Research article

On a class of inverse palindromic eigenvalue problem

  • Received: 03 March 2021 Accepted: 11 May 2021 Published: 20 May 2021
  • MSC : 15A09, 15A24

  • In this paper we first consider the following inverse palindromic eigenvalue problem (IPEP): Given matrices $ \Lambda = \text{diag}\{\lambda_{1}, \cdots, \lambda_{p}\} \in {\mathbb{C}}^{p\times p} $, $ \lambda_{i}\neq \lambda_{j} $ for $ i \neq j $, $ i, j = 1, \cdots, p $, $ X = [x_{1}, \cdots, x_{p}] \in {\mathbb{C}}^{n \times p} $ with $ \text{rank}(X) = p $, and both $ \Lambda $ and $ X $ are closed under complex conjugation in the sense that $ \lambda_{2i} = \bar{\lambda}_{2i-1} \in {\mathbb{C}} $, $ x_{2i} = \bar{x}_{2i-1} \in {\mathbb{C}}^{n} $ for $ i = 1, \cdots, m $, and $ \lambda_{j} \in {\mathbb{R}} $, $ x_{j} \in {\mathbb{R}}^{n} $ for $ j = 2m+1, \cdots, p $, find a matrix $ A \in {\mathbb{R}}^{n \times n} $ such that $ AX = A^\top X\Lambda. $ We then consider a best approximation problem (BAP): Given $ \tilde{A} \in {\mathbb{R}}^{n \times n} $, find $ \hat{A} \in {\mathcal{S}}_{A} $ such that $ \|\hat{A}-\tilde{A}\| = \min_{{A} \in {\mathcal{S}_{A}}} \|A- \tilde{A}\|, $ where $ \|\cdot\| $ is the Frobenius norm and $ {\mathcal{S}}_{A} $ is the solution set of IPEP. By partitioning the matrix $ \Lambda $ and using the QR-decomposition, the expression of the general solution of Problem IPEP is derived. Also, we show that the best approximation solution $ \hat{A} $ is unique and derive an explicit formula for it.

    Citation: Jiao Xu, Yinlan Chen. On a class of inverse palindromic eigenvalue problem[J]. AIMS Mathematics, 2021, 6(8): 7971-7983. doi: 10.3934/math.2021463

    Related Papers:

  • In this paper we first consider the following inverse palindromic eigenvalue problem (IPEP): Given matrices $ \Lambda = \text{diag}\{\lambda_{1}, \cdots, \lambda_{p}\} \in {\mathbb{C}}^{p\times p} $, $ \lambda_{i}\neq \lambda_{j} $ for $ i \neq j $, $ i, j = 1, \cdots, p $, $ X = [x_{1}, \cdots, x_{p}] \in {\mathbb{C}}^{n \times p} $ with $ \text{rank}(X) = p $, and both $ \Lambda $ and $ X $ are closed under complex conjugation in the sense that $ \lambda_{2i} = \bar{\lambda}_{2i-1} \in {\mathbb{C}} $, $ x_{2i} = \bar{x}_{2i-1} \in {\mathbb{C}}^{n} $ for $ i = 1, \cdots, m $, and $ \lambda_{j} \in {\mathbb{R}} $, $ x_{j} \in {\mathbb{R}}^{n} $ for $ j = 2m+1, \cdots, p $, find a matrix $ A \in {\mathbb{R}}^{n \times n} $ such that $ AX = A^\top X\Lambda. $ We then consider a best approximation problem (BAP): Given $ \tilde{A} \in {\mathbb{R}}^{n \times n} $, find $ \hat{A} \in {\mathcal{S}}_{A} $ such that $ \|\hat{A}-\tilde{A}\| = \min_{{A} \in {\mathcal{S}_{A}}} \|A- \tilde{A}\|, $ where $ \|\cdot\| $ is the Frobenius norm and $ {\mathcal{S}}_{A} $ is the solution set of IPEP. By partitioning the matrix $ \Lambda $ and using the QR-decomposition, the expression of the general solution of Problem IPEP is derived. Also, we show that the best approximation solution $ \hat{A} $ is unique and derive an explicit formula for it.



    加载中


    [1] A. Hilliges, C. Mehl, V. Mehrmann, On the solution of palindromic eigenvalue problems, In: 4th European congress on computational methods in applied sciences and engineerings (ECCOMAS), Jyv$\mathrm{\ddot{a}}$skyl$\mathrm{\ddot{a}}$, Finland, 2004.
    [2] A. Hilliges, Numerische L$\mathrm{\ddot{o}}$sung von quadratischen Eigenwertproblemen mit Anwendung in der Schienendynamik, Diplomarbeit, Technical University Berlin. Inst. F$\mathrm{\ddot{u}}$r Mathematik, Germany, 2004.
    [3] E. K. Chu, T. M. Hwang, W. W. Lin, C. T. Wu, Vibration of fast trains, palindromic eigenvalue problems and structure-preserving doubling algorithms, J. Comput. Appl. Math., 219 (2008), 237–252. doi: 10.1016/j.cam.2007.07.016
    [4] T. M. Huang, W. W. Lin, J. Qian, Structure-preserving algorithms for palindromic quadratic eigenvalue problems arising from vibration of fast trains, SIAM J. Matrix Anal. Appl., 30 (2009), 1566–1592. doi: 10.1137/080713550
    [5] B. Iannazzo, B. Meini, Palindromic matrix polynomials, matrix functions and integral represen-tations, Linear Algebra Appl., 434 (2011), 174–184. doi: 10.1016/j.laa.2010.09.013
    [6] L. Z. Lu, F. Yuan, R. C. Li, A new look at the doubling algorithm for a structured palindromic quadratic eigenvalue problem, Numer. Linear Algebr., 22 (2015), 393–409. doi: 10.1002/nla.1962
    [7] L. Z. Lu, T. Wang, Y. C. Kuo, R. C. Li, W. W. Lin, A fast algorithm for fast train palindromic quadratic eigenvalue problems, SIAM J. Sci. Comput., 38 (2016), 3410–3429. doi: 10.1137/16M1063563
    [8] D. S. Mackey, N. Mackey, C. Mehl, V. Mehrmann, Structured polynomial eigenvalue problems: Good vibrations from good linearizations, SIAM J. Matrix Anal. Appl., 28 (2006), 1029–1051. doi: 10.1137/050628362
    [9] C. Schr$\mathrm{\ddot{o}}$der, URV decomposition based structured methods for palindromic and even eigenvalue problems, Technical report, Preprint 375, TU Berlin, Matheon, Germany, 2007.
    [10] C. Schr$\mathrm{\ddot{o}}$der, A QR-like algorithm for the palindromic eigenvalue problem, Technical report, Preprint 388, TU Berlin, Matheon, Germany, 2007.
    [11] D. S. Mackey, N. Mackey, C. Mehl, V. Mehrmann, Numerical methods for palindromic eigenvalue problems: Computing the anti-triangular Schur form, Numer. Linear Algebr., 16 (2009), 63–86. doi: 10.1002/nla.612
    [12] T. Li, C. Y. Chiang, E. K. Chu, W. W. Lin, The palindromic generalized eigenvalue problem $A^*x = \lambda Ax$: Numerical solution and applications, Linear Algebra Appl., 434 (2011), 2269–2284. doi: 10.1016/j.laa.2009.12.020
    [13] M. Al-Ammari, Analysis of structured polynomial eigenvalues problems, Ph.D. thesis, The University of Manchester, Manchester, UK, 2011.
    [14] L. Batzke, C. Mehl, On the inverse eigenvalue problem of T-alternating and T-palindromic matrix polynomials, Linear Algebra Appl., 452 (2014), 172–191. doi: 10.1016/j.laa.2014.03.037
    [15] K. Zhao, L. Cheng, A. Liao, Updating $\star$-palindromic quadratic systems with no spill-over, Comput. Appl. Math., 37 (2018), 5587–5608. doi: 10.1007/s40314-018-0655-x
    [16] G. Rogers, Matrix Derivatives, In: Lecture Notes in Statistics, vol. 2, New York, 1980.
    [17] J. P. Aubin, Applied Functional Analysis, Wiley, New York, 1979.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1877) PDF downloads(94) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog