Quasi-subordination which is an extension of the majorization and subordination principle, has been used to define a subclass of Bazilevič functions of complex order. Various classes of analytic functions that map unit disc onto conic domains and some classes of special functions are studied in dual. Inequalities for the initial Taylor-Maclaurin coefficients and unified solution of Fekete-Szegö problem for subclasses of analytic functions related to various conic regions are our main results. Our main results have many applications which are presented in the form of corollaries.
Citation: K. R. Karthikeyan, G. Murugusundaramoorthy, N. E. Cho. Some inequalities on Bazilevič class of functions involving quasi-subordination[J]. AIMS Mathematics, 2021, 6(7): 7111-7124. doi: 10.3934/math.2021417
Quasi-subordination which is an extension of the majorization and subordination principle, has been used to define a subclass of Bazilevič functions of complex order. Various classes of analytic functions that map unit disc onto conic domains and some classes of special functions are studied in dual. Inequalities for the initial Taylor-Maclaurin coefficients and unified solution of Fekete-Szegö problem for subclasses of analytic functions related to various conic regions are our main results. Our main results have many applications which are presented in the form of corollaries.
[1] | M. H. Annaby, Z. S. Mansour, $Q-$fractional calculus and equations, Lecture Notes in Mathematics, Vol. 2056, Springer, Heidelberg, 2012. |
[2] | A. Aral, V. Gupta, R. P. Agarwal, Applications of $q-$calculus in operator theory, Springer, New York, 2013. |
[3] | I. E. Bazilevič, On a case of integrability in quadratures of the Loewner-Kufarev equation, Mat. Sb. N.S., 79 (1955), 471–476. |
[4] | A. W. Goodman, Univalent functions. Vol. Ⅱ, Mariner Publishing Co., Inc., Tampa, FL, 1983. |
[5] | M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables, Theory and Application: An International Journal, 14 (1990), 77–84. doi: 10.1080/17476939008814407 |
[6] | S. Kanas, An unified approach to the Fekete-Szegö problem, Appl. Math. Comput., 218 (2012), 8453–8461. |
[7] | K. R. Karthikeyan, G. Murugusundaramoorthy, A. Nistor-Şerban, D. Răducanu, Coefficient estimates for certain subclasses of starlike functions of complex order associated with a hyperbolic domain, Bulletin of the Transilvania University of Brasov, Series Ⅲ: Mathematics, Informatics, Physics, 13 (2020), 595–610. |
[8] | B. Khan, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, Q. Z. Ahmad, Coefficient estimates for a subclass of analytic functions associated with a certain leaf-like domain, Mathematics, 8 (2020), 1334. doi: 10.3390/math8081334 |
[9] | K. Kuroki, S. Owa, Notes on new class for certain analytic functions, RIMS Kokyuroku, 1772 (2011), 21–25. |
[10] | S. N. Malik, S. Mahmood, M. Raza, S. Farman, S. Zainab, Coefficient inequalities of functions associated with petal type domains, Mathematics, 6 (2018), 298. doi: 10.3390/math6120298 |
[11] | W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA. |
[12] | G. Murugusundaramoorthy, T. Bulboacă, Hankel determinants for new subclasses of analytic functions related to a shell shaped region, Mathematics, 8(2020), 1041. doi: 10.3390/math8061041 |
[13] | M. H. Priya, R. B. Sharma, On a class of bounded turning functions subordinate to a leaf-like domain, J. Phys. Conf. Ser., 1000 (2018), 012056. doi: 10.1088/1742-6596/1000/1/012056 |
[14] | C. Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975. |
[15] | R. K. Raina, J. Sokół, On a class of analytic functions governed by subordination, Acta Univ. Sapientiae Math., 11 (2019), 144–155. |
[16] | C. Ramachandran, L. Vanitha, S. Kanas, Certain results on $q$-starlike and $q$-convex error functions, Math. Slovaca, 68 (2018), 361–368. doi: 10.1515/ms-2017-0107 |
[17] | K. A. Reddy, K. R. Karthikeyan, G. Murugusundaramoorthy, Bounds for the coefficients of a class of analytic functions associated with conic domains, Jordan J. Math. Stat., 13 (2020), 643–657. |
[18] | M. S. Robertson, Quasi-subordination and coefficient conjectures, Bull. Amer. Math. Soc., 76 (1970), 1–9. |
[19] | T. M. Seoudy, A. E. Shammaky, Certain subclasses of spiral-like functions associated with q-analogue of Carlson-Shaffer operator, AIMS Mathematics, 6 (2021), 2525–2538. doi: 10.3934/math.2021153 |
[20] | R. B. Sharma, M. Haripriya, On a class of $\alpha$-convex functions subordinate to a shell shaped region, J. Anal., 25 (2017), 93–105. |
[21] | Y. J. Sim, O. S. Kwon, Notes on analytic functions with a bounded positive real part, J. Inequal. Appl., 2013 (2013), 1–9. |
[22] | J. Sokół, D. K. Thomas, Further results on a class of starlike functions related to the Bernoulli lemniscate, Houston J. Math., 44 (2018), 83–95. |
[23] | H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, Univalent Functions, Fractional Calculus, and Their Applications (H. M. Srivastava, S. Owa, Editors), Halsted Press (Ellis Horwood Limited, Chichester), 329–354, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989. |
[24] | H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, Univalent functions, fractional calculus, and their applications (K$\bar{o}$riyama, 1988), 329–354, Ellis Horwood Ser. Math. Appl, Horwood, Chichester. |
[25] | H. M. Srivastava, Operators of basic (or $q-$) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020), 327–344. |
[26] | H. M. Srivastava, Q. Z. Ahmad, N. Khan, N. Khan, B. Khan, Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain, Mathematics, 7 (2019), 181. doi: 10.3390/math7020181 |
[27] | H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, Coefficient inequalities for q-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407–425. |
[28] | H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, M. Tahir, A generalized conic domain and its applications to certain subclasses of analytic functions, Rocky Mountain J. Math., 49 (2019), 2325–2346. |
[29] | H. M. Srivastava, N. Khan, M. Darus, M. T. Rahim, Q. Z. Ahmad, Y. Zeb, Properties of spiral-like close-to-convex functions associated with conic domains, Mathematics, 7 (2019), 706. doi: 10.3390/math7080706 |
[30] | H. M. Srivastava, N. Raza, E. S. A. AbuJarad, G. Srivastava, M. H. AbuJarad, Fekete-Szegö inequality for classes of (p, q)-starlike and (p, q)-convex functions, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat., (RACSAM), 113 (2019), 3563–3584. |
[31] | H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of q-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 1–14. |
[32] | H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general families of q-starlike functions associated with the Janowski functions, Filomat, 33 (2019), 2613–2626. doi: 10.2298/FIL1909613S |
[33] | Z. Tu, L. Xiong, Unified solution of Fekete-Szegö problem for subclasses of starlike mappings in several complex variables, Math. Slovaca., 69 (2019), 843–856. doi: 10.1515/ms-2017-0273 |