Research article Special Issues

A basic study of a fractional integral operator with extended Mittag-Leffler kernel

  • Received: 29 July 2021 Accepted: 29 August 2021 Published: 07 September 2021
  • MSC : 26A33, 26D10, 26D53, 05A30

  • In this present paper, the basic properties of an extended Mittag-Leffler function are studied. We present some fractional integral and differential formulas of an extended Mittag-Leffler function. In addition, we introduce a new extension of Prabhakar type fractional integrals with an extended Mittag-Leffler function in the kernel. Also, we present certain basic properties of the generalized Prabhakar type fractional integrals.

    Citation: Gauhar Rahman, Iyad Suwan, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Muhammad Samraiz, Asad Ali. A basic study of a fractional integral operator with extended Mittag-Leffler kernel[J]. AIMS Mathematics, 2021, 6(11): 12757-12770. doi: 10.3934/math.2021736

    Related Papers:

  • In this present paper, the basic properties of an extended Mittag-Leffler function are studied. We present some fractional integral and differential formulas of an extended Mittag-Leffler function. In addition, we introduce a new extension of Prabhakar type fractional integrals with an extended Mittag-Leffler function in the kernel. Also, we present certain basic properties of the generalized Prabhakar type fractional integrals.



    加载中


    [1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. doi: 10.1016/j.cam.2014.10.016
    [2] T. Abdeljawad, D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equations, 2017 (2017), 78. doi: 10.1186/s13662-017-1126-1
    [3] T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. doi: 10.1016/S0034-4877(17)30059-9
    [4] D. R. Anderson, D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10 (2015), 109–137.
    [5] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. doi: 10.2298/TSCI160111018A
    [6] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1–13.
    [7] F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. doi: 10.1140/epjst/e2018-00021-7
    [8] F. Jarad, E. Uǧurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equations, 2017 (2017), 247. doi: 10.1186/s13662-017-1306-z
    [9] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. doi: 10.1016/j.cam.2014.01.002
    [10] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92.
    [11] I. Podlubny, Fractional differential equations, London: Academic Press, 1999.
    [12] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000.
    [13] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus models and numerical methods, Singapore: World Scientific, 2012.
    [14] D. Baleanu, D. Kumar, S. D. Purohit, Generalized fractional integrals of product of two $H$-functions and a general class of polynomials, Int. J. Comput. Math., 93 (2016), 1320–1329. doi: 10.1080/00207160.2015.1045886
    [15] R. F. Camargo, E. C. de Oliveira, J. Vas, On the generalized Mittag-Leffler function and its application in a fractional telegraph equation, Math. Phys. Anal. Geom., 15 (2012), 1–16. doi: 10.1007/s11040-011-9100-8
    [16] M. A. Chaudhry, S. M. Zubair, On a class of incomplete gamma functions with applications, Boca Raton: Chapman and Hall, 2001.
    [17] M. M. Džrbašjan, Integral transforms and representations of functions in the complex domain, Moscow: Nauka, 1966.
    [18] J. F. Gómez-Aguilar, A. Atangana, Fractional Hunter-Saxton equation involving partial operators with bi-order in Riemann-Liouville and Liouville-Caputo sense, Eur. Phys. J. Plus, 132 (2017), 100. doi: 10.1140/epjp/i2017-11371-6
    [19] R. Gorenflo, A. A. Kilbas, S. V. Rogosin, On the generalized Mittag-Leffler type functions, Integr. Transf. Spec. Funct., 7 (1998), 215–224. doi: 10.1080/10652469808819200
    [20] R. Gorenflo, Y. Luchko, F. Mainardi, Wright functions as scale-invariant solutions of the diffusion-wave equation, J. Comput. Appl. Math., 118 (2000), 175–191. doi: 10.1016/S0377-0427(00)00288-0
    [21] R. Gorenflo, F. Mainardi, Integral and differential equations of fractional order, Fractals Fractional Calculus Continuum Mech., (2000), 223–276.
    [22] R. Gorenflo, F. Mainardi, H. M. Srivastava, Special functions in fractional relaxation oscillation and fractional diffusion-wave phenomena, In: D. Bainov, Proceedings of the eighth international colloquium on differential equations, (1998), 195–202.
    [23] R. Hilfer, H. Seybold, Computation of the generalized Mittag-Leffler function and its inverse in the complex plane, Integr. Transf. Spec. Funct., 17 (2006), 637–652. doi: 10.1080/10652460600725341
    [24] A. A. Kilbas, M. Saigo, On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations, Integr. Transf. Spec. Funct., 4 (1996), 355–370. doi: 10.1080/10652469608819121
    [25] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science B.V., 2006.
    [26] A. M. Mathai, H. J. Haubold, Special functions for applied scientists, New York: Springer, 2008.
    [27] K. S. Nisar, S. D. Purohit, S. R. Mondal, Generalized fractional kinetic equations involving generalized Struve function of the first kind, J. King Saud Univ.-Sci., 28 (2016), 167–171. doi: 10.1016/j.jksus.2015.08.005
    [28] M. A. Özarslan, B. Yılmaz, The extended Mittag-Leffler function and its properties, J. Inequa. Appl., 2014 (2014), 85. doi: 10.1186/1029-242X-2014-85
    [29] G. Rahman, A. Saboor, Z. Anjum, K. S. Nisar, T. Abdeljawad, An extension of the Mittag-Leffler function and its associated properties, Adv. Math. Phys., 2020 (2020), 5792853.
    [30] J. Choi, R. K. Parmar, P. Chopra, Extended Mittag-Leffler function and associated fractional calculus operators, Georgian Math. J., 27 (2019), 1–11.
    [31] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7–15.
    [32] S. D. Purohit, Solutions of fractional partial differential equations of quantum mechanics, Adv. Appl. Math. Mech., 5 (2013), 639–651. doi: 10.4208/aamm.12-m1298
    [33] S. D. Purohit, S. L. Kalla, On fractional partial differential equations related to quantum mechanics, J. Phys. A: Math. Theor., 44 (2011), 045202. doi: 10.1088/1751-8113/44/4/045202
    [34] M. Saigo, A. A. Kilbas, On Mittag-Leffler type function and applications, Integr. Transf. Spec. Funct., 7 (1998), 97–112. doi: 10.1080/10652469808819189
    [35] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Switzerland: Gordon and Breach, 1993.
    [36] H. J. Seybold, R. Hilfer, Numerical results for the generalized Mittag-Leffler function, Fract. Calc. Appl. Anal., 8 (2005), 127–139.
    [37] A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler functions and its properties, J. Math. Anal. Appl., 336 (2007), 797–811. doi: 10.1016/j.jmaa.2007.03.018
    [38] H. M. Srivastava, A contour integral involving Fox's $H$-function, Indian J. Math., 14 (1972), 1–6.
    [39] H. M. Srivastava, A note on the integral representation for the product of two generalized Rice polynomials, Collect. Math., 24 (1973), 117–121.
    [40] H. M. Srivastava, K. C. Gupta, S. P. Goyal, The $H$-functions of one and two variables with applications, New Delhi: South Asian Publishers, 1982.
    [41] H. M. Srivastava, C. M. Joshi, Integral representation for the product of a class of generalized hypergeometric polynomials, Bull. Acad. R. Belg., 60 (1974), 919–926.
    [42] H. M. Srivastava, H. L. Manocha, A treatise on generating functions, New York: Halsted Press, 1984.
    [43] H. M. Srivastava, Ž. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 189–210.
    [44] H. M. Srivastava, G. Rahman, K. S. Nisar, Some extensions of the Pochhammer symbol and the associated hypergeometric functions, Iran. J. Sci. Technol. Trans. Sci., 43 (2019), 2601–2606. doi: 10.1007/s40995-019-00756-8
    [45] H. M. Srivastava, A. Çetinkaya, İ. Onur Kıymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput., 226 (2014), 484–491.
    [46] M. Z. Sarikaya, H. Budak, F. Usta, On generalized the conformable fractional calculus, TWMS J. Appl. Eng. Math., 9 (2019), 792–799.
    [47] F. Usta, H. Budak, M. Z. Sarikaya, Some new Chebyshev type inequalities utilizing generalized fractional integral operators, AIMS Math., 5 (2020), 1147–1161. doi: 10.3934/math.2020079
    [48] F. Usta, M. Z. Sarikaya, On generalization conformable fractional integral inequalities, Filomat, 32 (2018), 5519–5526. doi: 10.2298/FIL1816519U
    [49] M. Z. Sarikaya, F. Usta, On comparison theorems for conformable fractional differential equations, Int. J. Anal. Appl., 12 (2016), 207–214.
    [50] F. Usta, M. Z. Sarikaya, F. Qi, Explicit bounds on certain integral inequalities via conformable fractional calculus, Cogent Math., 4 (2017), 1277505. doi: 10.1080/23311835.2016.1277505
    [51] F. Usta, M. Z. Sarikaya, Some improvements of conformable fractional integral inequalities, Int. J. Anal. Appl., 14 (2017), 162–166.
    [52] F. Usta, M. Z. Sarikaya, On bivariate retarded integral inequalities and their applications, Facta Univ.-Ser.: Math. Inf., 34 (2019), 553–561.
    [53] G. M. Mittag-Leffler, Sur la nouvelle fonction $E_\alpha(z)$, C. R. Acad. Sci. Paris, 137 (1903), 554–558.
    [54] A. Wiman, Über den fundamental satz in der theorie der functionen $E_\alpha(z)$, Acta Math., 29 (1905), 191–201. doi: 10.1007/BF02403202
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1920) PDF downloads(97) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog