non-recurrent solutions of SDE, Stat. Decisions, 21 (2003), 29–46. doi: 10.1524/stnd.21.1.29.20321
    [6] J. Jacod, Parametric inference for discretely observed non-ergodic diffusions, Bernoulli, 12 (2006), 383–401.
    [7] Y. Shimizu, Notes on drift estimation for certain non-recurrent diffusion from sampled data, Stat. Probab. Lett., 79 (2009), 2200–2207. doi: 10.1016/j.spl.2009.07.015
    [8] T. Bojdecki, L. Gorostiza, A. Talarczyk, Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems, Electron. Commun. Probab., 12 (2007), 161–172.
    [9] M. Kleptsyna, A. Le Breton, Statistical analysis of the fractional Ornstein-Uhlenbeck type process, Stat. Inference Stoch. Process., 5 (2002), 229–241. doi: 10.1023/A:1021220818545
    [10] Y. Hu, D. Nualart, Parameter estimation for fractional Ornstein-Uhlenbeck processes, Statist. Probab. Lett., 80 (2010), 1030–1038. doi: 10.1016/j.spl.2010.02.018
    [11] B. El Onsy, K. Es-Sebaiy, F. Viens, Parameter Estimation for a partially observed Ornstein-Uhlenbeck process with long-memory noise, Stochastics, 89 (2017), 431–468. doi: 10.1080/17442508.2016.1248967
    [12] Y. Hu, D. Nualart, H. Zhou, Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter, Stat. Inference Stoch. Process., 22 (2019), 111–142. doi: 10.1007/s11203-017-9168-2
    [13] K. Es-Sebaiy, F. Viens, Optimal rates for parameter estimation of stationary Gaussian processes, Stoch. Process. Appl., 129 (2019), 3018–3054. doi: 10.1016/j.spa.2018.08.010
    [14] S. Douissi, K. Es-Sebaiy, F. Viens, Berry-Esséen bounds for parameter estimation of general Gaussian processes, ALEA-Lat. Am. J. Probab. Math. Stat., 16 (2019), 633–664. doi: 10.30757/ALEA.v16-23
    [15] M. El Machkouri, K. Es-Sebaiy, Y. Ouknine, Least squares estimator for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes, J. Korean Stat. Soc., 45 (2016), 329–341. doi: 10.1016/j.jkss.2015.12.001
    [16] R. Belfadli, K. Es-Sebaiy, Y. Ouknine, Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-Ergodic Case, Front. Sci. Eng., 1 (2011), 1–16.
    [17] K. Es-Sebaiy, F. Alazemi, M. Al-Foraih, Least squares type estimation for discretely observed non-ergodic Gaussian Ornstein-Uhlenbeck processes, Acta Math. Sci., 39 (2019), 989–1002. doi: 10.1007/s10473-019-0406-0
    [18] K. Es-Sebaiy, I. Nourdin, Parameter Estimation for α-Fractional Bridges. In: F. Viens, J. Feng, Y. Hu, E. Nualart, Eds, Malliavin Calculus and Stochastic Analysis, Springer Proc. Math. Stat., 34 (2013), 385–412.
    [19] T. Pham-Gia, N. Turkkan, E. Marchand, Anosov flows with stable and unstable differentiable distributions, Commun. Stat. Theory Methods, 35 (2006), 1569–1591. doi: 10.1080/03610920600683689
    [20] G. Marsaglia, Ratios of normal variables and ratios of sums of uniform variables, J. Amer. Statist. Asso., 60 (1965), 193–204. doi: 10.1080/01621459.1965.10480783
    [21] L. C. Young, An inequality of the Hölder type connected with Stieltjes integration, Acta Math., 67 (1936), 251–282. doi: 10.1007/BF02401743
    [22] I. Nourdin, Selected aspects of fractional Brownian motion, Springer Series 4, Milan: Bocconi University Press, 2012.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2538) PDF downloads(79) Cited by(2)

Figures and Tables

Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog