Research article

Integral inequalities of Hermite-Hadamard type for quasi-convex functions with applications

  • Received: 13 July 2020 Accepted: 16 September 2020 Published: 18 September 2020
  • MSC : 26A33, 39A12, 49K05

  • There is a strong connection between convexity and inequalities. So, techniques from each concept applies to the other due to the strong correlation between them; specifically, in the past few years. In this attempt, we consider the Hermite-Hadamard inequality and related inequalities for the class of functions whose absolute value of the third derivative are quasi-convex functions. Finally, the applications of our findings for special functions and particular functions are pointed out.

    Citation: Pshtiwan Othman Mohammed, Miguel Vivas-Cortez, Thabet Abdeljawad, Yenny Rangel-Oliveros. Integral inequalities of Hermite-Hadamard type for quasi-convex functions with applications[J]. AIMS Mathematics, 2020, 5(6): 7316-7331. doi: 10.3934/math.2020468

    Related Papers:

    [1] Sevda Sezer, Zeynep Eken . The Hermite-Hadamard type inequalities for quasi p-convex functions. AIMS Mathematics, 2023, 8(5): 10435-10452. doi: 10.3934/math.2023529
    [2] Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Hassen Aydi, Manuel De la Sen . Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications. AIMS Mathematics, 2022, 7(3): 3418-3439. doi: 10.3934/math.2022190
    [3] Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258
    [4] Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328
    [5] Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089
    [6] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [7] Lakhlifa Sadek, Ali Algefary . Extended Hermite–Hadamard inequalities. AIMS Mathematics, 2024, 9(12): 36031-36046. doi: 10.3934/math.20241709
    [8] M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253
    [9] Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon . On inequalities of Hermite-Hadamard type via n-polynomial exponential type s-convex functions. AIMS Mathematics, 2022, 7(8): 14282-14298. doi: 10.3934/math.2022787
    [10] Attazar Bakht, Matloob Anwar . Ostrowski and Hermite-Hadamard type inequalities via (αs) exponential type convex functions with applications. AIMS Mathematics, 2024, 9(10): 28130-28149. doi: 10.3934/math.20241364
  • There is a strong connection between convexity and inequalities. So, techniques from each concept applies to the other due to the strong correlation between them; specifically, in the past few years. In this attempt, we consider the Hermite-Hadamard inequality and related inequalities for the class of functions whose absolute value of the third derivative are quasi-convex functions. Finally, the applications of our findings for special functions and particular functions are pointed out.


    Many research papers have studied the properties of convex functions that make this concept interesting in mathematical analysis [1,2,3,4]. In recent years, important generalizations have been made in the context of convexity: quasi-convex [5], pseudo-convex [6], invex and preinvex [7], strongly convex [8], approximately convex [9], MT-convex [10], (α,m)-convex [11], and strongly (s,m)-convex [12,13,14,15]. Here, we recall the notion of convexity: A function g:[β1,β2]RR is said to be convex if the following inequality holds

    g(tx+(1t)y)tg(x)+(1t)g(y),x,y[β1,β2],t[0,1]. (1.1)

    Now, we recall our basic definition, the so-called quasi-convex function.

    Definition 1.1 ([16]). A function g:[β1,β2]R is said quasi-convex on [β1,β2] if

    g(tx+(1t)y)max{g(x),g(y)}, (1.2)

    for any x,y[β1,β2] and t[0,1].

    It is important to note that, any convex function is a quasi-convex but the reverse is not true. In the following example we explain that fact.

    Example 1.1 ([5]). The function h:[2,2]R, defined by

    h(s)={1, for s[2,1],s2, for s(1,2],

    is not convex on [2,2] but it is easy to see that the function is quasi-convex on [2,2].

    Notice that h is quasi-convex if and only if all the level sets of h are intervals (convex sets of the line).

    The use of the convex function to study the integral inequalities have been deeply investigated, especially for the well-known inequality of Hermite-Hadamard type (HH-type inequality). The HH-type inequalities are one of the most important type inequalities and have a strong relationship to convex functions. In 1893 Hermite and Hadamard [17] found independently that for any convex function g:[β1,β2]R, the inequality

    g(β1+β22)1β2β1β2β1g(x)dxg(β1)+g(β2)2, (1.3)

    holds.

    In the field of mathematical analysis, many scholars have focused on defining new convexity and implementing of the problems based on their features. The features that make the results different from each other include lower and higher order derivative of the function. The differential equations with impulse perturbations lie in a special significant position in the theory of differential equations. Among them, integral inequality methods are the important tools to investigate the qualitative characteristics of solutions of different kinds of equations such as differential equations, difference equations, partial differential equations, and impulsive differential equations; see [18,19,20,21,22,23] for more details.

    The HH-type inequality (1.3) has been applied to various convex functions like s-geometrically convex functions [24], GA-convex functions [25], MT-convex function [10], (α,m)-convex functions [26] and many other types can be found in [27]. Besides, the HH-type inequality (1.3) has been applied to a numerous type of convex functions in the sense of fractional calculus like F-convex functions [28], λψ-convex functions [29], MT-convex functions [30], (α,m)-convex functions [11], new class of convex functions [31] and many other types can be found in the literature. Meanwhile, it has been applied to other models of fractional calculus like standard Riemann-Liouville fractional operators [32,33], conformable fractional operators [34,35,36], generalized fractional operators [37], ψ-RL-fractional operators [38,39], Tempered fractional operators [40], and AB- and Prabhakar fractional operators [41].

    In view of the above indices, we extend the work done in [42] to establish some modified HH-type inequalities for the 3-times differentiable quasi-convex functions.

    This section deals with our main results. Throughout this paper, we mean gL[β1,β2] that the function g is differential and continuous on [β1,β2].

    Lemma 2.1. Suppose that g:JRR is a differentiable function such that β1,β2J with β1<β2. If gL[β1,β2], then we have

    g(β1+β22)1β2β1β2β1g(x)dx+(β2β1)224g(β1+β22)=(β2β1)396[10t3g(tβ1+β22+(1t)β1)dt+10(t1)3g(tβ2+(1t)β1+β22)dt]. (2.1)

    Proof. By applying integration by parts three times to get

    J1:=10t3g(tβ1+β22+(1t)β1)dt=2β2β1g(β1+β22)6β2β110t2g(tβ1+β22+(1t)β1)dt=2β2β1g(β1+β22)12(β2β1)2g(β1+β22)+24(β2β1)210tg(tβ1+β22+(1t)β1)dt=2β2β1g(β1+β22)12(β2β1)2g(β1+β22)+48(β2β1)3g(β1+β22)48(β2β1)310g(tβ1+β22+(1t)β1)dt. (2.2)

    Making use of change of the variable x=tβ1+β22+(1t)β1 for t[0,1] and multiplying by (β2β1)396 on both sides, we obtain

    (β2β1)396J1=(β2β1)248g(β1+β22)β2β18g(β1+β22)+12g(β1+β22)1β2β1β1+β22β1g(x)dx. (2.3)

    Analogously, we can deduce

    (β2β1)396J2:=(β2β1)39610(t1)3g(tβ2+(1t)β1+β22)dt=(β2β1)248g(β1+β22)+β2β18g(β1+β22)+12g(β1+β22)1β2β1β2β1+β22g(x)dx. (2.4)

    Finally, by adding (2.3) and (2.4), we get the required identity (2.1).

    Remark 2.1. Notice that f being quasi-convex is not equivalent to |f| being quasi-convex. For instance, g(x)=x21 is only quasi-convex (but not |g(x)|), whereas g(x)=1 if x[1,1] and g(x)=1 otherwise, is not quasi-convex, but |g(x)|=1 is quasi-convex.

    Theorem 2.1. Suppose that g:J[0,+)R is a differentiable function such that gL[β1,β2], where β1,β2J with β1<β2. If |g| is quasi-convex function on [β1,β2], then we have

    |g(β1+β22)1β2β1β2β1g(x)dx+(β2β1)224g(β1+β22)|(β2β1)3384K, (2.5)

    where K=max{|g(β1+β22)|,|g(β1)|}+max{|g(β1+β22)|,|g(β2)|}.

    Proof. Making use of Lemma 2.1 and the quasi-convexity |g|, we have that

    |g(β1+β22)1β2β1β2β1g(x)dx+(β2β1)224g(β1+β22)|(β2β1)396[10t3|g(tβ1+β22+(1t)β1)|dt+10(t1)3|g(tβ2+(1t)β1+β22)|dt](β2β1)39610t3max{|g(β1+β22)|,|g(β1)|}dt+(β2β1)39610(1t)3max{|g(β1+β22)|,|g(β2)|}dt(β2β1)3384[max{|g(β1+β22)|,|g(β1)|}+max{|g(β1+β22)|,|g(β2)|}].

    This rearranges to the desired result.

    Example 2.1. To clarify the following expression occurs in Theorem 2.1

    p:=(β2β1)224g(β1+β22), (2.6)

    we consider the function g(x)=xx2+2 on the interval [β1,β2]=[0,1]. Then, we have

    y(x):=g(x)=2x(4x23)(x2+2)2;p=124g(12)=462187.

    Figure 1 demonstrates the intersections and relationships between the functions g(x),y(x) and the point p geometrically.

    Figure 1.  Plot illustration for the expression (2.6).

    Corollary 2.1. Let the assumptions of Theorem 2.1 be valid and let

    H:=|g(β1+β22)1β2β1β2β1g(x)dx+(β2β1)224g(β1+β22)|.

    Then,

    (i) if |g| is increasing, then we have

    H(β2β1)3384[|g(β2)|+|g(β1+β22)|], (2.7)

    (ii) if |g| is decreasing, then we have

    H(β2β1)3384[|g(β1)|+|g(β1+β22)|], (2.8)

    (iii) if g(β1+β22)=0, then we have

    H(β2β1)3384[|g(β1)|+|g(β2)|], (2.9)

    (iv) if g(β1)=g(β2)=0, then we have

    H(β2β1)3384|g(β1+β22)|. (2.10)

    Theorem 2.2. Suppose that g:J[0,+)R is a differentiable function such that gL[β1,β2], where β1,β2J with β1<β2. If |g|q is quasi-convex function on [β1,β2] and q>1 with 1p+1q=1, then we have

    |g(β1+β22)1β2β1β2β1g(x)dx+(β2β1)224g(β1+β22)|(β2β1)396(3p+1)1pKq, (2.11)

    where Kq=(max{|g(β1+β22)|q,|g(β1)|q})1q+(max{|g(β1+β22)|q,|g(β2)|q})1q.

    Proof. Let p>1. Then from Lemma 2.1 and using the Hölder inequality, we can deduce

    |g(β1+β22)1β2β1β2β1g(x)dx+(β2β1)224g(β1+β22)|(β2β1)396[10t3|g(tβ1+β22+(1t)β1)|dt+10(1t)3|g(tβ2+(1t)β1+β22)|dt](β2β1)396(10t3pdt)1p(10|g(tβ1+β22+(1t)β1)|qdt)1q+(β2β1)396(10(1t)3pdt)1p(10|g(tb+(1t)β1+β22)|qdt)1q.

    The quasi-convexity of |g|q on [β1,β2] implies that

    10|g(tβ1+β22+(1t)β1)|qdtmax{|g(β1+β22)|q,|g(β1)|q},

    and

    10|g(tb+(1t)β1+β22)|qdtmax{|g(β1+β22)|q,|g(β2)|q}.

    Therefore, we obtain

    |g(β1+β22)1β2β1β2β1g(x)dx+(β2β1)224g(β1+β22)|(β2β1)396(3p+1)1pKq,

    where we used the identities

    10t3pdt=10(1t)3pdt=13p+1.

    Thus, our proof is completely done.

    Corollary 2.2. Let the assumptions of Theorem 2.2 be valid and let

    H=|g(β1+β22)1β2β1β2β1g(x)dx+(β2β1)224g(β1+β22)|.

    Then,

    (i) if |g| is increasing, then we have

    H(β2β1)396(3p+1)1p[|g(β2)|+|g(β1+β22)|], (2.12)

    (ii) if |g| is decreasing, then we have

    H(β2β1)396(3p+1)1p[|g(β1)|+|g(β1+β22)|], (2.13)

    (iii) if g(β1+β22)=0, then we have

    H(β2β1)396(3p+1)1p[|g(β1)|+|g(β2)|], (2.14)

    (iv) if g(β1)=g(β2)=0, then we have

    H(β2β1)396(3p+1)1p|g(β1+β22)|. (2.15)

    Theorem 2.3. Suppose that g:J[0,+)R is a differentiable function such that gL[β1,β2], where β1,β2J with β1<β2. If |g|q is quasi-convex function on [β1,β2] and q1 with 1p+1q=1, then we have

    |g(β1+β22)1β2β1β2β1g(x)dx+(β2β1)224g(β1+β22)|(β2β1)3384Kq, (2.16)

    where Kq is as before.

    Proof. From Lemma 2.1, properties of modulus, and power mean inequality, we have

    |g(β1+β22)1β2β1β2β1g(x)dx+(β2β1)224g(β1+β22)|(β2β1)396[10t3|g(tβ1+β22+(1t)β1)|dt+10(1t)3|g(tβ2+(1t)β1+β22)|dt](β2β1)396(10t3dt)1p(10t3|g(tβ1+β22+(1t)β1)|qdt)1q+(β2β1)396(10(1t)3dt)1p(10(1t)3|g(tb+(1t)β1+β22)|qdt)1q.

    Then, by using the quasi-convexity of |g|q on [β1,β2], we have

    10t3|g(tβ1+β22+(1t)β1)|qdt14max{|g(β1+β22)|q,|g(β1)|q},

    and

    10(1t)3|g(tb+(1t)β1+β22)|qdt14max{|g(β1+β22)|q,|g(β2)|q}.

    Therefore, we obtain

    |g(β1+β22)1β2β1β2β1g(x)dx+(β2β1)224g(β1+β22)|(β2β1)3384Kq,

    Hence, our proof is completely done.

    Remark 2.2. If q=pp1 (p>1), the constants of Theorem 2.2 are improved, since 1(3p+1)1p<1.

    The following corollary improves the inequalities (2.7)–(2.10).

    Corollary 2.3. Let the assumptions of Theorem 2.3 be valid and let

    H=|g(β1+β22)1β2β1β2β1g(x)dx+(β2β1)224g(β1+β22)|.

    Then,

    (i) If |g| is increasing, we obtain (2.7).

    (ii) If |g| is decreasing, we obtain (2.8).

    (iii) If g(β1+β22)=0, we obtain (2.9),

    (iv) if g(β1)=g(β2)=0, we obtain (2.10).

    Consider the special means of positive real numbers β1>0 and β2>0, define by:

    ● Arithmetic Mean:

    A(β1,β2)=β1+β22.

    ● Logarithmic mean:

    L(β1,β2)=β2β1ln|β2|ln|β1|, |β1||β2|, β1,β20.

    ● Generalized log-mean:

    Lp(β1,β2)=[β2p+1β1p+1(p+1)(β2β1)]1p, pZ{1,0}, β1β2.

    Remark 3.1. Let 0<α1 and x>0. Then, we consider

    g(x)=xα+3(α+1)(α+2)(α+3),g(x)=xα.

    For each x,y>0 and t[0,1], we see that (tx+(1t)y)αtαxα+(1t)αyα, then we see that g(x) is α-convex function on (0,+) and g(β1+β22)=Aα+3(β1,β2)(α+1)(α+2)(α+3). Furthermore, we have

    1β2β1β2β1g(x)dx=1(α+1)(α+2)(α+3)[βα+42βα+41(α+4)(β2β1)]=1(α+1)(α+2)(α+3)Lα+3α+3(β1,β2).

    Above we used the definition of α-convexity [11]: A function g:[0,r]R,r>0 is said to be α-convex, if the following holds:

    g(tx+(1t)y)tαg(x)+(1tα)g(y),x,y[0,r],t,α[0,1].

    Proposition 3.1. Let 0<α1 andβ1,β2R+ with β1<β2, then we have

    384(α+1)(α+2)(α+3)|Aα+3(β1,β2)Lα+3α+3(β1,β2)+(β2β1)2(α+2)(α+3)24Aα+1(β1,β2)|(β2β1)3[max{g(β1+β22)α,βα1}+max{g(β1+β22)α,βα2}].

    Proof. Since xα is quasi-convex for each x>0 and α(0,1) because every non-decreasing continuous function is also quasi-convex, so the assertion follows from inequality (2.5) with g(x)=xα+3(α+1)(α+2)(α+3).

    Proposition 3.2. Let β1,β2R such that β1<β2 and [β1,β2](0,+), then we have

    |A1(β1,β2)L1(β1,β2)+(β2β1)212A3(β1,β2)|(β2β1)364[β41+g(β1+β22)4].

    Proof. The assertion follows from inequality (2.11) with g(x)=1x, x[β1,β2].

    Proposition 3.3. Let β1,β2R with 0<β1<β2 and nN, k5, then for all q1, we have

    |Ak(β1,β2)Lkk(β1,β2)+(β2β1)2k!24(k2)!Ak2(β1,β2)|k!(β2β1)32k+23(3p+1)1p(k3)![(β1+β2)k3+2k3βk32].

    Proof. Let g(x)=xk, x[β1,β2], kN with k5, then we have

    g(x)=k!(k3)!xk3,

    and it is easy to see that g is an increasing and quasi-convex function. Then, by applying Corollary 2.2(ⅰ) above, we have

    |Ak(β1,β2)Lkk(β1,β2)+(β2β1)2k!24(k2)!Ak2(β1,β2)|(β2β1)396(3p+1)1pK,

    where

    K=k!(k3)![max{|β1+β22|k3,|β1|k3}+max{|β1+β22|k3,|β2|k3}].

    Then, by applying Corollary 2.1(9) to g above, we get

    |Ak(β1,β2)Lkk(β1,β2)+(β2β1)2k!24(k2)!Ak2(β1,β2)|k!(β2β1)32k+23(3p+1)1p(k3)![(β1+β2)k3+2k3βk32],

    and this completes the proof.

    Here, we consider two particular functions.

    ● First, we define g:RR, by g(x)=ex.

    Then, we have g(x)=ex and

    ||g||=supt[β1,β2]|g(t)|=eβ2,

    By applying inequality (2.7) for above ||g||, we can deduce

    |(1+(β2β1)224)eβ1+β221β2β1(eβ2eβ1)|(β2β1)3384||g||=(β2β1)3384eβ2.

    Particularly for β1=0, it follows that

    |(1+β2224)eβ221β2(eβ21)|β23384eβ2, (3.1)

    and for β2=1, it follows that

    |2524ee+1|e384.

    ● Now, we define g:R+R, by g(x)=1x.

    Then, since |g(x)|=6x4 is quasi-convex in [β1,β2]R+ and

    ||g||=supt[β1,y]|g(t)|=6β14, 0<β1<y.

    By applying inequality (2.8) to the function g above, we get

    |2β1+β2lnβ2lnβ1β2β1+(β2β1)212(2β1+β2)3|(β2β1)33842||g||=(β2β1)332β14. (3.2)

    In view of (3.2) and Proposition 2, we can deduce

    |A1(β1,β2)L1(β1,β2)+(β2β1)212A3(β1,β2)|(β2β1)364[β41+g(β1+β22)4](β2β1)332β14.

    For further illustration on the inequalities (3.1) and (3.2), we present some plot examples. Figures 2 and 3 illustrate the inequalities (3.1) and (3.2), respectively.

    Figure 2.  Plot illustration for inequality (3.1).
    Figure 3.  Plot illustration for inequality (3.2).

    Let

    k(β2)=(1+β2224)eβ221β2(eβ21),K(β2)=β32384eβ2,

    and

    h(β1,β2)=2β1+β2lnβ2lnβ1β2β1+(β2β1)212(2β1+β2)3,H(β1,β2)=(β2β1)332β41.

    Furthermore, Figures 4 and 5 show K(β2)k(β2) and D(β1,β2):=H(β1,β2)h(β1,β2), receptively. From Figure 5, we can see that all values of D(β1,β2) are positive which confirms the validity of (3.2).

    Figure 4.  Plot illustration for K(β2)k(β2).
    Figure 5.  Plot illustration for D(β1,β2).

    In this paper we have established new Hermite–Hadamard inequality mainly motivated by Alomari et al in [42] for quasi-convex functions with gC3([β1,β2]) such that gL([β1,β2]) and we give some applications to some special means and for some particular functions. We hope that the ideas used in this paper may inspire interested readers to explore some new applications.

    We believe that our results, this new understanding of Hermite-Hadamard integral inequalities for quasi-convex functions, will be vital information for the future studies of these models of integral inequality. One can obtain the similar results for other kind of convex functions

    We would like to express our special thanks to the editor and referees. Also, the third author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

    The authors declare no conflict of interest.



    [1] E. A. Youness, E-convex sets, E-convex functions, and E-convex programming, J. Optim. Theory Appl., 102 (1999), 439-450.
    [2] G. Cristescu, L. Lupsa, Non-connected Convexities and Applications, Kluwer Academic Publishers, Dordrecht, 2002.
    [3] G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335 (2007), 1294-1308.
    [4] M. Vivas-Cortez, T. Abdeljawad, P. O. Mohammed, et al. Simpson's integral inequalities for twice differentiable convex functions, Math. Probl. Eng., 1936461 (2020), 15 pages.
    [5] D. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annal. Univ. Craiova, Math. Comp. Sci. Ser., 34 (2007), 82-87.
    [6] O. Mangasarian, Pseudo-Convex functions, SIAM. J. Control, 3 (1965), 281-290.
    [7] P. O. Mohammed, New integral inequalities for preinvex functions via generalized beta function, J. Interdiscip. Math., 22 (2019), 539-549.
    [8] B. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl., 7 (1966), 72-75.
    [9] D. Hyers, S. Ulam, Approximately convex functions, Proc. Amer. Math. Soc., 3 (1952), 821-828.
    [10] P. O. Mohammed, Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates, J. King Saud Univ. Sci., 30 (2018), 258-262.
    [11] F. Qi, P. O. Mohammed, J. C. Yao, et al. Generalized fractional integral inequalities of Hermite- Hadamard type for (α, m)-convex functions, J. Inequal. Appl., 2019 (2019), 135.
    [12] M. Bracamonte, J. Giménez, M. Vivas, Hermite-Hadamard-Féjer Type inequalities for strongly (s, m)-convex functions with modulus C, in the second sense, Appl. Math. Inf. Sci., 10 (2016), 2045-2053.
    [13] J. Viloria, M. Cortez, Hermite-Hadamard type inequalities for harmonically convex functions on n-coordinates, Appl. Math. Inf. Sci., 6 (2018), 1-6.
    [14] M. Vivas, J. Hernández, N. Merentes, New Hermite-Hadamard and Jensen type inequalities for h-convex functions on fractal sets, Rev. Colombiana Mat., 50 (2016), 145-164.
    [15] M. Vivas, Relative strongly h-convex functions and integral inequalities, Appl. Math. Inf. Sci., 4 (2016), 1055-1064.
    [16] J. Pecaric, F. Proschan, Y. Tong, Convex functions partial orderings and statistical applications, Academic Press, Boston, 1992.
    [17] J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pure Appl., 58 (1893), 171-215.
    [18] D. Bainov, P. Simeonov, Integral Inequalities and Applications, Kluwer Academic, Dordrecht, 1992.
    [19] S. D. Borysenko, G. Iovane, About some new integral inequalities of Wendorff type for discontinuous functions, Nonlinear Anal., 66 (2007), 2190-2203.
    [20] P. O. Mohammed, T. Abdeljawad, Opial integral inequalities for generalized fractional operators with nonsingular kernel, J. Inequal. Appl., 2020 (2020), 148.
    [21] M. Z. Sarikaya, C. C. Bilisik, P. O. Mohammed, Some generalizations of Opial type inequalities, Appl. Math. Inf. Sci., 14 (2020), 809-816.
    [22] S. D. Borysenko, M. Ciarletta, G. Iovane, Integro-sum inequalities and motion stability of systems with impulse perturbations, Nonlinear Anal., 62 (2005), 417-428.
    [23] P. O. Mohammed, T. Abdeljawad, A. Kashuri, Fractional Hermite-Hadamard-Fejer inequalities for a convex function with respect to an increasing function involving a positive weighted symmetric function, Symmetry, 12 (2020), 1503.
    [24] T. Y. Zhang, A. P. Ji, F. Qi, On integral inequalities of Hermite-Hadamard type for s-geometrically convex functions, Abst. Appl. Anal., 2012 (2012), 560586.
    [25] T. Y. Zhang, A. P. Ji, F. Qi, Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to means, Le Matematiche, 68 (2013), 229-239.
    [26] D. P. Shi, B. Y. Xi, F. Qi, Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals of (α, m)-convex functions, Fract. Differ. Calc., 4 (2014), 31-43.
    [27] S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs; Victoria University: Footscray, Australia, 2000.
    [28] P. O. Mohammed, M. Z. Sarikaya, Hermite-Hadamard type inequalities for F-convex function involving fractional integrals, J. Inequal. Appl., 2018 (2018), 359.
    [29] D. Baleanu, P. O. Mohammed, S. Zeng, Inequalities of trapezoidal type involving generalized fractional integrals, Alex. Eng. J., 2020, doi: 10.1016/j.aej.2020.03.039.
    [30] J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18 (2020), 794-806.
    [31] P. O. Mohammed, T. Abdeljawad, S. Zeng, et al. Fractional Hermite-Hadamard integral inequalities for a new class of convex functions, Symmetry, 12 (2020), 1485.
    [32] P. O. Mohammed, T. Abdeljawad, Modification of certain fractional integral inequalities for convex functions, Adv. Differ. Equ., 2020 (2020), 69.
    [33] P. O. Mohammed, I. Brevik, A New version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry, 12 (2020), 610, doi: 10.3390/sym12040610.
    [34] D. Baleanu, P. O. Mohammed, M. Vivas-Cortez, et al. Some modifications in conformable fractional integral inequalities, Adv. Differ. Equ., 2020 (2020), 374.
    [35] T. Abdeljawad, P. O. Mohammed, A. Kashuri, New modified conformable fractional integral inequalities of Hermite-Hadamard type with applications, J. Funct. Space., 2020 (2020), 4352357.
    [36] P. O. Mohammed, F. K. Hamasalh, New conformable fractional integral inequalities of Hermite-Hadamard type for convex functions, Symmetry, 2019 (11), 263.
    [37] P. O. Mohammed, M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020), 112740.
    [38] P. O. Mohammed, T. Abdeljawad, Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel, Adv. Differ. Equ., 2020 (2020), 363.
    [39] P. O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function, Math. Meth. Appl. Sci., (2019), 1-11. doi: 10.1002/mma.5784.
    [40] P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 595.
    [41] A. Fernandez, P. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Meth. Appl. Sci., (2020), 1-18, Available from: https://doi.org/10.1002/mma.6188.
    [42] M. Alomari, M. Darus, S. Dragomir, Inequalities of Hermite-Hadamard's type for functions whose derivatives absolute values are quasi-convex, RGMIA, 12 (2010), 353-359.
  • This article has been cited by:

    1. Artion Kashuri, Pshtiwan Othman Mohammed, Thabet Abdeljawad, Faraidun Hamasalh, Yuming Chu, Imtiaz Ahmad, New Simpson Type Integral Inequalities for s -Convex Functions and Their Applications, 2020, 2020, 1563-5147, 1, 10.1155/2020/8871988
    2. Pshtiwan Othman Mohammed, Thabet Abdeljawad, Dumitru Baleanu, Artion Kashuri, Faraidun Hamasalh, Praveen Agarwal, New fractional inequalities of Hermite–Hadamard type involving the incomplete gamma functions, 2020, 2020, 1029-242X, 10.1186/s13660-020-02538-y
    3. Dumitru Baleanu, Artion Kashuri, Pshtiwan Othman Mohammed, Badreddine Meftah, General Raina fractional integral inequalities on coordinates of convex functions, 2021, 2021, 1687-1847, 10.1186/s13662-021-03241-y
    4. Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed, On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space, 2021, 6, 2473-6988, 4638, 10.3934/math.2021273
    5. Pshtiwan Othman Mohammed, Hassen Aydi, Artion Kashuri, Y. S. Hamed, Khadijah M. Abualnaja, Midpoint Inequalities in Fractional Calculus Defined Using Positive Weighted Symmetry Function Kernels, 2021, 13, 2073-8994, 550, 10.3390/sym13040550
    6. Shuhong Yu, Yunxiu Zhou, Tingsong Du, Certain midpoint-type integral inequalities involving twice differentiable generalized convex mappings and applications in fractal domain, 2022, 164, 09600779, 112661, 10.1016/j.chaos.2022.112661
    7. LEI XU, SHUHONG YU, TINGSONG DU, PROPERTIES AND INTEGRAL INEQUALITIES ARISING FROM THE GENERALIZED n-POLYNOMIAL CONVEXITY IN THE FRAME OF FRACTAL SPACE, 2022, 30, 0218-348X, 10.1142/S0218348X22500840
    8. Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Hassen Aydi, Manuel De la Sen, Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications, 2021, 7, 2473-6988, 3418, 10.3934/math.2022190
    9. SHUHONG YU, PSHTIWAN OTHMAN MOHAMMED, LEI XU, TINGSONG DU, AN IMPROVEMENT OF THE POWER-MEAN INTEGRAL INEQUALITY IN THE FRAME OF FRACTAL SPACE AND CERTAIN RELATED MIDPOINT-TYPE INTEGRAL INEQUALITIES, 2022, 30, 0218-348X, 10.1142/S0218348X22500852
    10. Lei Chen, Waqas Nazeer, Farman Ali, Thongchai Botmart, Sarah Mehfooz, Emanuel Guariglia, Some Midpoint Inequalities for η -Convex Function via Weighted Fractional Integrals, 2022, 2022, 2314-8888, 1, 10.1155/2022/1652888
    11. Muhammad Samraiz, Atika Imran, Saima Naheed, Inverse cosine convex functions: Algebraic, geometric, and analytic perspectives, 2024, 0170-4214, 10.1002/mma.10518
    12. Sofia Ramzan, Muhammad Uzair Awan, Miguel Vivas-Cortez, Hüseyin Budak, On Fractional Ostrowski-Mercer-Type Inequalities and Applications, 2023, 15, 2073-8994, 2003, 10.3390/sym15112003
    13. Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri, On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals, 2021, 6, 2473-6988, 712, 10.3934/math.2021043
    14. TINGSONG DU, LEI XU, XIAOMAN YUAN, THE PARAMETERIZED INTEGRAL INEQUALITIES INVOLVING TWICE-DIFFERENTIABLE GENERALIZED n-POLYNOMIAL CONVEXITY UNDER THE FRAMEWORK OF FRACTAL DOMAINS AND ITS APPLICATIONS, 2023, 31, 0218-348X, 10.1142/S0218348X2350069X
    15. B. Bayraktar, S. I. Butt, J. E. Nápoles, F. Rabossi, Some New Estimates for Integral Inequalities and Their Applications, 2024, 76, 0041-5995, 169, 10.1007/s11253-024-02315-w
    16. Abdul Mateen, Zhiyue Zhang, Serap Özcan, Muhammad Aamir Ali, Generalization of Hermite–Hadamard, trapezoid, and midpoint Mercer type inequalities for fractional integrals in multiplicative calculus, 2025, 2025, 1687-2770, 10.1186/s13661-025-02008-8
    17. FATIH HEZENCI, MIGUEL VIVAS-CORTEZ, HÜSEYIN BUDAK, REMARKS ON INEQUALITIES WITH PARAMETER BY CONFORMABLE FRACTIONAL INTEGRALS, 2025, 33, 0218-348X, 10.1142/S0218348X24501378
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4503) PDF downloads(172) Cited by(17)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog