

AIMS Mathematics, 6(8): 7971–7983. DOI:10.3934/math.2021463 Received: 03 March 2021 Accepted: 11 May 2021 Published: 20 May 2021

http://www.aimspress.com/journal/Math

Research article

On a class of inverse palindromic eigenvalue problem

Jiao Xu and Yinlan Chen*

School of Mathematics and Statistics, Hubei Normal University, Huangshi, 435002, China

* Correspondence: Email: cylfzg@hbnu.edu.cn.

Abstract: In this paper we first consider the following inverse palindromic eigenvalue problem (IPEP): Given matrices $\Lambda = \text{diag}\{\lambda_1, \dots, \lambda_p\} \in \mathbb{C}^{p \times p}, \lambda_i \neq \lambda_j \text{ for } i \neq j, i, j = 1, \dots, p, X = [x_1, \dots, x_p] \in \mathbb{C}^{n \times p}$ with rank(X) = p, and both Λ and X are closed under complex conjugation in the sense that $\lambda_{2i} = \overline{\lambda}_{2i-1} \in \mathbb{C}, x_{2i} = \overline{x}_{2i-1} \in \mathbb{C}^n$ for $i = 1, \dots, m$, and $\lambda_j \in \mathbb{R}, x_j \in \mathbb{R}^n$ for $j = 2m + 1, \dots, p$, find a matrix $A \in \mathbb{R}^{n \times n}$ such that $AX = A^\top X \Lambda$. We then consider a best approximation problem (BAP): Given $\widetilde{A} \in \mathbb{R}^{n \times n}$, find $\widehat{A} \in S_A$ such that $||\widehat{A} - \widetilde{A}|| = \min_{A \in S_A} ||A - \widetilde{A}||$, where $|| \cdot ||$ is the Frobenius norm and S_A is the solution set of IPEP. By partitioning the matrix Λ and using the QR-decomposition, the expression of the general solution of Problem IPEP is derived. Also, we show that the best approximation solution \widehat{A} is unique and derive an explicit formula for it.

Keywords: inverse palindromic eigenvalue problem; best approximation problem; QR-decomposition **Mathematics Subject Classification:** 15A09, 15A24

1. Introduction

Since the 1960s, the rapid development of high-speed rail has made it a very important means of transportation. However, the vibration will be caused because of the contact between the wheels of the train and the train tracks during the operation of the high-speed train. Therefore, the analytical vibration model can be mathematically summarized as a quadratic palindromic eigenvalue problem (QPEP) (see [1,2])

$$(\lambda^2 A_1 + \lambda A_0 + A_1^{\mathsf{T}})x = 0,$$

with $A_i \in \mathbb{R}^{n \times n}$, i = 0, 1 and $A_0^{\top} = A_0$. The eigenvalues λ , the corresponding eigenvectors x are relevant to the vibration frequencies and the shapes of the vibration, respectively. Many scholars have put forward many effective methods to solve QPEP [3–7]. In addition, under mild assumptions, the quadratic palindromic eigenvalue problem can be converted to the following linear palindromic eigenvalue problem (see [8])

$$Ax = \lambda A^{\mathsf{T}} x,\tag{1}$$

with $A \in \mathbb{R}^{n \times n}$ is a given matrix, $\lambda \in \mathbb{C}$ and nonzero vectors $x \in \mathbb{C}^n$ are the wanted eigenvalues and eigenvectors of the vibration model. We can obtain $\frac{1}{\lambda}x^{\mathsf{T}}A^{\mathsf{T}} = x^{\mathsf{T}}A$ by transposing the equation (1). Thus, λ and $\frac{1}{\lambda}$ always come in pairs. Many methods have been proposed to solve the palindromic eigenvalue problem such as URV-decomposition based structured method [9], QR-like algorithm [10], structure-preserving methods [11], and palindromic doubling algorithm [12].

On the other hand, the modal data obtained by the mathematical model are often evidently different from the relevant experimental ones because of the complexity of the structure and inevitable factors of the actual model. Therefore, the coefficient matrices need to be modified so that the updated model satisfies the dynamic equation and closely matches the experimental data. Al-Ammari [13] considered the inverse quadratic palindromic eigenvalue problem. Batzke and Mehl [14] studied the inverse eigenvalue problem for T-palindromic matrix polynomials excluding the case that both +1 and -1 are eigenvalues. Zhao et al. [15] updated *-palindromic quadratic systems with no spill-over. However, the linear inverse palindromic eigenvalue problem has not been extensively considered in recent years.

In this work, we just consider the linear inverse palindromic eigenvalue problem (IPEP). It can be stated as the following problem:

Problem IPEP. Given a pair of matrices (Λ, X) in the form

$$\Lambda = \operatorname{diag}\{\lambda_1, \cdots, \lambda_p\} \in \mathbb{C}^{p \times p},$$

and

$$X = [x_1, \cdots, x_p] \in \mathbb{C}^{n \times p},$$

where diagonal elements of Λ are all distinct, *X* is of full column rank *p*, and both Λ and *X* are closed under complex conjugation in the sense that $\lambda_{2i} = \overline{\lambda}_{2i-1} \in \mathbb{C}$, $x_{2i} = \overline{x}_{2i-1} \in \mathbb{C}^n$ for $i = 1, \dots, m$, and $\lambda_j \in \mathbb{R}$, $x_j \in \mathbb{R}^n$ for $j = 2m + 1, \dots, p$, find a real-valued matrix *A* that satisfy the equation

$$AX = A^{\mathsf{T}} X \Lambda. \tag{2}$$

Namely, each pair (λ_t, x_t) , $t = 1, \dots, p$, is an eigenpair of the matrix pencil

$$P(\lambda) = Ax - \lambda A^{\mathsf{T}}x.$$

It is known that the mathematical model is a "good" representation of the system, we hope to find a model that is closest to the original model. Therefore, we consider the following best approximation problem:

Problem BAP. Given $\tilde{A} \in \mathbb{R}^{n \times n}$, find $\hat{A} \in S_A$ such that

$$\|\hat{A} - \tilde{A}\| = \min_{A \in \mathcal{S}_A} \|A - \tilde{A}\|,\tag{3}$$

where $\|\cdot\|$ is the Frobenius norm, and S_A is the solution set of Problem IPEP.

In this paper, we will put forward a new direct method to solve Problem IPEP and Problem BAP. By partitioning the matrix Λ and using the QR-decomposition, the expression of the general solution of Problem IPEP is derived. Also, we show that the best approximation solution \hat{A} of Problem BAP is unique and derive an explicit formula for it.

2. The solution of Problem IPEP

We first rearrange the matrix Λ as

where t + 2s + 2(k + 2l) = p, t = 0 or 1,

$$\Lambda_1 = \operatorname{diag}\{\lambda_1, \lambda_2, \cdots, \lambda_{2s-1}, \lambda_{2s}\}, \lambda_i \in \mathbb{R}, \ \lambda_{2i-1}^{-1} = \lambda_{2i}, \ 1 \le i \le s, \\ \Lambda_2 = \operatorname{diag}\{\delta_1, \cdots, \delta_k, \delta_{k+1}, \delta_{k+2}, \cdots, \delta_{k+2l-1}, \delta_{k+2l}\}, \ \delta_j \in \mathbb{C}^{2\times 2},$$

with

$$\delta_{j} = \begin{bmatrix} \alpha_{j} + \beta_{j}i & 0\\ 0 & \alpha_{j} - \beta_{j}i \end{bmatrix}, i = \sqrt{-1}, 1 \le j \le k + 2l,$$

$$\delta_{j}^{-1} = \bar{\delta}_{j}, 1 \le j \le k,$$

$$\delta_{k+2j-1}^{-1} = \delta_{k+2j}, 1 \le j \le l,$$

and the adjustment of the column vectors of *X* corresponds to those of Λ .

Define T_p as

$$T_{p} = \operatorname{diag}\left\{I_{t+2s}, \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -i \\ 1 & i \end{bmatrix}, \cdots, \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -i \\ 1 & i \end{bmatrix}\right\} \in \mathbb{C}^{p \times p},\tag{5}$$

where $i = \sqrt{-1}$. It is easy to verify that $T_p^H T_p = I_p$. Using this matrix of (5), we obtain

$$\tilde{\Lambda} = T_{p}^{H} \Lambda T_{p} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \Lambda_{1} & 0 \\ 0 & 0 & \tilde{\Lambda}_{2} \end{bmatrix},$$
(6)

$$\tilde{X} = XT_p = [x_t, \cdots, x_{t+2s}, \sqrt{2}y_{t+2s+1}, \sqrt{2}z_{t+2s+1}, \cdots, \sqrt{2}y_{p-1}, \sqrt{2}z_{p-1}],$$
(7)

where

$$\tilde{\Lambda}_2 = \operatorname{diag}\left\{ \begin{bmatrix} \alpha_1 & \beta_1 \\ -\beta_1 & \alpha_1 \end{bmatrix}, \cdots, \begin{bmatrix} \alpha_{k+2l} & \beta_{k+2l} \\ -\beta_{k+2l} & \alpha_{k+2l} \end{bmatrix} \right\} \triangleq \operatorname{diag}\{\tilde{\delta}_1, \cdots, \tilde{\delta}_{k+2l}\},\$$

and $\tilde{\Lambda}_2 \in \mathbb{R}^{2(k+2l)\times 2(k+2l)}$, $\tilde{X} \in \mathbb{R}^{n\times p}$. y_{t+2s+j} and z_{t+2s+j} are, respectively, the real part and imaginary part of the complex vector x_{t+2s+j} for $j = 1, 3, \dots, 2(k+2l) - 1$. Using (6) and (7), the matrix equation (2) is equivalent to

$$A\tilde{X} = A^{\top}\tilde{X}\tilde{\Lambda}.$$
(8)

Since $\operatorname{rank}(X) = \operatorname{rank}(\tilde{X}) = p$. Now, let the QR-decomposition of \tilde{X} be

$$\tilde{X} = Q \begin{bmatrix} R \\ 0 \end{bmatrix},\tag{9}$$

AIMS Mathematics

where $Q = [Q_1, Q_2] \in \mathbb{R}^{n \times n}$ is an orthogonal matrix and $R \in \mathbb{R}^{p \times p}$ is nonsingular. Let

$$Q^{\mathsf{T}}AQ = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{array}{c} p \\ n-p \end{array}$$
(10)
$$p \quad n-p$$

Using (9) and (10), then the equation of (8) is equivalent to

$$A_{11}R = A_{11}^{\top}R\tilde{\Lambda},\tag{11}$$

$$A_{21}R = A_{12}^{\mathsf{T}}R\tilde{\Lambda}.$$
 (12)

Write

$$R^{\mathsf{T}}A_{11}R \triangleq F = \begin{bmatrix} f_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{bmatrix} \begin{bmatrix} t \\ 2s \\ 2(k+2l) \end{bmatrix}$$
(13)

then the equation of (11) is equivalent to

$$F_{12} = F_{21}^{\mathsf{T}} \Lambda_1, \ F_{21} = F_{12}^{\mathsf{T}}, \tag{14}$$

$$F_{13} = F_{31}^{\top} \Lambda_2, \ F_{31} = F_{13}^{\top}, \tag{15}$$

$$F_{23} = F_{32}^{\top} \tilde{\Lambda}_2, \ F_{32} = F_{23}^{\top} \Lambda_1, \tag{16}$$

$$F_{22} = F_{22}^{\top} \Lambda_1, \tag{17}$$

$$F_{33} = F_{33}^{\top} \tilde{\Lambda}_2.$$
 (18)

Because the elements of Λ_1 , $\tilde{\Lambda}_2$ are distinct, we can obtain the following relations by Eqs (14)-(18)

$$F_{12} = 0, \ F_{21} = 0, \ F_{13} = 0, \ F_{31} = 0, \ F_{23} = 0, \ F_{32} = 0,$$
(19)

$$F_{22} = \operatorname{diag}\left\{ \begin{bmatrix} 0 & h_1 \\ \lambda_1 h_1 & 0 \end{bmatrix}, \cdots, \begin{bmatrix} 0 & h_s \\ \lambda_{2s-1} h_s & 0 \end{bmatrix} \right\},$$
(20)

$$F_{33} = \operatorname{diag}\left\{G_{1}, \cdots, G_{k}, \begin{bmatrix} 0 & G_{k+1} \\ G_{k+1}^{\top} \tilde{\delta}_{k+1} & 0 \end{bmatrix}, \cdots, \begin{bmatrix} 0 & G_{k+l} \\ G_{k+l}^{\top} \tilde{\delta}_{k+2l-1} & 0 \end{bmatrix}\right\},$$
(21)

where

$$G_{i} = a_{i}B_{i}, \ G_{k+j} = a_{k+2j-1}D_{1} + a_{k+2j}D_{2}, \ G_{k+j}^{\top} = G_{k+j},$$
$$B_{i} = \begin{bmatrix} 1 & \frac{1-\alpha_{i}}{\beta_{i}} \\ -\frac{1-\alpha_{i}}{\beta_{i}} & 1 \end{bmatrix}, \ D_{1} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \ D_{2} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

and $1 \le i \le k, 1 \le j \le l$. $h_1, \dots, h_s, a_1, \dots, a_{k+2l}$ are arbitrary real numbers. It follows from Eq (12) that

$$A_{21} = A_{12}^{\top} E, \tag{22}$$

where $E = R\tilde{\Lambda}R^{-1}$.

AIMS Mathematics

Theorem 1. Suppose that $\Lambda = diag\{\lambda_1, \dots, \lambda_p\} \in \mathbb{C}^{p \times p}, X = [x_1, \dots, x_p] \in \mathbb{C}^{n \times p}$, where diagonal elements of Λ are all distinct, X is of full column rank p, and both Λ and X are closed under complex conjugation in the sense that $\lambda_{2i} = \overline{\lambda}_{2i-1} \in \mathbb{C}, x_{2i} = \overline{x}_{2i-1} \in \mathbb{C}^n$ for $i = 1, \dots, m$, and $\lambda_j \in \mathbb{R}, x_j \in \mathbb{R}^n$ for $j = 2m + 1, \dots, p$. Rearrange the matrix Λ as (4), and adjust the column vectors of X with corresponding to those of Λ . Let Λ, X transform into $\tilde{\Lambda}, \tilde{X}$ by (6) – (7) and QR-decomposition of the matrix \tilde{X} be given by (9). Then the general solution of (2) can be expressed as

$$S_{A} = \begin{cases} A \\ A = Q \begin{bmatrix} R^{-\top} \begin{bmatrix} f_{11} & 0 & 0 \\ 0 & F_{22} & 0 \\ 0 & 0 & F_{33} \end{bmatrix} R^{-1} & A_{12} \\ & A_{12}^{\top}E & & A_{22} \end{bmatrix} Q^{\top} \end{cases},$$
(23)

where $E = R\tilde{\Lambda}R^{-1}$, f_{11} is arbitrary real number, $A_{12} \in \mathbb{R}^{p \times (n-p)}$, $A_{22} \in \mathbb{R}^{(n-p) \times (n-p)}$ are arbitrary realvalued matrices and F_{22} , F_{33} are given by (20) – (21).

3. The solution of Problem BAP

In order to solve Problem BAP, we need the following lemma.

Lemma 1. [16] Let A, B be two real matrices, and X be an unknown variable matrix. Then

$$\frac{\partial tr(BX)}{\partial X} = B^{\mathsf{T}}, \ \frac{\partial tr(X^{\mathsf{T}}B^{\mathsf{T}})}{\partial X} = B^{\mathsf{T}}, \ \frac{\partial tr(AXBX)}{\partial X} = (BXA + AXB)^{\mathsf{T}}, \\ \frac{\partial tr(AX^{\mathsf{T}}BX^{\mathsf{T}})}{\partial X} = BX^{\mathsf{T}}A + AX^{\mathsf{T}}B, \ \frac{\partial tr(AXBX^{\mathsf{T}})}{\partial X} = AXB + A^{\mathsf{T}}XB^{\mathsf{T}}.$$

By Theorem 1, we can obtain the explicit representation of the solution set S_A . It is easy to verify that S_A is a closed convex subset of $\mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n}$. By the best approximation theorem (see Ref. [17]), we know that there exists a unique solution of Problem BAP. In the following we will seek the unique solution \hat{A} in S_A . For the given matrix $\tilde{A} \in \mathbb{R}^{n \times n}$, write

$$Q^{\mathsf{T}}\tilde{A}Q = \begin{bmatrix} \tilde{A}_{11} & \tilde{A}_{12} \\ \tilde{A}_{21} & \tilde{A}_{22} \end{bmatrix} \begin{array}{c} p \\ n-p \end{array},$$
(24)
$$p \quad n-p$$

then

$$\begin{split} \|A - \tilde{A}\|^2 &= \left\| \left[\begin{array}{ccc} R^{-\tau} \left[\begin{array}{ccc} f_{11} & 0 & 0 \\ 0 & F_{22} & 0 \\ 0 & 0 & F_{33} \end{array} \right] R^{-1} - \tilde{A}_{11} & A_{12} - \tilde{A}_{12} \\ & A_{12}^{\top} E - \tilde{A}_{21} & A_{22} - \tilde{A}_{22} \end{array} \right] \right\| \\ &= \left\| R^{-\tau} \left[\begin{array}{ccc} f_{11} & 0 & 0 \\ 0 & F_{22} & 0 \\ 0 & 0 & F_{33} \end{array} \right] R^{-1} - \tilde{A}_{11} \right\|^2 \\ &+ \left\| A_{12} - \tilde{A}_{12} \right\|^2 + \left\| A_{12}^{\top} E - \tilde{A}_{21} \right\|^2 + \left\| A_{22} - \tilde{A}_{22} \right\|^2. \end{split}$$

AIMS Mathematics

Therefore, $||A - \tilde{A}|| = \min$ if and only if

$$\left\| R^{-\tau} \begin{bmatrix} f_{11} & 0 & 0\\ 0 & F_{22} & 0\\ 0 & 0 & F_{33} \end{bmatrix} R^{-1} - \tilde{A}_{11} \right\|^2 = \min,$$
 (25)

$$\|A_{12} - \tilde{A}_{12}\|^2 + \|A_{12}^{\mathsf{T}}E - \tilde{A}_{21}\|^2 = \min,$$
(26)

$$A_{22} = \tilde{A}_{22}.$$
 (27)

Let

$$R^{-1} = \begin{bmatrix} R_1 \\ R_2 \\ R_3 \end{bmatrix}, \qquad (28)$$

then the relation of (25) is equivalent to

$$\|R_1^{\mathsf{T}} f_{11} R_1 + R_2^{\mathsf{T}} F_{22} R_2 + R_3^{\mathsf{T}} F_{33} R_3 - \tilde{A}_{11}\|^2 = \min.$$
⁽²⁹⁾

Write

$$R_{1} = [r_{1,t}], R_{2} = \begin{bmatrix} r_{2,1} \\ \vdots \\ r_{2,2s} \end{bmatrix}, R_{3} = \begin{bmatrix} r_{3,1} \\ \vdots \\ r_{3,k+2l} \end{bmatrix},$$
(30)

where $r_{1,t} \in \mathbb{R}^{t \times p}, r_{2,i} \in \mathbb{R}^{1 \times p}, r_{3,j} \in \mathbb{R}^{2 \times p}, i = 1, \dots, 2s, j = 1, \dots, k + 2l$. Let

$$\begin{aligned}
J_{t} &= r_{1,t}^{\top} r_{1,t}, \\
J_{t+i} &= \lambda_{2i-1} r_{2,2i}^{\top} r_{2,2i-1} + r_{2,2i-1}^{\top} r_{2,2i} \ (1 \le i \le s), \\
J_{r+i} &= r_{3,i}^{\top} B_{i} r_{3,i} \ (1 \le i \le k), \\
J_{r+k+2i-1} &= r_{3,k+2i}^{\top} D_{1} \tilde{\delta}_{k+2i-1} r_{3,k+2i-1} + r_{3,k+2i-1}^{\top} D_{1} r_{3,k+2i} \ (1 \le i \le l), \\
J_{r+k+2i} &= r_{3,k+2i}^{\top} D_{2} \tilde{\delta}_{k+2i-1} r_{3,k+2i-1} + r_{3,k+2i-1}^{\top} D_{2} r_{3,k+2i} \ (1 \le i \le l),
\end{aligned}$$
(31)

with r = t + s, q = t + s + k + 2l. Then the relation of (29) is equivalent to

$$g(f_{11}, h_1, \cdots, h_s, a_1, \cdots, a_{k+2l}) =$$

$$\|f_{11}J_t + h_1J_{t+1} + \cdots + h_sJ_r + a_1J_{r+1} + \cdots + a_{k+2l}J_q - \tilde{A}_{11}\|^2 = \min_{a_{k+2l}} \|f_{k+1}\|^2 = \min_{a_{k+2l}} \|f_{k+1}\|^2$$

that is,

$$\begin{split} g(f_{11}, h_1, \cdots, h_s, a_1, \cdots, a_{k+2l}) \\ &= \operatorname{tr}[(f_{11}J_t + h_1J_{t+1} + \cdots + h_sJ_r + a_1J_{r+1} + \cdots + a_{k+2l}J_q - \tilde{A}_{11})^{\mathsf{T}} \\ (f_{11}J_t + h_1J_{t+1} + \cdots + h_sJ_r + a_1J_{r+1} + \cdots + a_{k+2l}J_q - \tilde{A}_{11})] \\ &= f_{11}^2c_{t,t} + 2f_{11}h_1c_{t,t+1} + \cdots + 2f_{11}h_sc_{t,r} + 2f_{11}a_1c_{t,r+1} + \cdots + 2f_{11}a_{k+2l}c_{t,q} - 2f_{11}e_t \\ &+ h_1^2c_{t+1,t+1} + \cdots + 2h_1h_sc_{t+1,r} + 2h_1a_1c_{t+1,r+1} + \cdots + 2h_1a_{k+2l}c_{t+1,q} - 2h_1e_{t+1} \\ &+ \cdots \\ &+ h_s^2c_{r,r} + 2h_sa_1c_{r,r+1} + \cdots + 2h_sa_{k+2l}c_{r,q} - 2h_se_r \\ &+ a_1^2c_{r+1,r+1} + \cdots + 2a_1a_{k+2l}c_{r+1,q} - 2a_1e_{r+1} \end{split}$$

AIMS Mathematics

+...
+
$$a_{k+2l}^2 c_{q,q} - 2a_{k+2l}e_q + \operatorname{tr}(\tilde{A}_{11}^{\top}\tilde{A}_{11}),$$

where $c_{i,j} = \operatorname{tr}(J_i^{\top}J_j), e_i = \operatorname{tr}(J_i^{\top}\tilde{A}_{11})(i, j = t, \cdots, t + s + k + 2l)$ and $c_{i,j} = c_{j,i}$. Consequently,

$$\begin{aligned} \frac{\partial g(f_{11}, h_1, \cdots, h_s, a_1, \cdots, a_{k+2l})}{\partial f_{11}} &= 2f_{11}c_{t,t} + 2h_1c_{t,t+1} + \cdots + 2h_sc_{t,r} + 2a_1c_{t,r+1} \\ &+ \cdots + 2a_{k+2l}c_{t,q} - 2e_t, \\ &= 2f_{11}c_{t+1,t} + 2h_1c_{t+1,t+1} + \cdots + 2h_sc_{t+1,r} + 2a_1c_{t+1,r+1} \\ &+ \cdots + 2a_{k+2l}c_{t+1,q} - 2e_{t+1}, \\ &\cdots \\ &= 2f_{11}c_{r,t} + 2h_1c_{r,t+1} + \cdots + 2h_sc_{r,r} + 2a_1c_{r,r+1} \\ &+ \cdots + 2a_{k+2l}c_{r,q} - 2e_r, \\ &= 2f_{11}c_{r+1,t} + 2h_1c_{r+1,t+1} + \cdots + 2h_sc_{r+1,r} + 2a_1c_{r+1,r+1} \\ &+ \cdots + 2a_{k+2l}c_{r,q} - 2e_r, \\ &= 2f_{11}c_{r+1,t} + 2h_1c_{r+1,t+1} + \cdots + 2h_sc_{r+1,r} + 2a_1c_{r+1,r+1} \\ &+ \cdots + 2a_{k+2l}c_{r,q} - 2e_r, \\ &= 2f_{11}c_{r+1,t} + 2h_1c_{r+1,t+1} + \cdots + 2h_sc_{r+1,r} + 2a_1c_{r+1,r+1} \\ &+ \cdots + 2a_{k+2l}c_{r+1,q} - 2e_{r+1}, \\ &\cdots \\ &= 2f_{11}c_{q,t} + 2h_1c_{q,t+1} + \cdots + 2h_sc_{q,r} + 2a_1c_{q,r+1} \\ &+ \cdots + 2a_{k+2l}c_{q,q} - 2e_q. \end{aligned}$$

Clearly, $g(f_{11}, h_1, \dots, h_s, a_1, \dots, a_{k+2l}) = \min$ if and only if

$$\frac{\partial g(f_{11}, h_1, \cdots, h_s, a_1, \cdots, a_{k+2l})}{\partial f_{11}} = 0, \cdots, \frac{\partial g(f_{11}, h_1, \cdots, h_s, a_1, \cdots, a_{k+2l})}{\partial a_{k+2l}} = 0.$$

Therefore,

$$f_{11}c_{t,t} + h_1c_{t,t+1} + \dots + h_sc_{t,r} + a_1c_{t,r+1} + \dots + a_{k+2l}c_{t,q} = e_t,$$

$$f_{11}c_{t+1,t} + h_1c_{t+1,t+1} + \dots + h_sc_{t+1,r} + a_1c_{t+1,r+1} + \dots + a_{k+2l}c_{t+1,q} = e_{t+1},$$

$$\dots$$

$$f_{11}c_{r,t} + h_1c_{r,t+1} + \dots + h_sc_{r,r} + a_1c_{r,r+1} + \dots + a_{k+2l}c_{r,q} = e_r,$$

$$f_{11}c_{r+1,t} + h_1c_{r+1,t+1} + \dots + h_sc_{r+1,r} + a_1c_{r+1,r+1} + \dots + a_{k+2l}c_{r+1,q} = e_{r+1},$$

$$\dots$$

$$f_{11}c_{q,t} + h_1c_{q,t+1} + \dots + h_sc_{q,r} + a_1c_{q,r+1} + \dots + a_{k+2l}c_{q,q} = e_q.$$
(32)

AIMS Mathematics

If let

$$C = \begin{bmatrix} c_{t,t} & c_{t,t+1} & \cdots & c_{t,r} & c_{t,r+1} & \cdots & c_{t,q} \\ c_{t+1,t} & c_{t+1,t+1} & \cdots & c_{t+1,r} & c_{t+1,r+1} & \cdots & c_{t+1,q} \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots \\ c_{r,t} & c_{r,t+1} & \cdots & c_{r,r} & c_{r,r+1} & \cdots & c_{r,q} \\ c_{r+1,t} & c_{r+1,t+1} & \cdots & c_{r+1,r} & c_{r+1,r+1} & \cdots & c_{r+1,q} \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots \\ c_{q,t} & c_{q,t+1} & \cdots & c_{q,r} & c_{q,r+1} & \cdots & c_{q,q} \end{bmatrix}, \ h = \begin{bmatrix} f_{11} \\ h_{1} \\ \vdots \\ h_{s} \\ a_{1} \\ \vdots \\ a_{k+2l} \end{bmatrix}, \ e = \begin{bmatrix} e_{t} \\ e_{t+1} \\ \vdots \\ e_{r} \\ e_{r+1} \\ \vdots \\ e_{q} \end{bmatrix},$$

where C is symmetric matrix. Then the equation (32) is equivalent to

$$Ch = e, (33)$$

and the solution of the equation (33) is

$$h = C^{-1}e. (34)$$

Substituting (34) into (20)-(21), we can obtain f_{11} , F_{22} and F_{33} explicitly. Similarly, the equation of (26) is equivalent to

$$g(A_{12}) = \operatorname{tr}(A_{12}^{\top}A_{12}) + \operatorname{tr}(\tilde{A}_{12}^{\top}\tilde{A}_{12}) - 2\operatorname{tr}(A_{12}^{\top}\tilde{A}_{12}) + \operatorname{tr}(E^{\top}A_{12}A_{12}^{\top}E) + \operatorname{tr}(\tilde{A}_{21}^{\top}\tilde{A}_{21}) - 2\operatorname{tr}(E^{\top}A_{12}\tilde{A}_{21}).$$

Applying Lemma 1, we obtain

$$\frac{\partial g(A_{12})}{\partial A_{12}} = 2A_{12} - 2\tilde{A}_{12} + 2EE^{\mathsf{T}}A_{12} - 2E\tilde{A}_{21}^{\mathsf{T}},$$

setting $\frac{\partial g(A_{12})}{\partial A_{12}} = 0$, we obtain

$$A_{12} = (I_p + EE^{\top})^{-1} (\tilde{A}_{12} + E\tilde{A}_{21}^{\top}),$$
(35)

Theorem 2. Given $\tilde{A} \in \mathbb{R}^{n \times n}$, then the Problem BAP has a unique solution and the unique solution of Problem BAP is

$$\hat{A} = Q \begin{bmatrix} R^{-\top} \begin{bmatrix} f_{11} & 0 & 0 \\ 0 & F_{22} & 0 \\ 0 & 0 & F_{33} \end{bmatrix} \begin{bmatrix} R^{-1} & A_{12} \\ 0 & 0 & F_{33} \end{bmatrix} Q^{\top},$$
(36)

where $E = R\tilde{\Lambda}R^{-1}$, F_{22} , F_{33} , A_{12} , \tilde{A}_{22} are given by (20), (21), (35), (24) and f_{11} , h_1 , \cdots , h_s , a_1 , \cdots , a_{k+2l} are given by (34).

4. A numerical example

Based on Theorems 1 and 2, we can describe an algorithm for solving Problem BAP as follows. Algorithm 1.

1) Input matrices Λ , X and \tilde{A} ;

AIMS Mathematics

- 2) Rearrange Λ as (4), and adjust the column vectors of *X* with corresponding to those of Λ ;
- 3) Form the unitary transformation matrix T_p by (5);
- 4) Compute real-valued matrices $\tilde{\Lambda}$, \tilde{X} by (6) and (7);
- 5) Compute the QR-decomposition of \tilde{X} by (9);
- 6) $F_{12} = 0, F_{21} = 0, F_{13} = 0, F_{31} = 0, F_{23} = 0, F_{32} = 0$ by (19) and $E = R\tilde{\Lambda}R^{-1}$;
- 7) Compute $\tilde{A}_{ij} = Q_i^{\mathsf{T}} \tilde{A} Q_j, i, j = 1, 2;$
- 8) Compute R^{-1} by (28) to form R_1, R_2, R_3 ;
- 9) Divide matrices R_1, R_2, R_3 by (30) to form $r_{1,t}, r_{2,i}, r_{3,j}, i = 1, \dots, 2s, j = 1, \dots, k + 2l$;
- 10) Compute J_i , $i = t, \dots, t + s + k + 2l$, by (31);
- 11) Compute $c_{i,j} = tr(J_i^{\top} J_j), e_i = tr(J_i^{\top} \tilde{A}_{11}), i, j = t, \dots, t + s + k + 2l;$
- 12) Compute $f_{11}, h_1, \dots, h_s, a_1, \dots, a_{k+2l}$ by (34);
- 13) Compute F_{22} , F_{33} by (20), (21) and $A_{22} = \tilde{A}_{22}$;
- 14) Compute *A*₁₂ by (35) and *A*₂₁ by (22);
- 15) Compute the matrix \hat{A} by (36).

Example 1. Consider a 11-DOF system, where

]	96.1898	18.1847	51.3250	49.0864	13.1973	64.9115	62.5619	81.7628	58.7045	31.1102	26.2212	1
$\tilde{A} =$	0.4634	26.3803	40.1808	48.9253	94.2051	73.1722	78.0227	79.4831	20.7742	92.3380	60.2843	
	77.4910	14.5539	7.5967	33.7719	95.6135	64.7746	8.1126	64.4318	30.1246	43.0207	71.1216	
	81.7303	13.6069	23.9916	90.0054	57.5209	45.0924	92.9386	37.8609	47.0923	18.4816	22.1747	,
	86.8695	86.9292	12.3319	36.9247	5.9780	54.7009	77.5713	81.1580	23.0488	90.4881	11.7418	
	8.4436	57.9705	18.3908	11.1203	23.4780	29.6321	48.6792	53.2826	84.4309	97.9748	29.6676	
	39.9783	54.9860	23.9953	78.0252	35.3159	74.4693	43.5859	35.0727	19.4764	43.8870	31.8778	
	25.9870	14.4955	41.7267	38.9739	82.1194	18.8955	44.6784	93.9002	22.5922	11.1119	42.4167	
	80.0068	85.3031	4.9654	24.1691	1.5403	68.6775	30.6349	87.5943	17.0708	25.8065	50.7858	
	43.1414	62.2055	90.2716	40.3912	4.3024	18.3511	50.8509	55.0156	22.7664	40.8720	8.5516	
	91.0648	35.0952	94.4787	9.6455	16.8990	36.8485	51.0772	62.2475	43.5699	59.4896	26.2482	

the measured eigenvalue and eigenvector matrices Λ and X are given by

$$\Lambda = \text{diag}\{1.0000, -1.8969, -0.5272, -0.1131 + 0.9936i, -0.1131 - 0.9936i, -0.1131 - 0.9936i, -0.228 + 2.7256i, -0.27256i, -0.1728 - 0.2450i, -0.1728 + 0.2450i, -0.1728i, -0.1728i, -0.1728i, -0.1728i, -0.1728i, -0.1728i, -0.1728i, -0.1728$$

AIMS Mathematics

and

	-0.0132	-1.0000	0.1753	0.0	840 + 0.4722i	0.03	840 - 0.4722i	
	-0.0955	0.3937	0.1196	-0.3	302 <i>-</i> 0.1892 <i>i</i>	-0.3	302 + 0.1892i	
	-0.1992	0.5220	-0.0401	0.3	930 – 0.2908 <i>i</i>	0.39	930 + 0.2908i	
	0.0740	0.0287	0.6295	-0.3	587 - 0.3507i	-0.3	587 + 0.3507i	
	0.4425	-0.3609	-0.5745	0.4	544 – 0.3119 <i>i</i>	0.4	544 + 0.3119 <i>i</i>	
X =	0.4544	-0.3192	-0.2461	-0.3	002 - 0.1267i	-0.30	002 + 0.1267i	
	0.2597	0.3363	0.9046	-0.2	398 <i>-</i> 0.0134 <i>i</i>	-0.23	398 + 0.0134i	
	0.1140	0.0966	0.0871	0.1	508 + 0.0275i	0.1	508 - 0.0275i	
	-0.0914	-0.0356	-0.2387	-0.1	890 - 0.0492i	-0.13	890 + 0.0492i	
	0.2431	0.5428	-1.0000	0.6	652 + 0.3348i	0.6	652 – 0.3348 <i>i</i>	
	1.0000	-0.2458	0.2430	-0.2	434 + 0.6061i	-0.24	434 – 0.6061 <i>i</i>	
0.	6669 + 0.24	418 <i>i</i> 0.6	669 - 0.24	18 <i>i</i>	0.2556 - 0.10)80 <i>i</i>	0.2556 + 0.108	30 <i>i</i>
-0.	1172 - 0.00	(74) 01	170 . 0.00	71.	0.550(0.10	1 00 ·	0 5506 + 0 120	· • •
	11/2 - 0.00	5/4i - 0.1	1/2 + 0.00)/4l	-0.5506 - 0.14	2091 -	-0.3300 ± 0.120	J91
0.	1172 = 0.00 $5597 = 0.2^{2}$	5741 –0.1 765i 0.5	172 + 0.06 597 + 0.27	741 651	-0.5506 - 0.12 -0.3308 + 0.19	2091 - 936i -	-0.3306 + 0.120 -0.3308 - 0.193	191 36i
0. -0.	$5597 - 0.2^{\circ}$ $7217 - 0.03^{\circ}$	5741 –0.1 765i 0.5 566i –0.7	172 + 0.06 597 + 0.27 217 + 0.05	574i 765i 566i	-0.5506 - 0.12 -0.3308 + 0.19 -0.7306 - 0.21		-0.3308 + 0.120 -0.3308 - 0.193 -0.7306 + 0.213	991 36i 36i
0. -0. 0.	$\frac{1172}{5597} - 0.2^{\circ}}{7217} - 0.03^{\circ}}{0909} + 0.0^{\circ}}$	574i –0.1 765i 0.5 566i –0.7 713i 0.0	172 + 0.06 597 + 0.27 217 + 0.05 909 - 0.07	74 <i>i</i> 765 <i>i</i> 766 <i>i</i> 713 <i>i</i>	-0.5306 - 0.12 -0.3308 + 0.19 -0.7306 - 0.21 0.5577 + 0.12	2097 - 936i - 136i - 291i	-0.3306 + 0.120 -0.3308 - 0.193 -0.7306 + 0.213 0.5577 - 0.129	91 36i 36i 91i
0. -0. 0. 0.	$\frac{1172}{5597} - 0.2'$ $\frac{7217}{9099} + 0.0'$ $1867 + 0.0'$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	772 + 0.06 7597 + 0.27 7217 + 0.05 9909 - 0.07 867 - 0.02	74 <i>i</i> 765 <i>i</i> 566 <i>i</i> 713 <i>i</i> 254 <i>i</i>	-0.5506 - 0.12 $-0.3308 + 0.19$ $-0.7306 - 0.21$ $0.5577 + 0.12$ $0.2866 + 0.14$	2097 - 936i - 136i - 291i 427i	-0.3308 + 0.120 -0.3308 - 0.193 -0.7306 + 0.213 0.5577 - 0.129 0.2866 - 0.142	91 36i 36i 91i 27i
0. -0. 0. 0. -0.	$ \begin{array}{l} 1172 = 0.00 \\ 5597 = 0.2' \\ 7217 = 0.0' \\ 0909 + 0.0' \\ 1867 + 0.0' \\ 5311 = 0.1' \end{array} $	574i = -0.1 $765i = 0.5$ $566i = -0.7$ $713i = 0.0$ $254i = 0.1$ $165i = -0.5$	$\frac{172 + 0.06}{597 + 0.27}$ $\frac{217 + 0.05}{909 - 0.07}$ $\frac{867 - 0.02}{311 + 0.11}$	265 <i>i</i> 265 <i>i</i> 266 <i>i</i> 213 <i>i</i> 254 <i>i</i> 65 <i>i</i>	-0.5506 - 0.12 $-0.3308 + 0.19$ $-0.7306 - 0.21$ $0.5577 + 0.12$ $0.2866 + 0.14$ $-0.3873 - 0.10$	2091 - 936i - 136i - 291i 427i 996i -	-0.3308 + 0.120 $-0.3308 - 0.193$ $-0.7306 + 0.213$ $0.5577 - 0.129$ $0.2866 - 0.142$ $-0.3873 + 0.109$	997 367 367 367 367 277 277
0. -0. 0. 0. -0. 0.	1172 = 0.00 $5597 - 0.2'$ $7217 - 0.0'$ $0909 + 0.0'$ $1867 + 0.0'$ $5311 - 0.1'$ $2624 + 0.0'$	574i = -0.1 $765i = 0.5$ $566i = -0.7$ $713i = 0.0$ $254i = 0.1$ $165i = -0.5$ $114i = 0.2$	$ \frac{172 + 0.06}{597 + 0.27} \\ \frac{217 + 0.05}{909 - 0.07} \\ \frac{867 - 0.02}{311 + 0.11} \\ \frac{624 - 0.01}{312} $	265 <i>i</i> 265 <i>i</i> 266 <i>i</i> 213 <i>i</i> 254 <i>i</i> 65 <i>i</i> 14 <i>i</i>	-0.5506 - 0.12 $-0.3308 + 0.19$ $-0.7306 - 0.21$ $0.5577 + 0.12$ $0.2866 + 0.14$ $-0.3873 - 0.10$ $-0.6438 + 0.21$	2091 - 236i - 136i - 291i 427i 196i - 188i -	-0.3308 + 0.120 $-0.3308 - 0.193$ $-0.7306 + 0.213$ $0.5577 - 0.129$ $0.2866 - 0.142$ $-0.3873 + 0.109$ $-0.6438 - 0.218$	997 367 367 367 367 277 277 387 387
0. -0. 0. 0. -0. 0. -0.	1172 = 0.00 $5597 - 0.2'$ $7217 - 0.0'$ $0909 + 0.0'$ $1867 + 0.0'$ $5311 - 0.1'$ $2624 + 0.0'$ $0619 - 0.1'$	574i = -0.1 $765i = 0.5$ $566i = -0.7$ $713i = 0.0$ $254i = 0.1$ $165i = -0.5$ $114i = 0.2$ $504i = -0.0$	$\begin{array}{r} 172 \pm 0.06\\ 597 \pm 0.27\\ 217 \pm 0.05\\ 9909 - 0.07\\ 867 - 0.02\\ 311 \pm 0.11\\ 624 - 0.01\\ 9619 \pm 0.15\end{array}$	265 <i>i</i> 265 <i>i</i> 213 <i>i</i> 254 <i>i</i> 65 <i>i</i> 14 <i>i</i> 504 <i>i</i>	-0.5506 - 0.12 $-0.3308 + 0.19$ $-0.7306 - 0.21$ $0.5577 + 0.12$ $0.2866 + 0.14$ $-0.3873 - 0.10$ $-0.6438 + 0.21$ $0.2787 - 0.21$	2091 - 236i - 136i - 291i 427i 196i - 188i - 166i	$\begin{array}{r} -0.3308 + 0.120 \\ -0.3308 - 0.193 \\ -0.7306 + 0.213 \\ 0.5577 - 0.129 \\ 0.2866 - 0.142 \\ -0.3873 + 0.109 \\ -0.6438 - 0.218 \\ 0.2787 + 0.216 \end{array}$	997 367 367 367 367 277 277 277 276 387 387 387 567
$\begin{array}{c} 0. \\ -0. \\ 0. \\ 0. \\ -0. \\ 0. \\ -0. \\ 0. \\ $	1172 = 0.00 $5597 - 0.2'$ $7217 - 0.0'$ $0909 + 0.0'$ $1867 + 0.0'$ $5311 - 0.1'$ $2624 + 0.0'$ $0619 - 0.1'$ $3294 - 0.1'$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \frac{172 + 0.06}{597 + 0.27} \\ \frac{217 + 0.05}{909 - 0.07} \\ \frac{867 - 0.02}{311 + 0.11} \\ \frac{624 - 0.01}{619 + 0.15} \\ \frac{294 + 0.17}{294 + 0.17} $	265i 266i 213i 254i 65i 14i 504i 218i	-0.5306 - 0.12 $-0.3308 + 0.19$ $-0.7306 - 0.21$ $0.5577 + 0.12$ $0.2866 + 0.14$ $-0.3873 - 0.10$ $-0.6438 + 0.21$ $0.2787 - 0.21$ $0.9333 + 0.06$	2097 - 236i - 136i - 291i 427i 427i 996i - 188i - 166i 667i	$\begin{array}{r} -0.3308 + 0.120 \\ -0.3308 - 0.193 \\ -0.7306 + 0.213 \\ 0.5577 - 0.129 \\ 0.2866 - 0.142 \\ -0.3873 + 0.109 \\ -0.6438 - 0.218 \\ 0.2787 + 0.216 \\ 0.9333 - 0.066 \end{array}$	997 367 367 367 367 387 567

Using Algorithm 1, we obtain the unique solution of Problem BAP as follows:

]	34.2563	41.7824	33.3573	33.6298	23.8064	42.0770	50.0641	37.5705	31.0908	48.6169	19.0972	1
$\hat{A} =$	18.8561	35.2252	35.9592	44.3502	31.9918	55.2920	55.3052	54.3793	31.3909	60.8345	16.9540	
	29.6359	7.6805	19.1249	17.7183	16.7082	40.0636	18.2916	49.9437	37.6913	15.6027	4.9603	
	58.8782	51.4906	47.8974	35.6985	45.6889	56.0434	53.0908	56.5402	55.5120	38.3447	35.8894	
	33.4087	46.9635	9.7767	41.4215	51.4466	52.1058	65.6724	60.1293	5.8061	62.0139	16.5231	
	31.6580	51.2359	24.7978	65.5567	61.7840	62.5494	58.9363	74.7099	52.2105	55.8532	44.3925	١.
	19.2961	51.2333	22.4280	56.9340	42.6348	45.8453	56.3729	61.5555	31.6836	67.9525	40.2012	ľ
	41.2796	71.3821	34.4140	33.2817	77.4393	60.8944	32.1411	108.5056	49.6078	19.8351	85.7434	
	64.0890	57.6524	19.1280	25.0394	39.0524	66.7740	20.9023	48.8512	14.4695	18.9284	24.8348	
	37.2550	32.3254	38.3534	59.7358	33.5902	54.0265	50.7770	70.2011	65.4159	58.0720	40.0652	
l	28.1301	14.7638	8.9507	20.0963	25.5907	59.6940	30.8558	66.8781	30.4807	23.6107	12.9984	

and

$$\|\hat{A}X - \hat{A}^{\top}X\Lambda\| = 8.2431 \times 10^{-13}.$$

Therefore, the new model $\hat{A}X = \hat{A}^{\top}X\Lambda$ reproduces the prescribed eigenvalues (the diagonal elements of the matrix Λ) and eigenvectors (the column vectors of the matrix X).

Example 2. (Example 4.1 of [12]) Given $\alpha = \cos(\theta)$, $\beta = \sin(\theta)$ with $\theta = 0.62$ and $\lambda_1 = 0.2$, $\lambda_2 = 0.3$, $\lambda_3 = 0.4$. Let

$$J_0 = \begin{bmatrix} 0_2 & \Gamma \\ I_2 & I_2 \end{bmatrix}, J_s = \begin{bmatrix} 0_3 & \operatorname{diag}\{\lambda_1, \lambda_2, \lambda_3\} \\ I_3 & 0_3 \end{bmatrix},$$

AIMS Mathematics

where $\Gamma = \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix}$. We construct

$$\tilde{A} = \left[\begin{array}{cc} J_0 & 0 \\ 0 & J_s \end{array} \right],$$

the measured eigenvalue and eigenvector matrices Λ and X are given by

$$\Lambda = \text{diag}\{5, 0.2, 0.8139 + 0.5810i, 0.8139 - 0.5810i\},\$$

and

$$X = \begin{bmatrix} -0.4155 & 0.6875 & -0.2157 - 0.4824i & -0.2157 + 0.4824i \\ -0.4224 & -0.3148 & -0.3752 + 0.1610i & -0.3752 - 0.1610i \\ -0.0703 & -0.6302 & -0.5950 - 0.4050i & -0.5950 + 0.4050i \\ -1.0000 & -0.4667 & 0.2293 - 0.1045i & 0.2293 + 0.1045i \\ 0.2650 & 0.3051 & -0.2253 + 0.7115i & -0.2253 - 0.7115i \\ 0.9030 & -0.2327 & 0.4862 - 0.3311i & 0.4862 + 0.3311i \\ -0.6742 & 0.3132 & 0.5521 - 0.0430i & 0.5521 + 0.0430i \\ 0.6358 & 0.1172 & -0.0623 - 0.0341i & -0.0623 + 0.0341i \\ -0.4119 & -0.2768 & 0.1575 + 0.4333i & 0.1575 - 0.4333i \\ -0.2062 & 1.0000 & -0.1779 - 0.0784i & -0.1779 + 0.0784i \end{bmatrix}$$

Using Algorithm 1, we obtain the unique solution of Problem BAP as follows:

$$\hat{A} = \begin{bmatrix} -0.1169 & -0.2366 & 0.6172 & -0.7195 & -0.0836 & 0.2884 & 0.0092 & -0.0490 & -0.0202 & 0.0171 \\ -0.0114 & -0.0957 & 0.1462 & 0.6194 & 0.3738 & -0.1637 & 0.1291 & -0.0071 & 0.0972 & 0.1247 \\ 0.7607 & -0.0497 & 0.5803 & -0.0346 & 0.0979 & 0.2959 & 0.0937 & -0.1060 & 0.1323 & -0.0339 \\ -0.0109 & 0.6740 & -0.3013 & 0.7340 & 0.1942 & -0.0872 & 0.0054 & 0.0051 & 0.0297 & 0.0814 \\ 0.1783 & 0.2283 & 0.2643 & 0.0387 & 0.0986 & -0.3125 & -0.0292 & 0.2926 & -0.0717 & -0.0546 \\ 0.0953 & 0.1027 & 0.0360 & 0.2668 & -0.2418 & 0.1206 & 0.1406 & -0.0551 & 0.3071 & 0.2097 \\ -0.0106 & -0.2319 & 0.1946 & -0.0298 & -0.1935 & 0.0158 & -0.0886 & 0.0216 & -0.0560 & 0.2484 \\ 0.1044 & 0.1285 & 0.1902 & 0.2277 & 0.6961 & 0.1657 & 0.0728 & -0.0262 & -0.0831 & -0.0001 \\ 0.0906 & 0.0021 & 0.0764 & -0.1264 & 0.2144 & 0.6703 & -0.0850 & 0.0764 & -0.0104 & -0.0149 \\ -0.1245 & 0.0813 & 0.1952 & -0.0784 & 0.0760 & -0.0875 & 0.7978 & -0.0093 & 0.0206 & -0.1182 \end{bmatrix},$$

and

$$\|\hat{A}X - \hat{A}^{\top}X\Lambda\| = 1.7538 \times 10^{-8}.$$

Therefore, the new model $\hat{A}X = \hat{A}^{\top}X\Lambda$ reproduces the prescribed eigenvalues (the diagonal elements of the matrix Λ) and eigenvectors (the column vectors of the matrix X).

5. Concluding remarks

In this paper, we have developed a direct method to solve the linear inverse palindromic eigenvalue problem by partitioning the matrix Λ and using the QR-decomposition. The explicit best approximation solution is given. The numerical examples show that the proposed method is straightforward and easy to implement.

Conflict of interest

The authors declare no conflict of interest.

References

- 1. A. Hilliges, C. Mehl, V. Mehrmann, *On the solution of palindromic eigenvalue problems*, In: 4th European congress on computational methods in applied sciences and engineerings (ECCOMAS), Jyväskylä, Finland, 2004.
- 2. A. Hilliges, Numerische Lösung von quadratischen Eigenwertproblemen mit Anwendung in der Schienendynamik, Diplomarbeit, Technical University Berlin. Inst. Für Mathematik, Germany, 2004.
- 3. E. K. Chu, T. M. Hwang, W. W. Lin, C. T. Wu, Vibration of fast trains, palindromic eigenvalue problems and structure-preserving doubling algorithms, *J. Comput. Appl. Math.*, **219** (2008), 237–252.
- 4. T. M. Huang, W. W. Lin, J. Qian, Structure-preserving algorithms for palindromic quadratic eigenvalue problems arising from vibration of fast trains, *SIAM J. Matrix Anal. Appl.*, **30** (2009), 1566–1592.
- 5. B. Iannazzo, B. Meini, Palindromic matrix polynomials, matrix functions and integral representations, *Linear Algebra Appl.*, **434** (2011), 174–184.
- 6. L. Z. Lu, F. Yuan, R. C. Li, A new look at the doubling algorithm for a structured palindromic quadratic eigenvalue problem, *Numer. Linear Algebr.*, **22** (2015), 393–409.
- 7. L. Z. Lu, T. Wang, Y. C. Kuo, R. C. Li, W. W. Lin, A fast algorithm for fast train palindromic quadratic eigenvalue problems, *SIAM J. Sci. Comput.*, **38** (2016), 3410–3429.
- 8. D. S. Mackey, N. Mackey, C. Mehl, V. Mehrmann, Structured polynomial eigenvalue problems: Good vibrations from good linearizations, *SIAM J. Matrix Anal. Appl.*, **28** (2006), 1029–1051.
- 9. C. Schröder, *URV decomposition based structured methods for palindromic and even eigenvalue problems*, Technical report, Preprint 375, TU Berlin, Matheon, Germany, 2007.
- 10. C. Schröder, A *QR-like algorithm for the palindromic eigenvalue problem*, Technical report, Preprint 388, TU Berlin, Matheon, Germany, 2007.
- 11. D. S. Mackey, N. Mackey, C. Mehl, V. Mehrmann, Numerical methods for palindromic eigenvalue problems: Computing the anti-triangular Schur form, *Numer. Linear Algebr.*, **16** (2009), 63–86.
- 12. T. Li, C. Y. Chiang, E. K. Chu, W. W. Lin, The palindromic generalized eigenvalue problem $A^*x = \lambda Ax$: Numerical solution and applications, *Linear Algebra Appl.*, **434** (2011), 2269–2284.
- 13. M. Al-Ammari, *Analysis of structured polynomial eigenvalues problems*, Ph.D. thesis, The University of Manchester, Manchester, UK, 2011.
- 14. L. Batzke, C. Mehl, On the inverse eigenvalue problem of T-alternating and T-palindromic matrix polynomials, *Linear Algebra Appl.*, **452** (2014), 172–191.
- 15. K. Zhao, L. Cheng, A. Liao, Updating ★-palindromic quadratic systems with no spill-over, *Comput. Appl. Math.*, **37** (2018), 5587–5608.

16. G. Rogers, *Matrix Derivatives, In: Lecture Notes in Statistics*, vol. 2, New York, 1980.17. J. P. Aubin, *Applied Functional Analysis*, Wiley, New York, 1979.

© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)