Research article Special Issues

Some new identities involving Laguerre polynomials

  • Received: 05 March 2021 Accepted: 30 August 2021 Published: 06 September 2021
  • MSC : 11B37, 11B83

  • In this paper, we use elementary method and some sort of a counting argument to show the equality of two expressions. That is, let $ f(n) $ and $ g(n) $ be two functions, $ k $ be any positive integer. Then $ f(n) = \sum\limits_{r = 0}^n(-1)^r\cdot \frac{n!}{r!}\cdot \binom{n+k-1}{r+k-1}\cdot g(r) $ if and only if $ g(n) = \sum\limits_{r = 0}^n(-1)^r\cdot \frac{n!}{r!}\cdot \binom{n+k-1}{r+k-1}\cdot f(r) $ for all integers $ n\geq0 $. As an application of this formula, we obtain some new identities involving the famous Laguerre polynomials.

    Citation: Xiaowei Pan, Xiaoyan Guo. Some new identities involving Laguerre polynomials[J]. AIMS Mathematics, 2021, 6(11): 12713-12717. doi: 10.3934/math.2021733

    Related Papers:

  • In this paper, we use elementary method and some sort of a counting argument to show the equality of two expressions. That is, let $ f(n) $ and $ g(n) $ be two functions, $ k $ be any positive integer. Then $ f(n) = \sum\limits_{r = 0}^n(-1)^r\cdot \frac{n!}{r!}\cdot \binom{n+k-1}{r+k-1}\cdot g(r) $ if and only if $ g(n) = \sum\limits_{r = 0}^n(-1)^r\cdot \frac{n!}{r!}\cdot \binom{n+k-1}{r+k-1}\cdot f(r) $ for all integers $ n\geq0 $. As an application of this formula, we obtain some new identities involving the famous Laguerre polynomials.



    加载中


    [1] T. M. Apostol, Introduction to analytic number theory, New York: Springer-Verlag, 1976.
    [2] T. M. Apostol, Mathematical analysis, 2 Eds., Mass.-London-Don Mills: Addison-Wesley Publishing Co., 1974.
    [3] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions, New York, 1965.
    [4] D. Jackson, Fourier series and orthogonal polynomials, Dover Publications, 2004.
    [5] R. Ma, W. P. Zhang, Several identities involving the Fibonacci numbers and Lucas numbers, Fibonacci Quart., 45 (2007), 164–170.
    [6] Y. Yi, W. P. Zhang, Some identities involving the Fibonacci polynomials, Fibonacci Quart., 40 (2002), 314–318.
    [7] T. T. Wang, W. P. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, Bull. Math. Soc. Sci. Math. Roumanie, 103 (2012), 95–103.
    [8] X. H. Wang, D. Han, Some identities related to Dedekind sums and the Chebyshev polynomials, Int. J. Appl. Math. Stat., 51 (2013), 334–339.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1796) PDF downloads(117) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog