Loading [MathJax]/jax/output/SVG/jax.js
Research article

Invariance of separation in covering approximation spaces

  • Received: 09 December 2020 Accepted: 12 March 2021 Published: 26 March 2021
  • MSC : 54B05, 54D65, 68U35

  • In this paper, the invariance of separation in covering approximation spaces are discussed. This paper proves that some separations in covering approximation spaces are invariant to reducts of coverings, invariant to covering approximation subspaces and invariant under CAP-transformations of covering approximation spaces. These results deepen and enrich theory of separations in covering approximation spaces, which is helpful to give further researches and applications of Pawlak rough set theory in information sciences.

    Citation: Qifang Li, Jinjin Li, Xun Ge, Yiliang Li. Invariance of separation in covering approximation spaces[J]. AIMS Mathematics, 2021, 6(6): 5772-5785. doi: 10.3934/math.2021341

    Related Papers:

    [1] Hui Sun, Zhongyang Sun, Ya Huang . Equilibrium investment and risk control for an insurer with non-Markovian regime-switching and no-shorting constraints. AIMS Mathematics, 2020, 5(6): 6996-7013. doi: 10.3934/math.2020449
    [2] Gideon Simpson, Daniel Watkins . Relative entropy minimization over Hilbert spaces via Robbins-Monro. AIMS Mathematics, 2019, 4(3): 359-383. doi: 10.3934/math.2019.3.359
    [3] Abdullah Ali H. Ahmadini, Amal S. Hassan, Ahmed N. Zaky, Shokrya S. Alshqaq . Bayesian inference of dynamic cumulative residual entropy from Pareto Ⅱ distribution with application to COVID-19. AIMS Mathematics, 2021, 6(3): 2196-2216. doi: 10.3934/math.2021133
    [4] I. A. Husseiny, M. Nagy, A. H. Mansi, M. A. Alawady . Some Tsallis entropy measures in concomitants of generalized order statistics under iterated FGM bivariate distribution. AIMS Mathematics, 2024, 9(9): 23268-23290. doi: 10.3934/math.20241131
    [5] Hanan Haj Ahmad, Osama E. Abo-Kasem, Ahmed Rabaiah, Ahmed Elshahhat . Survival analysis of newly extended Weibull data via adaptive progressive Type-Ⅱ censoring and its modeling to Carbon fiber and electromigration. AIMS Mathematics, 2025, 10(4): 10228-10262. doi: 10.3934/math.2025466
    [6] Huifang Yuan, Tao Jiang, Min Xiao . The ruin probability of a discrete risk model with unilateral linear dependent claims. AIMS Mathematics, 2024, 9(4): 9785-9807. doi: 10.3934/math.2024479
    [7] Refah Alotaibi, Mazen Nassar, Zareen A. Khan, Wejdan Ali Alajlan, Ahmed Elshahhat . Entropy evaluation in inverse Weibull unified hybrid censored data with application to mechanical components and head-neck cancer patients. AIMS Mathematics, 2025, 10(1): 1085-1115. doi: 10.3934/math.2025052
    [8] Amal S. Hassan, Najwan Alsadat, Oluwafemi Samson Balogun, Baria A. Helmy . Bayesian and non-Bayesian estimation of some entropy measures for a Weibull distribution. AIMS Mathematics, 2024, 9(11): 32646-32673. doi: 10.3934/math.20241563
    [9] M. G. M. Ghazal . Modified Chen distribution: Properties, estimation, and applications in reliability analysis. AIMS Mathematics, 2024, 9(12): 34906-34946. doi: 10.3934/math.20241662
    [10] Lin Xu, Linlin Wang, Hao Wang, Liming Zhang . Optimal investment game for two regulated players with regime switching. AIMS Mathematics, 2024, 9(12): 34674-34704. doi: 10.3934/math.20241651
  • In this paper, the invariance of separation in covering approximation spaces are discussed. This paper proves that some separations in covering approximation spaces are invariant to reducts of coverings, invariant to covering approximation subspaces and invariant under CAP-transformations of covering approximation spaces. These results deepen and enrich theory of separations in covering approximation spaces, which is helpful to give further researches and applications of Pawlak rough set theory in information sciences.



    This article studies the questions of existence and nonexistence of weak solutions to the system of polyharmonic wave inequalities

    {utt+(Δ)mu|x|a|v|p,(t,x)(0,)×RN¯B1,vtt+(Δ)mv|x|b|u|q,(t,x)(0,)×RN¯B1. (1.1)

    Here, (u,v)=(u(t,x),v(t,x)), N2, B1 is the open unit ball of RN, m1 is an integer, a,b2m, (a,b)(2m,2m), and p,q>1. We will investigate (1.1) under the Navier-type boundary conditions

    {(Δ)iufi(x),i=0,,m1,(t,x)(0,)×B1,(Δ)ivgi(x),i=0,,m1,(t,x)(0,)×B1, (1.2)

    where fi,giL1(B1) and (Δ)0 is the identity operator. Notice that no restriction on the signs of fi or gi is imposed.

    The study of semilinear wave inequalities in RN was firstly considered by Kato [1] and Pohozaev & Véron [2]. It was shown that the problem

    uttΔu|u|p,(t,x)(0,)×RN (1.3)

    possesses a critical exponent pK=N+1N1 in the following sense:

    (ⅰ) If N2 and 1<ppK, then (1.3) possesses no global weak solution, provided

    RNut(0,x)dx>0. (1.4)

    (ⅱ) If p>pK, there are global positive solutions satisfying (1.4).

    Caristi [3] studied the higher-order evolution polyharmonic inequality

    jutj|x|αΔmu|u|p,(t,x)(0,)×RN, (1.5)

    where α2m. Caristi discussed separately the cases α=2m and α<2m. For instance, when j=2 and α=0, it was shown that, if Nm+1 and 1<pN+mNm, then (1.5) possesses no global weak solution, provided (1.4) holds. Other existence and nonexistence results for evolution inequalities involving the polyharmonic operator in the whole space can be found in [4,5,6].

    The study of the blow-up for semilinear wave equations in exterior domains was firstly considered by Zhang [7]. Namely, among many other problems, Zhang investigated the equation

    uttΔu=|x|a|u|p,(t,x)(0,)×RND, (1.6)

    where N3, a>2, and D is a smooth bounded subset of RN. It was shown that (1.6) under the Neumann boundary condition

    uν=f(x)0,(t,x)(0,)×D,

    admits a critical exponent N+aN2 in the following sense:

    (ⅰ) If 1<p<N+aN2, then (1.6) admits no global solution, provided f0.

    (ⅱ) If p>N+aN2, then (1.6) admits global solutions for some f>0.

    In [8,9], it was shown that the critical value p=N+aN2 belongs to case (ⅰ). Furthermore, the same result holds true, if (1.6) is considered under the Dirichlet boundary condition

    u=f(x)0,(t,x)(0,)×D,

    where D=¯B1.

    In [10], the authors considered the system of wave inequalities (1.1) in the case m=1. The system was studied under different types of inhomogeneous boundary conditions. In particular, under the boundary conditions (1.2) with m=1 (Dirichlet-type boundary conditions), the authors obtained the following result: Assume that a,b2, (a,b)(2,2), If0:=B1f0dSx0, Ig0:=B1g0dSx0, (If0,Ig0)(0,0), and p,q>1. If N=2; or N3 and

    N<max{sign(If0)2p(q+1)+pb+apq1,sign(Ig0)2q(p+1)+qa+bpq1},

    then (1.1)-(1.2) (with m=1) admits no weak solution. Moreover, the authors pointed out the sharpness of the above condition.

    In the case m=2, the system (1.1) was recently studied in [11] under different types of boundary conditions. In particular, under the boundary conditions (1.2) with f00 and g00, i.e.,

    {u0,Δuf1(x),(t,x)(0,)×B1,v0,Δvg1(x),(t,x)(0,)×B1. (1.7)

    Namely, the following result was obtained: Let N2, a,b4, (a,b)(4,4), B1f1dSx>0, B1g1dSx>0, and p,q>1. If N{2,3,4}; or

    N5,N<max{4p(q+1)+pb+apq1,4q(p+1)+qa+bpq1},

    then (1.1) (with m=2) under the boundary conditions (1.7) admits no weak solution. Moreover, it was shown that the above condition is sharp.

    Further results related to the existence and nonexistence of solutions for evolution problems in exterior domains can be found in [12,13,14,15,16,17].

    The present work aims to extend the obtained results in [10,11] from m{1,2} to an arbitrary m1. Before presenting our main results, we need to define weak solutions to the considered problem.

    Let

    Q=(0,)×RNB1,ΣQ=(0,)×B1.

    Notice that ΣQQ.

    Definition 1.1. We say that φ is an admissible test function, if

    (i) φC2,2mt,x(Q);

    (ii) supp(φ)⊂⊂Q (φ is compactly supported in Q);

    (iii) φ0;

    (iv) For all j=0,1,,m1,

    Δjφ|ΣQ=0,(1)j(Δjφ)ν|ΣQ0,

    where ν denotes the outward unit normal vector on B1, relative to RNB1.

    The set of all admissible test functions is denoted by Φ.

    Definition 1.2. We say that the pair (u,v) is a weak solution to (1.1)-(1.2), if

    (u,v)Lqloc(Q)×Lploc(Q),Q|x|a|v|pφdxdtm1i=0ΣQfi(x)((Δ)m1iφ)νdσdtQu(Δ)mφdxdt+Quφttdxdt (1.8)

    and

    Q|x|b|u|qφdxdtm1i=0ΣQgi((Δ)m1iφ)νdσdtQv(Δ)mφdxdt+Qvφttdxdt (1.9)

    for every φΦ.

    Notice that, if (u,v) is a regular solution to (1.1)-(1.2), then (u,v) is a weak solution in the sense of Definition 1.2.

    For every function fL1(B1), we set

    If=B1f(x)dσ.

    Our first main result is stated in the following theorem.

    Theorem 1.1. Let p,q>1, N2, and a,b2m with (a,b)(2m,2m). Let fi,giL1(B1) for every i=0,,m1. Assume that Ifm1,Igm10 and (Ifm1,Igm1)(0,0). If N2m; or N2m+1 and

    N<max{sign(Ifm1)×2mp(q+1)+pb+apq1,sign(Igm1)×2mq(p+1)+qa+bpq1}, (1.10)

    then (1.1)-(1.2) possesses no weak solution.

    Remark 1.1. Notice that (1.10) is equivalent to

    N2m<α,Ifm1>0; orN2m<β,Igm1>0, (1.11)

    where

    α=a+2m+p(b+2m)pq1 (1.12)

    and

    β=b+2m+q(a+2m)pq1. (1.13)

    On the other hand, due to the condition a,b2m and (a,b)(2m,2m), we have α,β>0, which shows that, if N2m, then (1.10) is always satisfied.

    The proof of Theorem 1.1 is based on the construction of a suitable admissible test function and integral estimates. The construction of the admissible test function is specifically adapted to the polyharmonic operator (Δ)m, the geometry of the domain, and the Navier-type boundary conditions (1.2).

    Remark 1.2. By Theorem 1.1, we recover the nonexistence result obtained in [10] in the case m=1. We also recover the nonexistence result obtained in [11] in the case m=2.

    Next, we are concerned with the existence of solutions to (1.1)-(1.2). Our second main result shows the sharpness of condition (1.10).

    Theorem 1.2. Let p,q>1 and a,b2m with (a,b)(2m,2m). If

    N2m>max{α,β}, (1.14)

    where α and β are given by (1.12) and (1.13), then (1.1)-(1.2) admits stationary solutions for some fi,giL1(B1) (i=0,,m1) with Ifm1,Igm1>0.

    Theorem 1.2 will be proved by the construction of explicit stationary solutions to (1.1)-(1.2).

    Remark 1.3. At this moment, we don't know whether there is existence or nonexistence in the critical case N2m+1,

    N=max{sign(Ifm1)×2mp(q+1)+pb+apq1,sign(Igm1)×2mq(p+1)+qa+bpq1}.

    This question is left open.

    From Theorem 1.1, we deduce the following nonexistence result for the corresponding stationary polyharmonic system

    {(Δ)mu|x|a|v|p,xRN¯B1,(Δ)mv|x|b|u|q,xRN¯B1, (1.15)

    under the Navier-type boundary conditions

    {(Δ)iufi(x),i=0,,m1,xB1,(Δ)ivgi(x),i=0,,m1,xB1. (1.16)

    Corollary 1.1. Let p,q>1, N2, and a,b2m with (a,b)(2m,2m). Let fi,giL1(B1) for every i=0,,m1. Assume that Ifm1,Igm10 and (Ifm1,Igm1)(0,0). If N2m; or N2m+1 and (1.10) holds, then (1.15)-(1.16) possesses no weak solution.

    The rest of this manuscript is organized as follows: Section 2 is devoted to some auxiliary results. Namely, we first construct an admissible test function in the sense of Definition 1.1. Next, we establish some useful integral estimates involving the constructed test function. The proofs of Theorems 1.1 and 1.2 are provided in Section 3.

    Throughout this paper, the letter C denotes a positive constant that is independent of the scaling parameters T, τ, and the solution (u,v). The value of C is not necessarily the same from one line to another.

    In this section, we establish some auxiliary results that will be used later in the proof of our main result.

    Let us introduce the radial function H defined in RNB1 by

    H(x)={ln|x|ifN=2,1|x|2NifN3. (2.1)

    We collect below some useful properties of the function H.

    Lemma 2.1. The function H satisfies the following properties:

    (i) H0;

    (ii) HC2m(RNB1);

    (iii) H|B1=0;

    (iv) ΔH=0 in RNB1;

    (v) For all j1,

    ΔjH|B1=(ΔjH)ν|B1=0;

    (vi) Hν|B1=C.

    Proof. (ⅰ)–(ⅴ) follow immediately from (2.1). On the other hand, we have

    Hν|B1={1ifN=2,(N2)ifN3,

    which proves (ⅵ).

    We next consider a cut-off function ξC(R) satisfying the following properties:

    0ξ1,ξ(s)=1 if |s|1,ξ(s)=0 if |s|2. (2.2)

    For all τ1, let

    ξτ(x)=ξ(|x|τ),xRNB1,

    that is (from (2.2)),

    ξτ(x)={1if1|x|τ,ξ(|x|τ)ifτ|x|2τ,0if|x|2τ. (2.3)

    For k1, we introduce the function

    ζτ(x)=H(x)ξkτ(x),xRNB1. (2.4)

    We now introduce a second cut-off function GC(R) satisfying the following properties:

    G0,supp(G)⊂⊂(0,1). (2.5)

    For T>0 and k1, let

    GT(t)=Gk(tT),t0. (2.6)

    Let φ be the function defined by

    φ(t,x)=GT(t)ζτ(x),(t,x)Q. (2.7)

    By Lemma 2.1, (2.3)–(2.7), we obtain the following result.

    Lemma 2.2. The function φ belongs to Φ.

    For all λ>1, μ2m, and φΦ, we consider the integral terms

    J(λ,μ,φ)=Q|x|μλ1φ1λ1|(Δ)mφ|λλ1dxdt (2.8)

    and

    K(λ,μ,φ)=Q|x|μλ1φ1λ1|φtt|λλ1dxdt. (2.9)

    Lemma 2.3. Let φ be the admissible test function defined by (2.7). Assume that

    (i) J(p,a,φ),J(q,b,φ),K(p,a,φ),K(q,b,φ)<;

    (ii) Ifm1,Igm10.

    If (u,v) is a weak solution to (1.1)-(1.2), then

    Ifm1CT1([J(p,a,φ)]p1p+[K(p,a,φ)]p1p)ppq1([J(q,b,φ)]q1q+[K(q,b,φ)]q1q)pqpq1 (2.10)

    and

    Igm1CT1([J(q,b,φ)]q1q+[K(q,b,φ)]q1q)qpq1([J(p,a,φ)]p1p+[K(p,a,φ)]p1p)pqpq1. (2.11)

    Proof. Let (u,v) be a weak solution to (1.1)-(1.2) and φ be the admissible test function defined by (2.7). By (1.8), we have

    Q|x|a|v|pφdxdtm1i=0ΣQfi(x)((Δ)m1iφ)νdσdtQu(Δ)mφdxdt+Quφttdxdt.

    On the other hand, by Lemma 2.1: (ⅴ), (ⅵ), (2.5)–(2.7), we have

    m1i=0ΣQfi(x)((Δ)m1iφ)νdσdt=ΣQfm1(x)φνdσdt=CΣQfm1(x)GT(t)dσdt=C(0GT(t)dt)B1fm1(x)dσ=C(0Gk(tT)dt)Ifm1=CT(10Gk(s)ds)Ifm1=CTIfm1.

    Consequently, we obtain

    Q|x|a|v|pφdxdt+CTIfm1Qu(Δ)mφdxdt+Quφttdxdt. (2.12)

    Similarly, by (1.9), we obtain

    Q|x|b|u|qφdxdt+CTIgm1Qv(Δ)mφdxdt+Qvφttdxdt. (2.13)

    Furthermore, by Hölder's inequality, we have

    Qu(Δ)mφdxdtQ|u||(Δ)mφ|dxdt=Q(|x|bq|u|φ1q)(|x|bq|(Δ)mφ|φ1q)dxdt(Q|x|b|u|qφdxdt)1q(Q|x|bq1|(Δ)mφ|qq1φ1q1dxdt)q1q,

    that is,

    Qu(Δ)mφdxdt(Q|x|b|u|qφdxdt)1q[J(q,b,φ)]q1q. (2.14)

    Similarly, we obtain

    Quφttdxdt(Q|x|b|u|qφdxdt)1q[K(q,b,φ)]q1q. (2.15)

    Thus, it follows from (2.12), (2.14), and (2.15) that

    Q|x|a|v|pφdxdt+CTIfm1(Q|x|b|u|qφdxdt)1q([J(q,b,φ)]q1q+[K(q,b,φ)]q1q). (2.16)

    Using (2.13) and proceeding as above, we obtain

    Q|x|b|u|qφdxdt+CTIgm1(Q|x|a|v|pφdxdt)1p([J(p,a,φ)]p1p+[K(p,a,φ)]p1p). (2.17)

    Using (2.16)-(2.17), and taking into consideration that Igm10, we obtain

    Q|x|a|v|pφdxdt+CTIfm1(Q|x|a|v|pφdxdt)1pq([J(p,a,φ)]p1p+[K(p,a,φ)]p1p)1q([J(q,b,φ)]q1q+[K(q,b,φ)]q1q).

    Then, by Young's inequality, it holds that

    Q|x|a|v|pφdxdt+CTIfm11pqQ|x|a|v|pφdxdt+pq1pq([J(p,a,φ)]p1p+[K(p,a,φ)]p1p)pqq(pq1)([J(q,b,φ)]q1q+[K(q,b,φ)]q1q)pqpq1.

    Consequently, we have

    (11pq)Q|x|a|v|pφdxdt+CTIfm1pq1pq([J(p,a,φ)]p1p+[K(p,a,φ)]p1p)ppq1([J(q,b,φ)]q1q+[K(q,b,φ)]q1q)pqpq1,

    which yields (2.10). Similarly, using (2.16)-(2.17), and taking into consideration that Ifm10, we obtain

    Q|x|b|u|qφdxdt+CTIgm1(Q|x|b|u|qφdxdt)1pq([J(q,b,φ)]q1q+[K(q,b,φ)]q1q)1p([J(p,a,φ)]p1p+[K(p,a,φ)]p1p),

    which implies by Young's inequality that

    Q|x|b|u|qφdxdt+CTIgm11pqQ|x|b|u|qφdxdt+pq1pq([J(q,b,φ)]q1q+[K(q,b,φ)]q1q)pqp(pq1)([J(p,a,φ)]p1p+[K(p,a,φ)]p1p)pqpq1.

    Thus, it holds that

    (11pq)Q|x|b|u|qφdxdt+CTIgm1pq1pq([J(q,b,φ)]q1q+[K(q,b,φ)]q1q)qpq1([J(p,a,φ)]p1p+[K(p,a,φ)]p1p)pqpq1,

    which yields (2.11).

    The aim of this subsection is to estimate the integral terms J(λ,μ,φ) and K(λ,μ,φ), where λ>1, μ2m, and φ is the admissible test function defined by (2.7) with τ,k1.

    The following result follows immediately from (2.5) and (2.6).

    Lemma 2.4. We have

    0GT(t)dt=CT.

    Lemma 2.5. We have

    0G1λ1T|d2GTdt2|λλ1dtCT12λλ1. (2.18)

    Proof. By (2.5) and (2.6), we have

    0G1λ1T|d2GTdt2|λλ1dt=T0G1λ1T|d2GTdt2|λλ1dt (2.19)

    and

    d2GTdt2(t)=kT2Gk2(tT)((k1)G2(tT)+G(tT)G(tT))

    for all t(0,T). The above inequality yields

    |d2GTdt2(t)|CT2Gk2(tT),t(0,T),

    which implies that

    G1λ1T|d2GTdt2|λλ1CT2λλ1Gk2λλ1(tT),t(0,T).

    Then, by (2.19), it holds that

    0G1λ1T|d2GTdt2|λλ1dtCT2λλ1T0Gk2λλ1(tT)dt=CT12λλ110Gk2λλ1(s)ds=CT12λλ1,

    which proves (2.18).

    To estimate J(λ,μ,φ) and K(λ,μ,φ), we consider separately the cases N3 and N=2.

    Lemma 2.6. We have

    RNB1|x|μλ1ζ1λ1τ|(Δ)mζτ|λλ1dxCτNμ+2mλλ1. (2.20)

    Proof. Since H and ξτ are radial functions (see (2.1) and (2.3)), to simplify writing, we set

    H(x)=H(r),ξτ(x)=ξτ(r),

    where r=|x|. By (2.4) and making use of Lemma 2.1 (ⅳ), one can show that for all xRNB1, we have

    Δmζτ(x)=Δm(H(x)ξkτ(x))=2m1i=0diHdri(r)2mij=1Ci,jdjξkτdrj(r)ri+j2m,

    where Ci,j are some constants, which implies by (2.3) that

    supp(Δmζτ){xRN:τ|x|2τ} (2.21)

    and

    |Δmζτ(x)|C2m1i=0|diHdri(r)|2mij=1|djξkτdrj(r)|ri+j2m,xsupp(Δmζτ). (2.22)

    On the other hand, for all xsupp(Δmζτ), we have by (2.1) and (2.3) that

    |diHdri(r)|={H(r)ifi=0,Cr2Niifi=1,,2m1 (2.23)

    and (we recall that 0ξτ1)

    |djξkτdrj(r)|Cτjξkjτ(r)Cτjξk2mτ(r),j=1,,2mi. (2.24)

    Then, in view of (2.1), (2.21)–(2.24), we have

    |Δmζτ(x)|Cξk2mτ(r)(H(r)2mj=1τjrj2m+r2N2m1i=12mij=1τjrj2m)Cξk2mτ(r)(τ2m+τ2N2m)Cτ2mξk2mτ(x)

    for all xsupp(Δmζτ). Taking into consideration that HC for all xsupp(Δmζτ), the above estimate yields

    |x|μλ1ζ1λ1τ|(Δ)mζτ|λλ1Cτ2mλμλ1ξk2mλλ1τ(x),xsupp(Δmζτ). (2.25)

    Finally, by (2.21) and (2.25), we obtain

    RNB1|x|μλ1ζ1λ1τ|(Δ)mζτ|λλ1dx=τ<|x|<2τ|x|μλ1ζ1λ1τ|(Δ)mζτ|λλ1dxCτ2mλμλ1τ<|x|<2τξk2mλλ1τ(x)dxCτ2mλμλ12τr=τrN1dr=CτNμ+2mλλ1,

    which proves (2.20).

    Lemma 2.7. We have

    J(λ,μ,φ)CTτNμ+2mλλ1.

    Proof. By (2.7) and (2.8), we have

    J(λ,μ,φ)=(0GT(t)dt)(RNB1|x|μλ1ζ1λ1τ|(Δ)mζτ|λλ1dx).

    Then, using Lemmas 2.4 and 2.6, we obtain the desired estimate.

    Lemma 2.8. We have

    RNB1|x|μλ1ζτ(x)dxC(τNμλ1+lnτ). (2.26)

    Proof. By (2.1)–(2.4), we have

    RNB1|x|μλ1ζτ(x)dx=1<|x|<2τ|x|μλ1(1|x|2N)ξκ(|x|τ)dx1<|x|<2τ|x|μλ1dx=C2τr=1rN1μλ1dr{CτNμλ1ifNμλ1>0,[4pt]ClnτifNμλ1=0,[4pt]CifNμλ1<0C(τNμλ1+lnτ),

    which proves (2.26).

    Lemma 2.9. We have

    K(λ,μ,φ)CT12λλ1(τNμλ1+lnτ).

    Proof. By (2.7) and (2.9), we have

    K(λ,μ,φ)=(0G1λ1T|d2GTdt2|λλ1dt)(RNB1|x|μλ1ζτ(x)dx).

    Then, using Lemmas 2.5 and 2.7, we obtain the desired estimate.

    Lemma 2.10. We have

    R2B1|x|μλ1ζ1λ1τ|(Δ)mζτ|λλ1dxCτ22mλ+μλ1lnτ. (2.27)

    Proof. Proceeding as in the proof of Lemma 2.6, we obtain

    supp(Δmζτ){xR2:τ|x|2τ}

    and

    |Δmζτ(x)|Cτ2mlnτξk2mτ(x),xsupp(Δmζτ).

    The above estimate yields

    |x|μλ1ζ1λ1τ|(Δ)mζτ|λλ1Cτ2mλμλ1lnτξk2mλλ1τ(x),xsupp(Δmζτ).

    Then, it holds that

    R2B1|x|μλ1ζ1λ1τ|(Δ)mζτ|λλ1dxCτ2mλμλ1lnττ<|x|<2τξk2mλλ1τ(x)dxCτ2mλμλ1lnτ2τr=τrdrCτ22mλ+μλ1lnτ,

    which proves (2.27).

    Using (2.7)-(2.8), Lemma 2.4, and Lemma 2.10, we obtain the following estimate of J(λ,μ,φ).

    Lemma 2.11. We have

    J(λ,μ,φ)CTτ22mλ+μλ1lnτ.

    Lemma 2.12. We have

    R2B1|x|μλ1ζτ(x)dxClnτ(τ2μλ1+lnτ). (2.28)

    Proof. By (2.1)–(2.4), we have

    R2B1|x|μλ1ζτ(x)dx=1<|x|<2τ|x|μλ1ln|x|ξκ(|x|τ)dx1<|x|<2τ|x|μλ1ln|x|dx=C2τr=1r1μλ1lnrdr{Cτ2μλ1lnτif2μλ1>0,[4pt]C(lnτ)2if2μλ1=0,[4pt]Clnτif2μλ1<0Clnτ(τ2μλ1+lnτ),

    which proves (2.28).

    Using (2.7), (2.9), Lemma 2.5, and Lemma 2.12, we obtain the following estimate of K(λ,μ,φ).

    Lemma 2.13. We have

    K(λ,μ,φ)CT12λλ1lnτ(τ2μλ1+lnτ).

    This section is devoted to the proofs of Theorems 1.1 and 1.2.

    By Remark 1.1, (1.10) is equivalent to (1.11). Without restriction of the generality, we assume that

    N2m<α,Ifm1>0. (3.1)

    Indeed, exchanging the roles of (Ifm1,a,p) and (Igm1,b,q), the case

    N2m<β,Igm1>0

    reduces to (3.1).

    We use the contradiction argument. Namely, let us suppose that (u,v) is a weak solution to (1.1)-(1.2) (in the sense of Definition 1.2). For k,T,τ1, let φ be the admissible test function defined by (2.7). Then, by Lemma 2.3, we have

    Ipq1pfm1CTpq1p([J(p,a,φ)]p1p+[K(p,a,φ)]p1p)([J(q,b,φ)]q1q+[K(q,b,φ)]q1q)q. (3.2)

    Making use of Lemmas 2.7 and 2.12, we obtain that for all N2,

    J(λ,μ,φ)CTτNμ+2mλλ1lnτ,λ>1,μ2m. (3.3)

    Similarly, by Lemmas 2.9 and 2.13, we obtain that for all N2,

    K(λ,μ,φ)CT12λλ1(τNμλ1+lnτ)lnτ,λ>1,μ2m. (3.4)

    In particular, for (λ,μ)=(p,a), we obtain by (3.3) and (3.4) that

    [J(p,a,φ)]p1p+[K(p,a,φ)]p1pC[Tp1pτ(Na+2mpp1)p1p(lnτ)p1p+T(12pp1)p1p(τNap1+lnτ)p1p(lnτ)p1p]=CTp1pτ(Na+2mpp1)p1p(lnτ)p1p[1+T2(τ2mpp1+τ(Na+2mpp1)lnτ)p1p]. (3.5)

    Furthermore, taking T=τθ, where

    θ>max{m,(a+2mpp1N)p1p}, (3.6)

    we obtain

    1+T2(τ2mpp1+τ(Na+2mpp1)lnτ)p1pC.

    Then, from (3.5), we deduce that

    [J(p,a,φ)]p1p+[K(p,a,φ)]p1pC[τθ+Na+2mpp1lnτ]p1p. (3.7)

    Similarly, for

    θ>max{m,(b+2mqq1N)q1q}, (3.8)

    we obtain

    ([J(q,b,φ)]q1q+[K(q,b,φ)]q1q)qC[τθ+Nb+2mqq1lnτ]q1. (3.9)

    Thus, for T=τθ, where θ satisfies (3.6) and (3.8), we obtain by (3.2), (3.7), and (3.9) that

    Ipq1pfm1Cτθ(pq1)p[τθ+Na+2mpp1lnτ]p1p[τθ+Nb+2mqq1lnτ]q1,

    that is,

    Ipq1pfm1Cτδ(lnτ)pq1p, (3.10)

    where

    δ=pq1p[N(b+2mq)p+a+2mppq1]=pq1p(N2mα).

    Since N2m<α, we have δ<0. Then, passing to the limit as τ in (3.10), we reach a contradiction with Ifm1>0. This completes the proof of Theorem 1.1.

    Let us introduce the family of polynomial functions {Pi}0im, where

    Pi(z)={1ifi=0,i1j=0(z+2j)ij=1(N2jz)ifi=1,,m.

    From (1.14), we deduce that

    N2j>max{α,β},j=1,,m.

    Furthermore, because a,b2m and (a,b)(2m,2m), we have α,β>0. Then,

    Pi(z)>0,i=0,1,,m,z{α,β}. (3.11)

    For all

    0<εmin{[Pm(α)]1p1,[Pm(β)]1q1}, (3.12)

    we consider functions of the forms

    uε(x)=ε|x|α,xRNB1 (3.13)

    and

    vε(x)=ε|x|β,xRNB1. (3.14)

    Since uε and vε are radial functions, elementary calculations show that

    (Δ)iuε(x)=εPi(α)|x|α2i,i=0,1,,m,xRNB1 (3.15)

    and

    (Δ)ivε(x)=εPi(β)|x|β2i,i=0,1,,m,xRNB1. (3.16)

    Taking i=m in (3.15), using (3.11)–(3.14), we obtain

    (Δ)muε(x)=εPm(α)|x|α2m=|x|aεp|x|βp(ε1pPm(α)|x|α2ma+βp)|x|avpε(x)|x|α2ma+βp.

    On the other hand, by (1.12) and (1.13), one can show that

    α2ma+βp=0.

    Then, we obtain

    (Δ)muε(x)|x|avpε(x),xRNB1. (3.17)

    Similarly, taking m=i in (3.16), using (3.11)–(3.14), we obtain

    (Δ)mvε(x)=εPm(β)|x|β2m=|x|bεq|x|αq(ε1qPm(β)|x|β2mb+αq)|x|buqε(x)|x|β2mb+αq.

    Using that

    β2mb+αq=0,

    we obtain

    (Δ)mvε(x)|x|buqε(x),xRNB1. (3.18)

    Furthermore, by (3.11) and (3.15), for all i=0,,m1, we have

    (Δ)iuε(x)=εPi(α)>0,xB1. (3.19)

    Similarly, by (3.11) and (3.16), for all i=0,,m1, we have

    (Δ)ivε(x)=εPi(β)>0,xB1. (3.20)

    Finally, (3.17)–(3.20) show that for all ε satisfying (3.12), the pair of functions (uε,vε) given by (3.13) and (3.14) is a stationary solution to (1.1)-(1.2) with fiεPi(α) and giεPi(β) for all i=0,,m1. The proof of Theorem 1.2 is then completed.

    The system of polyharmonic wave inequalities (1.1) under the inhomogeneous Navier-type boundary conditions (1.2) was investigated. First, we established a nonexistence criterium for the nonexistence of weak solutions (see Theorem 1.1). Namely, under condition (1.10), we proved that (1.1)-(1.2) possesses no weak solution, provided Ifm1,Igm10 and (Ifm1,Igm1)(0,0). Next, we proved the sharpness of the obtained criterium (1.10) by showing that under condition (1.14), (1.1)-(1.2) possesses weak solutions (stationary solutions) for some fi,giL1(B1) (i=0,,m1) with Ifm1,Igm1>0 (see Theorem 1.2). From Theorem 1.1, we deduced an optimal criterium for the nonexistence of weak solutions to the corresponding stationary polyharmonic system (1.15) under the Navier-type boundary conditions (1.16) (see Corollary 1.1).

    In this study, the critical case N2m+1,

    N=max{sign(Ifm1)×2mp(q+1)+pb+apq1,sign(Igm1)×2mq(p+1)+qa+bpq1}

    is not investigated. It would be interesting to know whether there is existence or nonexistence of weak solutions in this case.

    Manal Alfulaij: validation, investigation, writing review and editing; Mohamed Jleli: Conceptualization, methodology, investigation and formal analysis; Bessem Samet: Conceptualization, methodology, validation and investigation. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    Mohamed Jleli is supported by Researchers Supporting Project number (RSP2024R57), King Saud University, Riyadh, Saudi Arabia.

    The authors declare no conflicts of interest.



    [1] Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences, 11 (1982), 341–356.
    [2] Z. Bonikowski, E. Bryniarski, U. Wybraniec, Extensions and intentions in the rough set theory, Inform. Sciences, 107 (1998), 149–167. doi: 10.1016/S0020-0255(97)10046-9
    [3] A. Jackson, Z. Pawlak, S. LeClair, Rough sets applied to the discovery of materials knowledge, J. Alloy. Compd., 279 (1998), 14–21. doi: 10.1016/S0925-8388(98)00607-0
    [4] E. Lashin, A. Kozae, A. Khadra, T. Medhat, Rough set theory for topological spaces, Int. J. Approx. Reason., 40 (2005), 35–43. doi: 10.1016/j.ijar.2004.11.007
    [5] Z. Pawlak, Rough Sets: Theoretical aspects of reasoning about data, Springer Netherlands, 1991.
    [6] D. Pei, On definable concepts of rough set models, Inform. Sciences, 177 (2007), 4230–4239. doi: 10.1016/j.ins.2007.01.020
    [7] Y. Y. Yao, Views of the theory of rough sets in finite universes, Int. J. Approx. Reason., 15 (1996), 291–317. doi: 10.1016/S0888-613X(96)00071-0
    [8] Y. Y. Yao, Relational interpretations of neighborhood operators and rough set approximation operators, Inform. Sciences, 111 (1998), 239–259. doi: 10.1016/S0020-0255(98)10006-3
    [9] Y. Y. Yao, Three-way decision: An interpretation of rules in rough set theory, Lect. Notes Comput. Sc., 5589 (2009), 642–649. doi: 10.1007/978-3-642-02962-2_81
    [10] W. Zhu, Relationship between generalized rough sets based on binary relation and covering, Inform. Sciences, 179 (2009), 210–225. doi: 10.1016/j.ins.2008.09.015
    [11] G. Xun, On covering approximation subspaces, Computer Science Journal of Moldova, 17 (2009), 74–88.
    [12] G. Xun, An application of covering approximation spaces on network security, Comput. Math. Appl., 60 (2010), 1191–1199. doi: 10.1016/j.camwa.2010.05.043
    [13] G. Xun, L. Jinjin, G. Ying, Some separations in covering approximation spaces, International Journal of Computational and Mathematical Sciences, 4 (2010), 156–160.
    [14] M. Kondo, On the structure of generalized rough sets, Inform. Sciences, 176 (2006), 586–600.
    [15] E. Lashin, T. Medhat, Topological reduction of information systems, Chaos, Soliton. Fract., 25 (2005), 277–286. doi: 10.1016/j.chaos.2004.09.107
    [16] Y. Leung, W. Wu, W. Zhang, Knowledge acquisition in incomplete information systems: A rough set approach, Eur. J. Oper. Res., 168 (2006), 164–180. doi: 10.1016/j.ejor.2004.03.032
    [17] K. Qin, Y. Gao, Z. Pei, On covering rough sets, In: Rough Sets and Knowledge Technology, Springer, Berlin, Heidelberg, 2007, 34–41.
    [18] W. Żakowski, Approximations in the space (U,Π), Demonstration Mathematica, 16 (1983), 761–769.
    [19] Y. Y. Yao, On generalizing rough set theory, Lect. Notes Comput. Sc., 2639 (2003), 44–51. doi: 10.1007/3-540-39205-X_6
    [20] W. Zhu, Topological approaches to covering rough sets, Inform. Sciences, 177 (2007), 1499–1508. doi: 10.1016/j.ins.2006.06.009
    [21] W. Zhu, F. Wang, Reduction and axiomization of covering generalized rongh sets, Inform. Sciences, 152 (2003), 217–230. doi: 10.1016/S0020-0255(03)00056-2
    [22] W. Zhu, F. Wang, On three types of covering rough sets, IEEE T. Knowl. Data En., 19 (2007), 1131–1144. doi: 10.1109/TKDE.2007.1044
    [23] Á. Császár, Separation axioms for generalizaed topologies, Acta Math. Hung., 104 (2004), 63–69. doi: 10.1023/B:AMHU.0000034362.97008.c6
    [24] R. Engelking, General topology: Rrevised and completed edition, Heldermann Verlag, 1989.
    [25] T. Noiri, E. Hatir, Λsp-sets and some weak separation axioms, Acta Math. Hung., 103 (2004), 225–232. doi: 10.1023/B:AMHU.0000028409.42549.72
    [26] Z. Yun, X. Ge, X. Bai, Axiomatization and conditions for neighborhoods in a covering to form a partition, Inform. Sciences, 181 (2011), 1735–1740. doi: 10.1016/j.ins.2011.01.013
    [27] J. G. Bazan, A. Skowron, P. Synak, Dynamic reducts as a tool or extracting laws from decisions tables, In: Methodologies for Intelligent Systems, 1994,346–355.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2565) PDF downloads(101) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog