Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article Special Issues

Asymptotic behavior of ground states for a fractional Choquard equation with critical growth

  • In this paper, we are concerned with the following fractional Choquard equation with critical growth:

    (Δ)su+λV(x)u=(|x|μF(u))f(u)+|u|2s2uinRN,

    where s(0,1), N>2s, μ(0,N), 2s=2NN2s is the fractional critical exponent, V is a steep well potential, F(t)=t0f(s)ds. Under some assumptions on f, the existence and asymptotic behavior of the positive ground states are established. In particular, if f(u)=|u|p2u, we obtain the range of p when the equation has the positive ground states for three cases 2s<N<4s or N=4s or N>4s.

    Citation: Xianyong Yang, Qing Miao. Asymptotic behavior of ground states for a fractional Choquard equation with critical growth[J]. AIMS Mathematics, 2021, 6(4): 3838-3856. doi: 10.3934/math.2021228

    Related Papers:

    [1] Meixia Cai, Hui Jian, Min Gong . Global existence, blow-up and stability of standing waves for the Schrödinger-Choquard equation with harmonic potential. AIMS Mathematics, 2024, 9(1): 495-520. doi: 10.3934/math.2024027
    [2] Min Shu, Haibo Chen, Jie Yang . Existence and asymptotic behavior of normalized solutions for the mass supercritical fractional Kirchhoff equations with general nonlinearities. AIMS Mathematics, 2025, 10(1): 499-533. doi: 10.3934/math.2025023
    [3] Yipeng Qiu, Yingying Xiao, Yan Zhao, Shengyue Xu . Normalized ground state solutions for the Chern–Simons–Schrödinger equations with mixed Choquard-type nonlinearities. AIMS Mathematics, 2024, 9(12): 35293-35307. doi: 10.3934/math.20241677
    [4] Fugeng Zeng, Peng Shi, Min Jiang . Global existence and finite time blow-up for a class of fractional $ p $-Laplacian Kirchhoff type equations with logarithmic nonlinearity. AIMS Mathematics, 2021, 6(3): 2559-2578. doi: 10.3934/math.2021155
    [5] Kexin Ouyang, Yu Wei, Huiqin Lu . Positive ground state solutions for a class of fractional coupled Choquard systems. AIMS Mathematics, 2023, 8(7): 15789-15804. doi: 10.3934/math.2023806
    [6] Huanhuan Wang, Kexin Ouyang, Huiqin Lu . Normalized ground states for fractional Kirchhoff equations with critical or supercritical nonlinearity. AIMS Mathematics, 2022, 7(6): 10790-10806. doi: 10.3934/math.2022603
    [7] Mengyu Wang, Xinmin Qu, Huiqin Lu . Ground state sign-changing solutions for fractional Laplacian equations with critical nonlinearity. AIMS Mathematics, 2021, 6(5): 5028-5039. doi: 10.3934/math.2021297
    [8] Jianqing Chen, Qihua Ruan, Qian Zhang . Odd symmetry of ground state solutions for the Choquard system. AIMS Mathematics, 2023, 8(8): 17603-17619. doi: 10.3934/math.2023898
    [9] Lulu Tao, Rui He, Sihua Liang, Rui Niu . Existence and multiplicity of solutions for critical Choquard-Kirchhoff type equations with variable growth. AIMS Mathematics, 2023, 8(2): 3026-3048. doi: 10.3934/math.2023156
    [10] Dengfeng Lu, Shuwei Dai . Ground states to a Kirchhoff equation with fractional Laplacian. AIMS Mathematics, 2023, 8(10): 24473-24483. doi: 10.3934/math.20231248
  • In this paper, we are concerned with the following fractional Choquard equation with critical growth:

    (Δ)su+λV(x)u=(|x|μF(u))f(u)+|u|2s2uinRN,

    where s(0,1), N>2s, μ(0,N), 2s=2NN2s is the fractional critical exponent, V is a steep well potential, F(t)=t0f(s)ds. Under some assumptions on f, the existence and asymptotic behavior of the positive ground states are established. In particular, if f(u)=|u|p2u, we obtain the range of p when the equation has the positive ground states for three cases 2s<N<4s or N=4s or N>4s.



    The fractional Laplacian operator (Δ)s is defined by

    (Δ)su(x)=CN,sP.V.RNu(x)u(y)|xy|N+2sdy=CN,slimε0+RNBε(0)u(x)u(y)|xy|N+2sdy,

    where the symbol P. V. stands for the Cauchy principal value and CN,s is a dimensional constant depending on N and s, precisely given by

    CN,s=[1cosζ1|ζ|N+2sdζ]1.

    The nonlocal operators can be seen as the infinitesimal generators of Lévy stable diffusion processes [1]. Moreover, they allow us to develop a generalization of quantum mechanics and also to describe the motion of a chain or an array of particles that are connected by elastic springs as well as unusual diffusion processes in turbulent fluid motions and material transports in fractured media. The more physical background can be found in [9,10,16] and the references therein.

    There are many papers considered the existence, multiplicity and qualitative properties of solutions for the fractional equations in the last decades, we refer to [2,7,8,11] for the subcritical case and to [19,24,25,28] for critical case, respectively. It is worth mentioning that some authors have been investigated the following Schrödinger equation

    (Δ)su+λV(x)u=g(u)inRN, (1.1)

    where V satisfies the following assumptions:

    (V1) VC(RN,R) and V(x)0, Ω:=int(V1(0)) is non-empty with smooth boundary.

    (V2) There exists M>0 such that |{xRN|V(x)M}|<, where || denotes the Lebesgue measure.

    Note that the function V satisfying (V1) and (V2) is called the deepening potential well, which was first proposed by Bartsch and Wang in [5]. When s=1 and g(u)=|u|p2u with 2<p<2, Bartsch and Wang [6] showed that, for λ large, (1.1) has a positive least energy solution, they also proved that a certain concentration behaviour of the solutions occur as λ. In[13], Clapp and Ding actually generalized the results of [6] into the critical case. For more results to the Schrödinger equation with deepening potential well, we also cite [3,4,21,25,26,27,31] with no attempt to provide the full list of references.

    Especially, if s(0,1) and g(u)=(|x|μF(u))f(u), then (1.1) goes back to the following fractional Choquard equation

    (Δ)su+λV(x)u=(|x|μF(u))f(u)inRN. (1.2)

    There are many works involving the existence, multiplicity and qualitative properties for solutions of (1.2) in the recent periods, we can refer to [12,14,18,24,30] as well as to the references therein. Very recently, under the assumption of (V1)(V2), Guo and Hu in [20] have proved the existence of the least energy solution to (1.2) with subcritical growth, which localizes near the bottom of potential well int(V1(0)) as λ large enough. It is a natural question that whether one can establish the similar results if nonlinearity is at critical growth, which inspired our present article. In this paper, we are concerned with the existence and asymptotic behavior of ground states for the following fractional Choquard equation with critical growth

    (Δ)su+λV(x)u=(|x|μF(u))f(u)+|u|2s2uinRN,(Qλ)

    where s(0,1), N>2s, μ(0,N), where 2s=2NN2s is the fractional critical exponent, F(t)=t0f(s)ds, f satisfies the following assumptions:

    (f1) fC1(R,R), and there exist c1>0 and 2NμNp1p2<2NμN2s with p1>2Nμ2N4s such that |f(t)|c1(|t|p11+|t|p21) for all t>0.

    (f2) There exist q>1 and c2>0 such that f(t)c2|t|q1 for all t>0.

    (f3) f(t)t is nondecreasing in (0,+).

    Remark 1.1. From (f1)(f2), we have p1qp2. We point out that Ambrosetti-Rabinowitz condition is not necessary in present paper.

    Remark 1.2. Taking f(t)=|t|p2t, where p[2NμN,2NμN2s) with p>2Nμ2N4s, then f satisfies (f1)(f3). We also remark that besides the usual power function, there are many other functions that satisfy our assumptions. For example, we may choose suitable μ, s, p and q such that 2qp<2NμN2s. By a direct calculation, the assumption (f1)(f3) hold if we choose

    g(t)=|t|q1+|t|ln(1+|t|p2).

    To statement our main results of this paper, let us introduce the following fractional Choquard equation:

    {(Δ)su=(|x|μF(u))f(u)+|u|2s2uinΩ,u0inΩ,(Q0)u=0inRNΩ,

    where s(0,1), N>2s, μ(0,N), which acts as a limit role for (Qλ) as λ. Our main results of this paper are stated as follows:

    Theorem 1.1. Assume that (V1)(V2) and (f1)(f3) hold. Then, equation (Qλ) has at least a positive ground state for λ large enough.

    Theorem 1.2. Under the assumptions of Theorem 1.1, suppose that uλn is one of the positive ground states of equation (Qλn) with λn. Then, up to a subsequence, uλnu in Hs(RN) as n. Moreover, u is a positive ground state of equation (Q0).

    In particular, by taking f(u)=|u|p2u in (Qλ) and (Q0), we obtain the following fractional Choquard equations:

    (Δ)su+λV(x)u=(|x|μ|u|p)|u|p2u+|u|2s2uinRN(Pλ)

    and

    {(Δ)su=(|x|μ|u|p)|u|p2u+|u|2s2uinΩ,u0inΩ,(P0)u=0inRNΩ,

    where s(0,1), N>2s, μ(0,N).

    As a direct result of Theorem 1.1 and Theorem 1.2, we have

    Theorem 1.3. Assume that μ(0,N) and (V1)(V2) hold. Then, equation (Pλ) has at least a positive ground state for λ large enough if one of the following cases occurs:

    (a) 2s<N<4s, p(2Nμ2N4s,2NμN2s).

    (b) N=4s, p(2NμN,2NμN2s).

    (c) N>4s, p[2NμN,2NμN2s).

    Furthermore, suppose that uλn is one of the positive ground states of equation (Pλn) with λn. Then, up to a subsequence, uλnu in Hs(RN) as n. Moreover, u is a positive ground state of equation (P0).

    Remark 1.3. By Hardy-Littlewood-Sobolev inequality (see [22]), the energy functional corresponding to equation (Pλ) belongs to C1 if p[2NμN,2NμN2s]. However, we need to put further restriction on p to overcome the difficulties caused by the estimates of convolution term. It seems that the condition p>2Nμ2N4s is essential for the proof of Lemma 8 below. Under the assumptions (V1)(V2), whether or not the existence and asymptotic behavior of ground states of equation (Pλ) can be established is an interesting question for the case N=4s with p=2NμN and the case 2s<N<4s with p(2NμN,2Nμ2N4s).

    Compared with the nonlocal nonlinearity, the term (|x|μF(u))f(u) depends not only the pointwise value of f(u), but also on |x|μF(u), which leads to some estimates about nonlocal term are likely to be confronted with some difficulties. In order to overcome them, some new variational techniques will be employed in our paper. Another difficulty of the problem (Qλ) stems from that we can not verify that the energy functional corresponding to equation (Qλ) satisfies the (PS)c condition under the any level set due to the fact that Hs(RN)L2s(RN) is noncompact. On the contrary, we can only check that the functional satisfies the (PS)c condition under a certain level set. Consequently, we have to make some more precise estimations involving critical term and nonlocal term.

    The paper is organized as follows. In Section 2, we will introduce the variational frame and prove several Lemmas. In Section 3, we focus on the proofs of the main results.

    Notation. Throughout this paper, and denote the strong convergence and the weak convergence, respectively. ||r denotes the norm in Lr(Ω) for 1r. Bρ(x) denotes the ball of radius ρ centered at x. C denote various positive constants whose value may change from line to line but are not essential to the analysis of the proof.

    Before proving our main results, it is necessary to introduce some useful definitions and notations. Firstly, fractional Sobolev spaces are the convenient setting for our problem, so we will give some stretches of the fractional order Sobolev spaces. We recall that, for any s(0,1), the fractional Sobolev space Hs(RN)=Ws,2(RN) is defined as follows:

    Hs(RN)={uL2(RN)|RN(|ξ|2s|F(u)|2+|F(u)|2)dξ<},

    whose norm is defined as

    u2Hs(RN)=RN(|ξ|2s|F(u)|2+|F(u)|2)dξ,

    where F denotes the Fourier transform. We also define the homogeneous fractional Sobolev space Ds,2(RN) as the completion of C0(RN) with respect to the inner

    [u,v]:=RNRN(u(x)u(y))(v(x)v(y))|xy|N+2sdxdy

    and the norm

    [u]:=(

    The embedding \mathcal{D}^{s, 2}(\mathbb{R}^N)\hookrightarrow L^{2^*_s}(\mathbb{R}^N) is continuous and for any s\in(0, 1) , there exists a best constant S_s > 0 such that

    \begin{equation*} S_s: = \inf\limits_{u\in\mathcal{D}^{s, 2}( \mathbb{R}^N)}\frac{[u]^2}{|u|_{2^*_s}^2} \end{equation*}

    The fractional laplacian, (-\Delta)^s u , of a smooth function u: \mathbb{R}^N\rightarrow \mathbb{R} , is defined by

    \mathcal{F}((-\Delta)^s u)(\xi) = |\xi|^{2s} \mathcal{F}(u)(\xi), \ \ \xi\in \mathbb{R}^N.

    Also, by the Plancherel formular in Fourier analysis, we have

    [u]^2_{H^{s}( \mathbb{R}^N)} = \frac{2}{C(s)}|(-\Delta)^{\frac{s}{2}}u|^2_2.

    As a consequence, the norms on H^s(\mathbb{R}^N) defined below

    \begin{aligned} &u\longmapsto\bigg(\int_{ \mathbb{R}^N}|u|^2dx+\iint_{ \mathbb{R}^N\times \mathbb{R}^N}\frac{|u(x)-u(y)|^2}{|x-y|^{N+2s}}dxdy\bigg)^{\frac{1}{2}}, \\ &u\longmapsto\bigg(\int_{ \mathbb{R}^N}(|\xi|^{2s}|{ \mathcal{F}(u)}|^2+|{ \mathcal{F}(u)}|^2)d\xi\bigg)^{\frac{1}{2}}, \\ &u\longmapsto\bigg(\int_{ \mathbb{R}^N}|u|^2dx+|(-\Delta)^{\frac{s}{2}}u|^2_2\bigg)^{\frac{1}{2}}\\ \end{aligned}

    are equivalent. For more details on fractional Sobolev spaces, we refer the reader to [15] and the references therein. In this paper, the definition of fractional Sobolev space H^s(\mathbb{R}^N) is chosen by

    H^s(\mathbb{R}^N) = \{u\in L^2(\mathbb{R}^N)\big|[u] \lt +\infty\}

    equipped with the inner

    \langle u, v\rangle = \int_{\mathbb{R}^N}\int_{\mathbb{R}^N} \frac{(u(x)-u(y))(v(x)-v(y))}{|x-y|^{N+2s}}dxdy +\int_{\mathbb{R}^N}uvdx

    whose associated norm we denote by \|\cdot\| . Now, for fixed \lambda > 0 , we define the following fractional Sobolev space

    E_\lambda = \{u\in H^s(\mathbb{R}^N)|\int_{\mathbb{R}^N}\lambda V(x)u^2dx \lt +\infty\}

    equipped with the inner product

    \langle u, v\rangle_\lambda = \int_{\mathbb{R}^N}\int_{\mathbb{R}^N} \frac{(u(x)-u(y))(v(x)-v(y))}{|x-y|^{N+2s}}dxdy +\int_{\mathbb{R}^N}\lambda V(x)uvdx

    whose associated norm we denote by \|\cdot\|_\lambda. Define

    E_0 = \{u\in H^s(\mathbb{R}^N)|u(x) = 0\; \hbox{in}\; \Omega\}.

    Obviously, E_0 is a closed subspace of H^s(\mathbb{R}^N) , and hence is a Hilbert space.

    Lemma 2.1. [25] Let 0 < s < 1 , then there exists a constant C = C(s) > 0 , such that

    |u|^2_{2^*_s}\leq C[u]^2

    for any u\in H^s(\mathbb{R}^N) . Moreover, the embedding H^s(\mathbb{R}^N)\hookrightarrow L^r(\mathbb{R}^N) is continuous for any r\in[2, 2^*_s] and is locally compact whenever r\in [1, 2^*_s) .

    Because we are concerned with the nonlocal problems, we would like to recall the well-known Hardy-Littlewood-Sobolev inequality.

    Lemma 2.2. [22] Suppose \mu\in(0, N) , and s, r > 1 with \frac{1}{s}+\frac{1}{r} = 1+\frac{\mu}{N} . Let g\in L^s(\mathbb{R}^N) , h\in L^r(\mathbb{R}^N) , there exists a sharp constant C(s, \mu, r, N) , independent of g and h , such that

    \int_{\mathbb{R}^N}(|x|^{-\mu}\ast g)hdx\leq C(s, \mu, r, N)| g|_s| h|_r.

    Since we are looking for ground states of (Q_\lambda) when \lambda is large enough, without loss of generality, we assume \lambda\geq 1 in the rest of the paper. We have the following embedding result.

    Lemma 2.3. Assume that V(x) satisfies (V_2) . Then the embedding E_\lambda\hookrightarrow H^s(\mathbb{R}^N) is continuous for any \lambda\geq 1 . Moreover, there exists \tau_0 independent of \lambda such that

    \begin{equation} \| u\|\leq \tau_0\| u\|_\lambda \end{equation} (2.1)

    for any u\in E_\lambda .

    Proof. Let

    \Omega_1 = \{x \in \mathbb{R}^N| V(x) \gt M \}, \; \; \Omega_2 = \{x \in \mathbb{R}^N| V(x)\leq M \}.

    For \lambda\geq 1 , we have

    \int_{\Omega_1}u^2dx\leq\frac{1}{ M}\int_{\mathbb{R}^N}\lambda V(x)u^2dx.

    By (V_2) , the Hölder inequality and Lemma 2.1 , one has

    \int_{\Omega_2}u^2dx\leq |\Omega_2|^{\frac{N}{2s}}\bigg(\int_{\Omega_2}u^{2^*_s}dx\bigg)^{\frac{2}{2^*_s}}\leq |\Omega_2|^{\frac{N}{2s}}[u]^2 .

    Consequently,

    \begin{equation} \|u\|\leq\big (\frac{1}{ M}+|\Omega_2|^{\frac{N}{2s}}+1\big)^{\frac{1}{2}}\|u\|_\lambda: = \tau_0\|u\|_\lambda. \end{equation} (2.2)

    The proof is completed.

    Since our main aim is to find the positive solutions, without loss of generality, we assume that f(t) = 0 for t\leq 0 . The corresponding energy functionals associated with equations ( Q_\lambda ) and ( Q_0 ) are given by

    \begin{equation*} I_\lambda(u) = \frac{1}{2}\|u\|^2_\lambda-\frac{1}{2}\int_{\mathbb{R}^N} (|x|^{-\mu} \ast F(u))F(u) dx-\frac{1}{2^*_s}\int_{\mathbb{R}^N}|u^+|^{2^*_s}dx \end{equation*}

    and

    \begin{equation*} I_0(u) = \frac{1}{2}[u]^2-\frac{1}{2}\int_{\Omega}(|x|^{-\mu} \ast F(u))F(u)dx-\frac{1}{2^*_s}\int_{\Omega}|u^+|^{2^*_s}dx, \end{equation*}

    respectively. Clearly, I_\lambda \in C^1(E_\lambda, \mathbb{R}) and I_0 \in C^1(E_0, \mathbb{R}) . Denote

    m_\lambda = \inf\limits_{u\in \mathcal{N}_\lambda}I_\lambda(u), \; \; \; \; \; \; \; \; m_0 = \inf\limits_{u\in \mathcal{N}_0}I_0(u),

    where

    \mathcal{N}_\lambda = \{u\in E_\lambda\setminus\{0\} |\langle I_\lambda^\prime(u), u\rangle = 0\}, \; \; \; \; \; \mathcal{N}_0 = \{u\in H_0^1(\Omega)\setminus\{0\} |\langle I_0^\prime(u), u\rangle = 0\}.

    Remark 2.1. Obviously, u is a critical point of I_\lambda if and only if u is a solution of (Q_\lambda) . Similarly, u is a critical point of I_0 if and only if u is a solution of (Q_0) . Hence, in order to prove Theorem 1.1 and Theorem 1.2, it suffices to check that m_\lambda is achieved by a positive critical point of I_\lambda for \lambda large enough. Furthermore, for any sequence \lambda_n\rightarrow\infty , if u_{\lambda_n} be one of the critical points of I_\lambda , then there exists u\in H^s(\mathbb{R}^N) such that I_0^\prime(u) = 0 and I_0(u) = m_0 . Moreover, up to a subsequence, u_{\lambda_n}\rightarrow u\; \; in\; \; H^s(\mathbb{R}^N) .

    Lemma 2.4. Let c > 0 be fixed. Assume that \{u^\lambda_n\} \subset E_\lambda be a (PS)_c sequence of I_\lambda . Then

    \begin{equation} \limsup\limits_{n\rightarrow\infty}\|u^\lambda_n\|_\lambda \leq\frac{2\kappa_sc}{\kappa_s-2}, \end{equation} (2.3)

    where \kappa_s = \min\{2^*_s, 4\} . Moreover, there exist \delta > 0 independent of \lambda such that either u^\lambda_n\rightarrow0 in E_\lambda or \limsup_{n\rightarrow\infty}\|u^\lambda_n\|_\lambda > \delta .

    Proof. By (f_3) , F(t)\leq 2f(t)t for any t\in\mathbb{R} . Since I_\lambda^\prime(u^\lambda_n) = o_n(1) and I_\lambda(u^\lambda_n) = c+o_n(1) ,

    \begin{equation} \begin{aligned} c+o_n(1)\|u^\lambda_n\|_\lambda & = I_\lambda(u^\lambda_n)-\frac{1}{\kappa_s}\langle I_\lambda^\prime(u^\lambda_n), u^\lambda_n \rangle\\ & = \big(\frac{1}{2}-\frac{1}{\kappa_s}\big)\|u^\lambda_n\|^2_\lambda -\frac{1}{2}\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u^\lambda_n))F(u^\lambda_n) dx\\ &\; \; \; \; +\frac{1}{\kappa_s}\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u^\lambda_n))f(u^\lambda_n)u^\lambda_n dx +\big(\frac{1}{\kappa_s}-\frac{1}{2^*_s}\big) \int_{\mathbb{R}^N}|(u^\lambda_n)^+|^{2^*_s} dx\\ &\geq\big(\frac{1}{2}-\frac{1}{\kappa_s}\big)\|u^\lambda_n\|^2_\lambda +\big(\frac{2}{\kappa_s}-\frac{1}{2} \big)\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u^\lambda_n))F(u^\lambda_n) dx+\big(\frac{1}{\kappa_s}-\frac{1}{2^*_s}\big) \int_{\mathbb{R}^N}|(u^\lambda_n)^+|^{2^*_s} dx\\ &\geq\big(\frac{1}{2}-\frac{1}{\kappa_s}\big)\|u^\lambda_n\|^2_\lambda. \end{aligned} \end{equation} (2.4)

    Hence \{u^\lambda_n\} is bounded in E_\lambda , and hence

    c+o_n(1)\geq \big(\frac{1}{2}-\frac{1}{\kappa_s}\big)\|u^\lambda_n\|^2_\lambda.

    This leads to

    \begin{equation*} \limsup\limits_{n\rightarrow\infty}\|u^\lambda_n\|^2_\lambda \leq\frac{2\kappa_sc}{\kappa_s-2}. \end{equation*}

    For any u\in E_\lambda , by the Hardy-Littlewood-Sobolev inequality and Lemma 2.3 , we have

    \begin{equation} \begin{aligned} \langle I_\lambda^\prime(u), u \rangle \geq \frac{1}{2}\|u\|^2_\lambda-C(\|u\|_\lambda^{2p_1}+ \|u\|_\lambda^{p_1+p_2}+\|u\|_\lambda^{2p_2})-C\|u\|^{2^*_s}_\lambda. \end{aligned} \end{equation} (2.5)

    Consequently, there exist \delta > 0 such that u\in E_\lambda with \|u\|_\lambda\leq \delta , we have

    \begin{equation} \langle I_\lambda^\prime(u), u \rangle\geq \frac{1}{4}\|u\|^2_\lambda. \end{equation} (2.6)

    If \limsup_{n\rightarrow\infty}\|u^\lambda_n\|_\lambda\leq \delta, without loss of generality, we may assume \|u^\lambda_n\|\leq \delta for all n . By (2.6) , one has

    o_n(1)\|u^\lambda_n\|_\lambda\geq\langle I_\lambda^\prime(u^\lambda_n), u^\lambda_n \rangle\geq \frac{1}{4}\|u^\lambda_n\|^2_\lambda,

    and hence \|u^\lambda_n\|\rightarrow 0 as n\rightarrow\infty.

    Lemma 2.5. Let C_0 > 0 be fixed, u^\lambda_n\rightharpoonup u_\lambda in E_\lambda with I(u^\lambda_n)\in[0, C_0] . Then for any small \varepsilon > 0 , there exists \Lambda_\varepsilon > 0 such that

    \limsup\limits_{n\rightarrow\infty}\int_{\mathbb{R}^N }|u^\lambda_n-u_{\lambda}|^rdx\leq \varepsilon

    for any \lambda > \Lambda_\varepsilon and 2\leq r < 2^*_s .

    Proof. Firstly, we claim that for any \varepsilon > 0 , there exists \Lambda_\varepsilon > 0 such that

    \limsup\limits_{n\rightarrow\infty}\int_{\mathbb{R}^N }|u^\lambda_n-u_{\lambda}|^2dx\leq \varepsilon

    for any \lambda > \Lambda_\varepsilon . We argue by contradiction that there exist \varepsilon_0 > 0 , \lambda_k\rightarrow +\infty and n_k\rightarrow +\infty such that

    \begin{equation} \int_{\mathbb{R}^N}|u_{n_k}^{\lambda_k}-u_{\lambda_k}|^2dx\geq \varepsilon_0, \; \; \; \forall k. \end{equation} (2.7)

    Let D_R = \{x \in \mathbb{R}^N||x| > R \; \hbox{and}\; V(x)\leq M\}. In view of (V_2) , \lim_{R\rightarrow\infty}\big|D_R\big| = 0. For k large enough, by (2.3) and the fact that \mathcal{D}^{s, 2}(\mathbb{R}^N)\hookrightarrow L^{2^*_s}(\mathbb{R}^N) is continuous, one has

    \begin{equation} \begin{aligned} \int_{D_R} |u_{n_k}^{\lambda_k}|^2 dx&\leq \big|D_R\big|^{\frac{2s}{N}}\bigg (\int_{D_R} |u_{n_k}^{\lambda_k} |^{2^*_s} dx\bigg )^{\frac{2}{2^*_s}}\\ &\leq\big|D_R\big|^{\frac{2s}{N}}[u_{n_k}^{\lambda_k}]^2\\ &\leq C_1|D_R\big|^{\frac{2s}{N}}. \end{aligned} \end{equation} (2.8)

    It follows from (2.3) that

    \begin{equation} \begin{aligned} \int_{B^c_R\setminus D_R} |u_{n_k}^{\lambda_k}|^2 dx&\leq\frac{1}{\lambda_k M}\int_{B^c_R\setminus D_R}\lambda_k V(x)|u_{n_k}^{\lambda_k}|^2dx\\ &\leq\frac{C_1}{\lambda_k }.\end{aligned} \end{equation} (2.9)

    By (2.8)-(2.9), there exist K > 0 and R > 0 such that

    \begin{equation} \int_{\mathbb{R}^N\setminus B_R(0)} |u_{n_k}^{\lambda_k}|^2 dx \lt \frac{\varepsilon_0}{8}, \; \; \; \forall k \gt K. \end{equation} (2.10)

    Similarly, one can check that

    \begin{equation} \int_{\mathbb{R}^N\setminus B_R(0)} |u_{\lambda_k}|^2 dx \lt \frac{\varepsilon_0}{8}, \; \; \; \forall k \gt K. \end{equation} (2.11)

    Since u^\lambda_n\rightarrow u_\lambda\; in L^r_{loc}(\mathbb{R}^N) for 1\leq r < 2^*_s , we may assume that

    \begin{equation} \int_{ B_R(0)}|u_{n_k}^{\lambda_k}-u_{\lambda_k}|^2 \lt \frac{\varepsilon_0}{4}. \end{equation} (2.12)

    Combining (2.7) and (2.10)-(2.12), one has

    \begin{align*} \varepsilon_0&\leq\limsup\limits_{n\rightarrow\infty}\int_{\mathbb{R}^N} |u_{n_k}^{\lambda_k}-u_{\lambda_k}|^2dx\\ &\leq 2\limsup\limits_{n\rightarrow\infty}\int_{ B^c_{R}(0)}|u_{n_k}^{\lambda_k}|^2dx+2\limsup\limits_{n\rightarrow\infty}\int_{B^c_{R}(0)}|u_{\lambda_k}|^2dx \\ &\; \; \; +\limsup\limits_{n\rightarrow\infty}\int_{ B_{R}(0)}|u_{n_k}^{\lambda_k}-u_{\lambda_k}|^2dx\\ & \lt \frac{3\varepsilon_0}{4}, \end{align*}

    a contradiction. For small \varepsilon > 0 and \lambda > \Lambda_\varepsilon , by the interpolation inequality, we have

    \limsup\limits_{n\rightarrow\infty}\int_{\mathbb{R}^N }|u_{\lambda_n}-u_{\lambda}|^rdx\leq \varepsilon,

    where 2\leq r < 2^*_s .

    Lemma 2.6. Let \lambda be fixed and \{u^\lambda_n\}\subset E_\lambda be (PS)_c of I_\lambda . Then, there exists u_\lambda\in E_\lambda such that I_\lambda^\prime(u_\lambda) = 0 and I_\lambda(u_\lambda)\geq 0 . Moreover, we have

    \begin{equation} I_\lambda(u^\lambda_n)-I_\lambda(v^\lambda_n)\rightarrow I_\lambda(u_\lambda) \end{equation} (2.13)

    and

    \begin{equation} I^\prime_\lambda(u_n)-I^\prime_\lambda(v_n)\rightarrow I^\prime_\lambda(u_\lambda), \end{equation} (2.14)

    where v^\lambda_n: = u^\lambda_n-u_\lambda .

    Proof. The proof is similar to [23]. For convenience sake, we give an outline here. For the sake of simplicity of symbols, we denote u^\lambda_n by u_n . Lemma 2.4 implies that \{u_n\} is bounded in E_\lambda . Up to a subsequence, we may assume that

    \begin{equation*} \label{eqC9} u_n\rightharpoonup u_\lambda\; \; \hbox{in}\; E_\lambda\; \; \; \; \hbox {and}\; \; \; u_n\rightarrow u_\lambda\; \; \hbox{in}\; L^r_{loc}(\mathbb{R}^N)\; \; \; \hbox{in}\; 1\leq r \lt 2^*_s. \end{equation*}

    It is easy to prove that I_\lambda^\prime(u_\lambda) = 0. Similar to (2.4), one has I_\lambda(u_\lambda)\geq 0 . As the proof of the Lemma 2.4 in [23], we have the following nonlocal Brézis-Lieb result

    \begin{equation} \begin{aligned}&\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u_n))F(u_n)dx-\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u_\lambda))F(u_\lambda)dx\\ &\rightarrow\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(v_n))F(v_n)dx.\end{aligned} \end{equation} (2.15)

    It follows from Brézis-Lieb Lemma (see Lemma 1.32 in [29]) that

    \begin{equation} \begin{aligned}& \int_{\mathbb{R}^N}|(u^\lambda_n)^+|^{2^*_s} dx-\int_{\mathbb{R}^N}|u_\lambda^+|^{2^*_s} dx\rightarrow \int_{\mathbb{R}^N}|(v^\lambda_n)^+|^{2^*_s} dx. \end{aligned} \end{equation} (2.16)

    Combining (2.15) and (2.16), one has

    \begin{equation} I_\lambda(u_n)-I_\lambda(v_n)\rightarrow I_\lambda(u_\lambda). \end{equation} (2.17)

    Similarly, (2.14) is satisfied with some slight modifications.

    Lemma 2.7. If c < \frac{s}{N}S_s^\frac{N}{2s} , then there exists \Lambda_0 > 0 such that I_\lambda satisfies the (PS)_c condition for \lambda \geq\Lambda_0 .

    Proof. Consider any sequence \{u^\lambda_n\}\subset E_\lambda satisfying I_\lambda^\prime(u^\lambda_n)\rightarrow 0 with I_\lambda(u^\lambda_n)\rightarrow c < \frac{s}{N}S_s^\frac{N}{2s} . By Lemma 2.4 , \{u^\lambda_n\} is bounded in E_\lambda . Let v^\lambda_n = u^\lambda_n-u_\lambda . Then

    \begin{equation} \begin{aligned}\int_{\mathbb{R}^N}(|x|^{-\mu} \ast &F(u^\lambda_n))f(u^\lambda_n)u^\lambda_ndx-\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u_\lambda))f(u_\lambda)u_\lambda dx\\ &\rightarrow\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(v^\lambda_n))f(v^\lambda_n)v^\lambda_ndx. \end{aligned} \end{equation} (2.18)

    By (2.16), (2.18) and Lemma 2.6 , one has

    \begin{equation*} \begin{aligned} \|v^\lambda_n\|^2_\lambda& = \|u^\lambda_n\|^2_\lambda-\|u_\lambda\|^2_\lambda+o_n(1)\\ & = \langle I_\lambda^\prime(u^\lambda_n), u^\lambda_n \rangle+\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u^\lambda_n))f(v^\lambda_n)u^\lambda_ndx+\int_{\mathbb{R}^N} |(u^\lambda_n)^+|^{2^*_s} dx\\ &\; \; \; -\langle I_\lambda^\prime(u_\lambda), u_\lambda \rangle-\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u_\lambda))f(u_\lambda)u_\lambda dx-\int_{\mathbb{R}^N}|u^+_\lambda|^{2^*_s} dx+o_n(1)\\ & = \int_{\mathbb{R}^N}|(v^\lambda_n)^+|^{2^*_s} dx+\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(v^\lambda_n))f(v^\lambda_n)v^\lambda_ndx+o_n(1). \end{aligned} \end{equation*}

    Hence, up to a subsequence, we may assume

    \begin{align*} \lim\limits_{n\rightarrow\infty}\|v^\lambda_n\|_\lambda^2 = \lim\limits_{n\rightarrow\infty}\int_{\mathbb{R}^N}|(v^\lambda_n)^+|^{2^*_s}dx+\lim\limits_{n\rightarrow\infty}\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(v^\lambda_n))f(v^\lambda_n)v^\lambda_ndx: = \theta_\lambda\geq0. \end{align*}

    It suffices to check that there exists \varepsilon_0 > 0 such that \theta_\lambda = 0 for \lambda > \Lambda_{\varepsilon_0} , where \Lambda_{\varepsilon} is given in Lemma 2.5 . Otherwise, without loss of generality, there exists \lambda_k\geq\Lambda_{\frac{1}{k}}\geq 1 such that \theta_{\lambda_k} > 0 for any k\in \mathbb{Z} . For large k and n , by Lemma 2.5 and the Hardy-Littlewood-Sobolev inequality, one has

    \begin{equation} \begin{aligned} \int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(v^{\lambda_k}_n))f(v^{\lambda_k}_n)v^\lambda_ndx&\leq C_2\Bigg(\int_{\mathbb{R}^N}\big(|v^{\lambda_k}_n|^{p_1}+|v^{\lambda_k}_n|^{p_2}\big)^ \frac{2N}{2N-\mu}dx\bigg)^\frac{2N-\mu}{N}\\ \leq& C_{3} \bigg(|v^{\lambda_k}_n|_{\frac{2Np_1}{2N-\mu}}^{2p_1}+|v^{\lambda_k}_n|_ {\frac{Np_1}{2N-\mu}}^{p_1}|v^{\lambda_k}_n|_{\frac{Np_2}{2N-\mu}}^{p_2} +|v^{\lambda_k}_n|_{\frac{2Np_2}{2N-\mu}}^{2p_2}\bigg)\\ &\leq C_{3}\big(\frac{1}{k^{2p_1}}+\frac{1}{k^{p_1+p_2}}+\frac{1}{k^{2p_2}}\big)\\ &\leq \frac{1}{k}. \end{aligned} \end{equation} (2.19)

    By Lemma 2.6 , \{v^{\lambda_k}_n\} be (PS)_{c_k} for I_{\lambda_k} , where c_k = c-I_{\lambda_k}(u_{\lambda_k}) . Since \theta_{\lambda_k} > 0 , by Lemma 2.4 , we may assume that \theta_{\lambda_k}\geq\delta for all k . By the definition of S_s , there holds

    \|v^{\lambda_k}_n\|_\lambda^2 \geq[v^{\lambda_k}_n]^2\geq S_s|v^{\lambda_k}_n|^2_{2^*_s}\geq S_s|(v^{\lambda_k}_n)^+|^2_{2^*_s}.

    Hence

    \theta_{\lambda_k}\geq S_s(\theta_{\lambda_k}-\frac{1}{k})^{\frac{2}{2^*_s}}\geq S_s\theta_{\lambda_k}^{\frac{2}{2^*_s}}(1-\frac{1}{\delta k}),

    and hence \theta_{\lambda_k}\geq S_s^\frac{N}{2s}(1-\frac{1}{\delta k})^\frac{N}{2s}. For large k , by Lemma 2.6 and (2.19), one has

    \begin{align*} c& = I_{\lambda_k}(v^{\lambda_k}_n)+I_{\lambda_k}(u_{\lambda_k})+o_n(1)\\ &\geq I_{\lambda_k}(v^{\lambda_k}_n)+o_n(1)\\ & = \frac{1}{2}\|v^{\lambda_k}_n\|^2_{\lambda_k} -\frac{1}{2}\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(v^{\lambda_k}_n))F(v^{\lambda_k}_n)dx-\frac{1}{2^*_s} \int_{\mathbb{R}^N}|(v^{\lambda_k}_n)^+|^{2^*_s} dx+o_n(1)\\ &\geq\frac{1}{2}\|v^{\lambda_k}_n\|^2_{\lambda_k}-\frac{1}{2^*_s}\int_{\mathbb{R}^N}|(v^{\lambda_k}_n)^+|^{2^*_s} dx-\frac{1}{2k}+o_n(1)\\ &\geq\frac{s}{N}{\theta_{\lambda_k}}-\frac{1}{ 2k}+o_n(1)\\ &\geq\frac{s}{N}S_s^\frac{N}{2s}(1-\frac{1}{\delta k})^\frac{N}{2s}-\frac{1}{ 2k}+o_n(1). \end{align*}

    This leads to c\geq\frac{s}{N}S_s^\frac{N}{2s} , which contradicts c < \frac{s}{N}S_s^\frac{N}{2s} . This completes the proof.

    Lemma 2.8. If p_1\in[\frac{2N-\mu}{N}, \frac{2N-\mu}{N-2s}) with p_1 > \frac{2N-\mu}{2N-4s} , then there exists \alpha > 0 such that \alpha \leq m_\lambda\leq m_0 < \frac{s}{N}S^{\frac{N}{2s}}.

    Proof. Clearly, m_\lambda\leq m_0 . Since the proof of m_\lambda \geq \alpha is standard, we only need to prove that m_0 < \frac{s}{N}S^{\frac{N}{2s}} . Without loss of generality, we assume that 0\in\Omega . Then there exist \delta > 0 and k\in \mathbb{Z} such that B_\delta\subset B_{2\delta}\subset\Omega\subset B_{k\delta} . Let \eta\in C_0^\infty(\mathbb{R}^N) be such that 0\leq\eta\leq 1 , \eta = 1 in B_\delta , \eta = 0 in \mathbb{R}^N\setminus B_{2\delta} . Denote

    U_\varepsilon(x) = \varepsilon^{-\frac{N-2s}{2}} u_0\bigg(\frac{x}{\varepsilon|u_0|_{2^*_s}}\bigg),

    where u_0(x) = \alpha(\beta^2+S_s^{-\frac{1}{2s}}|x|^2)^{-\frac{N-2s}{2}} with \alpha, \beta > 0 . Set

    u_\varepsilon(x): = \eta(x)U_\varepsilon(x),

    then u_\varepsilon(x)\in E_0 . It follows from Proposition 21 and Proposition 22 in [25] that

    \begin{equation} [u_\varepsilon]^2\leq S_s^{\frac{N}{2s}}+o(\varepsilon^{N-2s}), \; \; \; \int_{\mathbb{R}^N}|u_\varepsilon|^{2^*_s}dx = S_s^{\frac{N}{2s}} +o(\varepsilon^{N}). \end{equation} (2.20)

    Let

    g_\varepsilon(t): = \frac{t^2}{2}[u_\varepsilon]^2- \frac{t^{2^*_s}}{2^*_s}\int_{\mathbb{R}^N}|u_\varepsilon|^{2^*_s}dx.

    In view of (2.20), one has

    \begin{equation} \begin{aligned}\max\limits_{t\geq0}g_\varepsilon(t)& = \frac{s}{N}\bigg(\frac{[u_\varepsilon]^2}{|u_\varepsilon|_{2^*_s}^2}\bigg)^{\frac{N}{2s}} \\ & = \frac{s}{N}\bigg[\frac{S_s^{\frac{N}{2s}}+o(\varepsilon^{N-2s})} {({S_s^{\frac{N}{2s}}+o(\varepsilon^{N})})^{\frac{N-2s}{N}}}\bigg]^ \frac{N}{2s}\\ &\leq \frac{s}{N}S_s^\frac{N}{2s}+o(\varepsilon^{N-2s}).\end{aligned} \end{equation} (2.21)

    Clearly, there exists t_\varepsilon > 0 such that t_\varepsilon u_\varepsilon \in \mathcal{N}_0 and I_0(t_\varepsilon u_\varepsilon) = \max_{t\geq0}I_0(t u_\varepsilon) . As a consequence, m_0\leq I_0(t_\varepsilon u_\varepsilon) and

    \begin{equation} t_\varepsilon^2[u_\varepsilon]^2 = \int_{\Omega}(|x|^{-\mu} \ast F(t_\varepsilon u_\varepsilon))f( t_\varepsilon u_\varepsilon)t_\varepsilon u_\varepsilon dx+t_\varepsilon^{2^*_s}\int_{\mathbb{R}^N}|u|^{2^*_s}dx. \end{equation} (2.22)

    Next, we prove the following claim:

    Claim 2.1.

    \begin{equation} \begin{aligned} \frac{1}{t_\varepsilon^{2p_1}+t_\varepsilon^{2p_2}}\int_{\Omega}(|x|^{-\mu} \ast F(t_\varepsilon u_\varepsilon))f(t_\varepsilon u_\varepsilon)t_\varepsilon u_\varepsilon dx\leq O(\varepsilon^{2N-p_2(N-2s)-\mu}).\end{aligned} \end{equation} (2.23)

    .

    In fact, by (f_2) , for small \varepsilon > 0 , we have

    \begin{equation} \begin{aligned} &\frac{1}{t_\varepsilon^{2p_1}+t_\varepsilon^{2p_2}}\int_{\Omega}(|x|^{-\mu} \ast F(t_\varepsilon u_\varepsilon))f(t_\varepsilon u_\varepsilon)t_\varepsilon u_\varepsilon dx\\ &\leq \int_{\Omega}\int_{\Omega} \frac{2c_1\big(|u_\varepsilon(x)|^{p_1}+|u_\varepsilon(x)|^{p_2}\big) \big(|u_\varepsilon(y)|^{p_1}+|u_\varepsilon(y)|^{p_2}\big)}{|x-y|^\mu}dxdy\\ &\leq \int_{B_{2\delta}}\int_{B_{2\delta}} \frac{c_1|U_\varepsilon(x)|^{p_1} |U_\varepsilon(y)|^{p_1}}{|x-y|^\mu}dxdy\\ &\; \; + \int_{B_{2\delta}}\int_{B_{2\delta}} \frac{2c_1|U_\varepsilon(x)|^{p_1} |U_\varepsilon(y)|^{p_2}}{|x-y|^\mu}dxdy\\ &\; \; +\int_{B_{2\delta}}\int_{B_{2\delta}} \frac{c_1|U_\varepsilon(x)|^{p_2} |U_\varepsilon(y)|^{p_2}}{|x-y|^\mu}dxdy\\ &\leq \int_{B_{2\delta}}\int_{B_{2\delta}} \frac{C_4\varepsilon^{p_1(N-2s)}}{(\varepsilon^2+|x|^2)^{\frac{p_1(N-2s)}{2}} (\varepsilon^2+|y|^2)^{\frac{p_1(N-2s)}{2}}|x-y|^\mu }dxdy\\ &\; \; + \int_{B_{2\delta}}\int_{B_{2\delta}} \frac{C_4\varepsilon^{\frac{(N-2s)(p_1+p_2)}{2}}}{(\varepsilon^2+|x|^2)^{\frac{p_1(N-2s)}{2}} (\varepsilon^2+|y|^2)^{\frac{p_2(N-2s)}{2}}|x-y|^\mu }dxdy\\ &\; \; + \int_{B_{2\delta}}\int_{B_{2\delta}} \frac{C_4\varepsilon^{p_2(N-2s)}}{(\varepsilon^2+|x|^2)^{\frac{p_2(N-2s)}{2}} (\varepsilon^2+|y|^2)^{\frac{p_2(N-2s)}{2}}|x-y|^\mu }dxdy\\ &\leq \int_{\mathbb{R}^N}\int_{\mathbb{R}^N} \frac{C_4\varepsilon^{2N-p_1(N-2s)-\mu}}{(1+|x|^2)^{\frac{p_1(N-2s)}{2}} (1+|y|^2)^{\frac{p_1(N-2s)}{2}}|x-y|^\mu }dxdy\\ &\; \; + \int_{\mathbb{R}^N}\int_{\mathbb{R}^N} \frac{C_4\varepsilon^{\frac{4N-(N-2s)(p_1+p_2)-2\mu}{2}}}{(1+|x|^2)^{\frac{p_1(N-2s)}{2}} (1+|y|^2)^{\frac{p_2(N-2s)}{2}}|x-y|^\mu }dxdy\\ &\; \; + \int_{\mathbb{R}^N}\int_{\mathbb{R}^N} \frac{C_4\varepsilon^{2N-p_2(N-2s)-\mu}}{(1+|x|^2)^{\frac{p_2(N-2s)}{2}} (1+|y|^2)^{\frac{p_2(N-2s)}{2}}|x-y|^\mu }dxdy\\ &: = C_5(I_1+I_2+I_3), \end{aligned} \end{equation} (2.24)

    where c_1 and c_2 are given by (f_1) . Since p_1 > \frac{2N-\mu}{2N-4s} , N-1-\frac{2p_1N(N-2s)}{2N-\mu} < -1 . Consequently,

    \begin{equation} \begin{aligned}\int_{\mathbb{R}^N} (1+|x|^2)^{-\frac{p_1N(N-2s)}{2N-\mu}} dx& = C_6\int_0^1\frac{r^{N-1}} {(1+|r|^2)^{\frac{p_1N(N-2s)}{2N-\mu}} }dr\\ &\; \; \; +C_6\int_1^\infty\frac{r^{N-1}} {(1+|r|^2)^{\frac{p_1N(N-2s)}{2N-\mu}} }dr\\ &\leq C_7+C_6\int_1^\infty r^{N-1-\frac{2p_1N(N-2s)}{2N-\mu}}dr\\ & \lt +\infty. \end{aligned} \end{equation} (2.25)

    By the Hardy-Littlewood-Sobolev inequality, we have

    \begin{equation} \begin{aligned} I_1&\leq C_8\varepsilon^{2N-p_1(N-2s)-\mu}\bigg(\int_{\mathbb{R}^N} (1+|x|^2)^{-\frac{p_1N(N-2s)}{2N-\mu}} dx\bigg)^\frac{4N}{2N-\mu}\\ & = O\big(\varepsilon^{2N-p_1(N-2s)-\mu}\big).\end{aligned} \end{equation} (2.26)

    Similarly, one can check that

    \begin{equation} \begin{aligned} I_1 = O\big(\varepsilon^{\frac{4N-(N-2s)(p_1+p_2)-2\mu}{2}}\big) \end{aligned} \end{equation} (2.27)

    and

    \begin{equation} \begin{aligned} I_2 = O\big(\varepsilon^{2N-p_2(N-2s)-\mu}\big).\end{aligned} \end{equation} (2.28)

    Since p_1\leq p_2 , the claim follows from (2.24), (2.26)-(2.28).

    For small \varepsilon > 0 , by (2.21) and (2.23), there exist C_9 , C_{10} > 0 such that

    \int_{\mathbb{R}^N}|u_\varepsilon|^{2^*_s}dx\geq C_9, \; \; \; \; [u_\varepsilon]^2\leq C_{10},

    and

    \int_{\Omega}(|x|^{-\mu} \ast F(t_\varepsilon u_\varepsilon))f(t_\varepsilon u_\varepsilon)t_\varepsilon u_\varepsilon dx\leq C_{10}(t_\varepsilon^{2p_1}+t_\varepsilon^{2p_2}).

    According to (2.22), we have

    C_9\leq C_{10} (t_\varepsilon^{2p_1-2}+t_\varepsilon^{2p_2-2})+C_{10}t_\varepsilon^{2^*_s-2}.

    Thus, for small \varepsilon > 0 there exists t_0 > 0 such that t_\varepsilon\geq t_0 . On the other hand, by (f_2) , there holds

    \begin{equation} \begin{aligned} \frac{q}{t_\varepsilon^{2q}}\int_{\Omega}(|x|^{-\mu} \ast F(t_\varepsilon u_\varepsilon))F(t_\varepsilon u_\varepsilon)dx&\geq c_2\int_{\Omega}\big(|x|^{-\mu} \ast |u_\varepsilon|^q\big)|u_\varepsilon|^qdx\\ &\geq \int_{B_\delta}\int_{B_\delta} \frac{c_2|u_\varepsilon(x)|^q |u_\varepsilon(y)|^q}{|x-y|^\mu}dxdy\\ &\geq \int_{B_\delta}\int_{B_\delta} \frac{C_{11}\varepsilon^{q(N-2s)}}{(\varepsilon^2+|x|^2)^{\frac{q(N-2s)}{2}} (\varepsilon^2+|y|^2)^{\frac{q(N-2s)}{2}}|x-y|^\mu }dxdy\\ &\geq \int_{B_\frac{\delta}{\varepsilon}}\int_{B_\frac{\delta}{\varepsilon}} \frac{C_{11}\varepsilon^{2N-q(N-2s)-\mu}}{(1+|x|^2)^{\frac{q(N-2s)}{2}} (1+|y|^2)^{\frac{q(N-2s)}{2}} }dxdy\\ &\geq \int_{B_\delta}\int_{B_\delta} \frac{C_{11}\varepsilon^{2N-q(N-2s)-\mu}}{(1+|x|^2)^{\frac{q(N-2s)}{2}} (1+|y|^2)^{\frac{q(N-2s)}{2}} }dxdy\\ & = C_{12}\varepsilon^{2N-q(N-2s)-\mu}. \end{aligned} \end{equation} (2.29)

    Hence

    \int_{\Omega}\big(|x|^{-\mu} \ast F(t_\varepsilon u_\varepsilon)\big)F(t_\varepsilon u_\varepsilon)dx\geq C_{13}t_\varepsilon^{2q}\varepsilon^{2N-q(N-2s)-\mu}.

    Since N > 2s and q\geq p_1 > \frac{2N-\mu}{2N-4s} , then q > \frac{N+2s-\mu}{N-2s} . Combining (2.21) and (2.29), one has

    \begin{align*} m_0\leq I_0(t_\varepsilon u_\varepsilon)&\leq\max\limits_{t\geq0}g_\varepsilon(t)-C_{13}t_\varepsilon^{2q}\varepsilon^{2N-q(N-2s)-\mu}\\ & \lt S_s^\frac{N}{2s}+o(\varepsilon^{N-2s})-C_{13}t_0^{2q}\varepsilon^{2N-q(N-2s)-\mu}\\ & \lt \frac{s}{N}S_s^\frac{N}{2s}. \end{align*}

    The proof is completed.

    Proof. Assume that \{u^\lambda_n\}\subset \mathcal{N}_\lambda be a minimizing sequence of m_\lambda . By Ekeland's Variational principle (see[17]), we may assume that \{u^\lambda_n\} be a (PS)_{m_\lambda} sequence for I_\lambda , that is I_\lambda^\prime(u^\lambda_n)\rightarrow 0 and I_\lambda(u^\lambda_n)\rightarrow m_\lambda . In view of Lemma 2.8 , m_\lambda < \frac{s}{N}S_s^\frac{N}{2s} . By lemma 2.7 , there exist \Lambda_0 > 0 , up to a subsequence, u^\lambda_n\rightarrow u_\lambda in E_\lambda for any \lambda > \Lambda_0. Since I_\lambda \in C^1(E_\lambda, \mathbb{R}) , then I_\lambda(u_\lambda) = m_\lambda and I_\lambda^\prime(u_\lambda) = 0 . Noting that f(t) = 0 for t\leq0 and (t-s)(t^-s^-)\geq|t^-s^-|^2 for all t\;, s\in\mathbb{R} , one has

    \begin{align*} \|u^-_\lambda\|_\lambda^2&\leq\int_{\mathbb{R}^N}\int_{\mathbb{R}^N} \frac{(u_\lambda(x)-u_\lambda(y)) (u^-_\lambda(x)-u^-_\lambda(y))}{|x-y|^{N+2s}}dxdy+ \int_{\mathbb{R}^N}\lambda V(x)u_\lambda u^-_\lambda dx\\ & = (|x|^{-\mu} \ast F(u_\lambda))f(u_\lambda) u^-_\lambda dx+\int_{\mathbb{R}^N}|u^+_\lambda|^{2^*_s-1} u^-_\lambda dx\\ & = 0. \end{align*}

    Thus u_\lambda\geq0 . By Lemma 2.8 , we have u_\lambda\neq0. In view of the Harnack inequality, u_\lambda > 0 and the proof is completed.

    Proof. Suppose that \lambda_n\rightarrow\infty and u_{\lambda_n} be one of the ground states of equation (Q_{\lambda_n}) . That is, I_{\lambda_n}(u_{\lambda_n}) = m_{\lambda_n} and I_{\lambda_n}^\prime(u_{\lambda_n}) = 0. We denote u_{\lambda_n} by u_n for notion simplicity. Without loss of generality, we assume that \lambda_n\geq 1 for all n . As the proof of (2.4), one has

    \begin{align*} m_0\geq m_{\lambda_n} & = I_{\lambda_n}(u_n)-\frac{1}{\kappa_s}\langle I_{\lambda_n}^\prime(u_n), u_n \rangle\\ &\geq \big(\frac{1}{2}-\frac{1}{\kappa_s}\big) \big([u_n]^2+\int_{\mathbb{R}^N}\lambda_n V(x)|u_n|^2dx\big)\\ &\geq \frac{1}{\tau_0}\big(\frac{1}{2}-\frac{1}{\kappa_s}\big)\|u_n\|^2. \end{align*}

    Hence \{u_n\} is bounded in H^s(\mathbb{R}^N) . Up to a subsequence, we may assume that

    \begin{equation} u_n\rightharpoonup u\; \; \hbox{in}\; H^s(\mathbb{R}^N)\; \; \; \; \hbox {and}\; \; \; u_n\rightarrow u\; \; \hbox{in}\; L^r_{loc}(\mathbb{R}^N)\; \; \; \hbox{in}\; \; 1\leq r \lt 2^*_s. \end{equation} (3.1)

    We divide into four steps to prove Theorem 1.2 as follows.

    Step 1: u(x) = 0 a.e in \mathbb{R}^N\setminus\Omega.

    If fact, by using the Fatou's Lemma, we get

    \int_{\mathbb{R}^N\backslash \Omega} V(x)u^2dx\leq\liminf\limits_{n\rightarrow\infty}\int_{\mathbb{R}^N} V(x)u_n^2dx\leq\liminf\limits_{n\rightarrow\infty}\frac{C_{20}}{\lambda_n} = 0,

    which implies that u(x) = 0 a.e in \mathbb{R}^N\setminus \Omega .

    Step 2: u is a critical point of I_0 .

    Since I_{\lambda_n}^\prime(u_{\lambda_n}) = 0,

    \begin{equation*} \begin{aligned} \langle u_n, \varphi\rangle_{\lambda_n}-\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u_n))f(u_n)\varphi dx-\int_{\mathbb{R}^N}|u_n|^{2^*_s-1}\varphi dx = 0, \; \; \; \forall\varphi \in E_0. \end{aligned} \end{equation*}

    It is clear that

    \int_{\mathbb{R}^N} \lambda_nV(x)u_n\varphi dx = 0, \; \; \; \forall\varphi \in E_0.

    By (3.1), we have

    [u_n, \varphi]\rightarrow[u_n, \varphi], \; \; \; \forall\varphi \in E_0.

    It is standard to prove that

    \begin{equation*} \int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u_n))f(u_n)\varphi dx\rightarrow\int_{\Omega}(|x|^{-\mu} \ast F(u))f(u)\varphi dx, \; \; \; \forall\varphi \in E_0, \end{equation*}

    and

    \begin{equation*} \int_{\mathbb{R}^N}|u_n|^{2^*_s-1}\varphi dx\rightarrow\int_{\Omega}|u|^{2^*_s-1}\varphi dx, \; \; \; \forall\varphi \in E_0. \end{equation*}

    Combining with the above results, we have I_0^\prime(u) = 0 .

    Step 3: u_n\rightarrow u in L^s(\mathbb{R}^N) for 2\leq s < 2^*_s.

    Similar to (2.8) and (2.9), one has

    \begin{equation} \int_{D_R} |u_n|^2 dx \leq\big|D_R\big|^{\frac{2s}{N}}[u_n]^2\leq C_{21} \big|D_R\big|^{\frac{2s}{N}}, \end{equation} (3.2)
    \begin{equation} \int_{B^c_R\setminus D_R}|u_n|^2 dx\leq \frac{C_{22}}{\lambda_n}. \end{equation} (3.3)

    Hence, for any \varepsilon > 0 there exist R_1 = R_1(\varepsilon) > 0 such that

    \int_{\mathbb{R}^N\setminus B_{R_1}(0)} |u_n|^2 dx \lt \frac{\varepsilon}{4}+o_n(1)

    By the decay of the Lebesgue integral, there exists R_2 = R_2(\varepsilon) > 0 such that

    \int_{\mathbb{R}^N\setminus B_{R_2}(0)} |u|^2 dx \lt \frac{\varepsilon}{4}.

    By (3.1), one has

    \begin{align*} \int_{\mathbb{R}^N} |u_n-u|^2dx &\leq\int_{ B_R(0)} |u_n-u|^2dx +2\int_{\mathbb{R}^N\setminus B_{R}(0)} |u_n|^2 dx+2\int_{\mathbb{R}^N\setminus B_{R}(0)} |u|^2 dx\\ &\leq o_n(1)+\varepsilon, \end{align*}

    where R = \max\{R_1, R_2\} . Consequently, u_n\rightarrow u in L^2(\mathbb{R}^N) . By the interpolation inequality and the boundedness of \{u_n\} in H^s(\mathbb{R}^N) , we have u_n\rightarrow u in L^r(\mathbb{R}^N) for 2\leq r < 2^*_s .

    Step 4: m_0 = I_0(u) and u_n\rightarrow u in H^s(\mathbb{R}^N) .

    By the Hardy-Littlewood-Sobolev inequality and the Lebesgue dominant convergence theorem, we get

    \lim\limits_{n\rightarrow\infty}\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u_n))f(u_n)u_ndx\rightarrow\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u))f(u)udx,

    and

    \lim\limits_{n\rightarrow\infty}\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u_n) )F(u_n)dx\rightarrow\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u))F(u)dx.

    It follows from the lower semicontinuity and the Fatou's Lemma that

    \begin{equation*} \begin{aligned} m_0\geq\liminf\limits_{n\rightarrow\infty}m_{\lambda_n}& = \liminf\limits_{n\rightarrow\infty}\big(I_{\lambda_n} (u_n)-\frac{1}{\kappa_s}\langle I^{\prime}_{\lambda_n}(u_n), u_n\rangle\big)\\ &\geq \big(\frac{1}{2}-\frac{1}{\kappa_s}\big)\liminf\limits_{n\rightarrow\infty} \|u_n\|^2_{\lambda_n} +\frac{1}{\kappa_s}\liminf\limits_{n\rightarrow\infty} \int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u_n))f(u_n)u_n dx\\ &\; \; \; \; -\frac{1}{2}\limsup\limits_{n\rightarrow\infty}\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u_n))F(u_n)dx+\big(\frac{1}{\kappa_s}-\frac{1}{2^*_s} \big)\liminf\limits_{n\rightarrow\infty} \int_{\mathbb{R}^N}|u_n|^{2^*_s}dx \\&\geq\big(\frac{1}{2}-\frac{1}{\kappa_s}\big) [u]^2 +\frac{1}{\kappa_s}\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u))f(u)u dx\\ &\; \; \; \; -\frac{1}{2}\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u))F(u)dx+\big(\frac{1}{\kappa_s}-\frac{1}{2^*_s} \big)\int_{\mathbb{R}^N}|u|^{2^*_s}dx\\ &\geq\big(\frac{1}{2}-\frac{1}{\kappa_s}\big) [u]^2 +\frac{1}{\kappa_s}\int_{\Omega}(|x|^{-\mu} \ast F(u))f(u)u dx\\ &\; \; \; \; -\frac{1}{2}\int_{\Omega}\big(|x|^{-\mu} \ast F(u))F(u)dx+\big(\frac{1}{\kappa_s}-\frac{1}{2^*_s} \big)\int_{\Omega}|u|^{2^*_s}dx\\ & = I_0(u)-\frac{1}{\kappa_s}\langle I^{\prime}_0(u), u\rangle\\ & = I_0(u)\geq m_0. \end{aligned} \end{equation*}

    As a consequence, I_{0}(u) = m_0 and [u_n]\rightarrow [u] . By Step 3 , \|u_n\|\rightarrow \|u\| . This together with u_n\rightharpoonup u in H^s(\mathbb{R}^N) , we have u_n\rightarrow u in H^s(\mathbb{R}^N) . By Lemma 2.8, u\geq0 and u\neq0 . According to the Harnack inequality, we have u > 0 . The proof is completed.

    Proof. Theorem 1.3 is directly concluded by Theorem 1.1 and Theorem 1.2 .

    From the proof of Theorem 1.2, we immediately get the following two Corollaries.

    Corollary 3.1. m_\lambda\rightarrow m_0 as \lambda\rightarrow \infty.

    Corollary 3.2. Let \{u_{\lambda_n}\} be a solutions of equation (Q_{\lambda_n}) with \lambda_n\rightarrow\infty satisfying |I_{\lambda_n}(u_n) | \leq K . Then up to a subsequence, u_n\rightarrow u in H^s(\mathbb{R}^N) as n\rightarrow\infty . Moreover, u is a solution of equation (Q_0) .

    In this paper, we are concerned with a fractional Choquard equation with critical growth. Under some assumptions of nonlinearity, we obtain the existence and asymptotic behavior of the positive ground states to this problem by applying some analytical techniques. Several recent results of the literatures are extended and improved.

    This work is supported partially by NSFC (No. 11861078, 11971485, 11901345, 11661083), Hunan Provincial Innovation Foundation for Postgraduate and the Fundamental Research Funds for the Central Universities of Central South University.

    The authors declare that they have no conflicts of interest.



    [1] D. Applebaum, Lévy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.
    [2] B. Barrios, E. Colorado, R. Servadei, F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 875-900. doi: 10.1016/j.anihpc.2014.04.003
    [3] T. Bartsch, A. Pankov, Z. Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), 549-569. doi: 10.1142/S0219199701000494
    [4] T. Bartsch, Z. Tang, Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential, Discrete Contin. Dyn. Syst., 33 (2013), 7-26. doi: 10.3934/dcds.2013.33.7
    [5] T. Bartsch, Z. Wang, Existence and multiplicity results for some superlinear elliptic problems on {R}^N, Commun. Part. Diff. Eq., 20 (1995), 1725-1741. doi: 10.1080/03605309508821149
    [6] T. Bartsch, Z. Wang, Multiple positive solutions for a nonlinear Schrödinger equation, Z. Angew. Math. Phys., 51 (2000), 366-384. doi: 10.1007/PL00001511
    [7] C. Brändle, E. Colorado, A. de Pablo, U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, P. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71. doi: 10.1017/S0308210511000175
    [8] X. Cabré, J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093. doi: 10.1016/j.aim.2010.01.025
    [9] L. Caffarelli, Non-local diffusions, drifts and games, In: Nonlinear Partial Differential Equations, Heidelberg: Springer, 2012, 37-52.
    [10] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Differ. Eq., 32 (2007), 1245-1260. doi: 10.1080/03605300600987306
    [11] X. Chang, Z. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, 26 (2013), 479-494. doi: 10.1088/0951-7715/26/2/479
    [12] S. Chen, Y. Li, Z. Yang, Multiplicity and concentration of nontrivial nonnegative solutions for a fractional Choquard equation with critical exponent, RACSAM, 114 (2020), 33-35. doi: 10.1007/s13398-019-00768-4
    [13] M. Clapp, Y. Ding, Positive solutions of a Schrödinger equation with critical nonlinearity, Z. Angew. Math. Phys., 55 (2004), 592-605. doi: 10.1007/s00033-004-1084-9
    [14] P. d'Avenia, G. Siciliano, M. Squassina, Existence results for a doubly nonlocal equation, São Paulo J. Math. Sci., 9 (2015), 311-324. doi: 10.1007/s40863-015-0023-3
    [15] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004
    [16] S. Dipierro, M. Medina, E. Valdinoci, Fractional elliptic problems with critical growth in the whole of \Bbb{R}^n, Pisa: Edizioni della Normale, 2017.
    [17] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353.
    [18] B. Feng, H. Zhang, Stability of standing waves for the fractional Schrödinger-Choquard equation, Comput. Math. Appl., 75 (2018), 2499-2507. doi: 10.1016/j.camwa.2017.12.025
    [19] Z. Gao, X. Tang, S. Chen, On existence and concentration behavior of positive ground state solutions for a class of fractional Schrödinger-Choquard equations, Z. Angew. Math. Phys., 69 (2018), 122. doi: 10.1007/s00033-018-1016-8
    [20] L. Guo, T. Hu, Existence and asymptotic behavior of the least energy solutions for fractional Choquard equations with potential well, Math. Method. Appl. Sci., 41 (2018), 1145-1161. doi: 10.1002/mma.4653
    [21] C. Ledesma, Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well, Commun. Pure Appl. Anal., 15 (2016), 535-547. doi: 10.3934/cpaa.2016.15.535
    [22] E. H. Lieb, M. Loss, Analysis, Providence: American Mathematical Society, 2001.
    [23] V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184. doi: 10.1016/j.jfa.2013.04.007
    [24] T. Mukherjee, K. Sreenadh, Fractional Choquard equation with critical nonlinearities, NoDEA Nonlinear Diff., 24 (2017), 63. doi: 10.1007/s00030-017-0487-1
    [25] R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, T. Am. Math. Soc., 367 (2015), 67-102.
    [26] L. Shao, H. Chen, Ground states solutions for modified fourth-order elliptic systems with steep well potential, J. Nonlinear Sci. Appl., 11 (2018), 323-334. doi: 10.22436/jnsa.011.03.01
    [27] Z. Shen, F. Gao, M. Yang, On critical Choquard equation with potential well, Discrete Contin. Dyn. Syst., 38 (2018), 3567-3593. doi: 10.3934/dcds.2018151
    [28] F. Tao, X. Wu, Existence and multiplicity of positive solutions for fractional Schrödinger equations with critical growth, Nonlinear Anal. Real, 35 (2017), 158-174. doi: 10.1016/j.nonrwa.2016.10.007
    [29] M. Willem, Minimax theorems, Boston, MA: Birkhäuser Boston, Inc, 1996.
    [30] Z. Yang, F. Zhao, Multiplicity and concentration behaviour of solutions for a fractional Choquard equation with critical growth, Adv. Nonlinear Anal., 10 (2021), 732-774.
    [31] L. Zhao, H. Liu, F. Zhao, Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differ. Equations, 255 (2013), 1-23. doi: 10.1016/j.jde.2013.03.005
  • This article has been cited by:

    1. Ziheng Zhang, Danni Zhang, Sign-changing solutions for a class of fractional Choquard equation with the Sobolev critical exponent in R3, 2025, 543, 0022247X, 128951, 10.1016/j.jmaa.2024.128951
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2845) PDF downloads(177) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog