Research article

New Cusa-Huygens type inequalities

  • Received: 24 April 2020 Accepted: 16 June 2020 Published: 22 June 2020
  • MSC : 26D05, 26D15, 33B10

  • Using the monotone form of the L'Hôspital rule, we discuss the (absolute) monotonicity of the functions U(x)=1x4, G(x)=1x2[ln(2+cosx)ln31] and J(x)=1(2+cosx)/3 to improve the Cusa-Huygens inequality in several directions on wider ranges. Our results are much better than those existing ones.

    Citation: Ling Zhu. New Cusa-Huygens type inequalities[J]. AIMS Mathematics, 2020, 5(5): 5320-5331. doi: 10.3934/math.2020341

    Related Papers:

    [1] Ling Zhu, Zhengjie Sun . Refinements of Huygens- and Wilker- type inequalities. AIMS Mathematics, 2020, 5(4): 2967-2978. doi: 10.3934/math.2020191
    [2] Ling Zhu . New inequalities of Wilker’s type for circular functions. AIMS Mathematics, 2020, 5(5): 4874-4888. doi: 10.3934/math.2020311
    [3] Dojin Kim, Patcharee Wongsason, Jongkyum Kwon . Type 2 degenerate modified poly-Bernoulli polynomials arising from the degenerate poly-exponential functions. AIMS Mathematics, 2022, 7(6): 9716-9730. doi: 10.3934/math.2022541
    [4] Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217
    [5] Ling Zhu . New inequalities of Wilker's type for hyperbolic functions. AIMS Mathematics, 2020, 5(1): 376-384. doi: 10.3934/math.2020025
    [6] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [7] Chanon Promsakon, Muhammad Aamir Ali, Hüseyin Budak, Mujahid Abbas, Faheem Muhammad, Thanin Sitthiwirattham . On generalizations of quantum Simpson's and quantum Newton's inequalities with some parameters. AIMS Mathematics, 2021, 6(12): 13954-13975. doi: 10.3934/math.2021807
    [8] Sarah Elahi, Muhammad Aslam Noor . Integral inequalities for hyperbolic type preinvex functions. AIMS Mathematics, 2021, 6(9): 10313-10326. doi: 10.3934/math.2021597
    [9] Artion Kashuri, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Eman Al-Sarairah, Nejmeddine Chorfi . Novel inequalities for subadditive functions via tempered fractional integrals and their numerical investigations. AIMS Mathematics, 2024, 9(5): 13195-13210. doi: 10.3934/math.2024643
    [10] Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Hassen Aydi, Manuel De la Sen . Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications. AIMS Mathematics, 2022, 7(3): 3418-3439. doi: 10.3934/math.2022190
  • Using the monotone form of the L'Hôspital rule, we discuss the (absolute) monotonicity of the functions U(x)=1x4, G(x)=1x2[ln(2+cosx)ln31] and J(x)=1(2+cosx)/3 to improve the Cusa-Huygens inequality in several directions on wider ranges. Our results are much better than those existing ones.


    It is well known inequality plays an irreplaceable role in the development of mathematics. Very recently, many inequalities such as Hermite-Hadamard type inequality [1,2,3,4,5,6], Petrović type inequality [7], Pólya-Szegö and Ćebyýev type inequalities [8], Ostrowski type inequality [9], reverse Minkowski inequality [10], Jensen type inequality [11,12,13], Cauchy-Schwarz type inequality [14], Bessel function inequality [15], trigonometric and hyperbolic functions inequalities [16,17,18,19], Grötzsch ring function inequality [20], Ramanujan transformation inequality [21], fractional integral inequality [22,23,24,25,26,27], complete and generalized elliptic integrals inequalities [28,29,30,31,32,33], generalized convex function inequality [34,35,36] and mean values inequality [37,38,39] have attracted the attention of many researchers.

    The classical and well-known Cusa-Huygens inequality states that

    sinxx<2+cosx3 (1.1)

    for 0<x<π/2.

    Chen and Cheung [40] gave the bounds for sinx/x in term of ((2+cosx)/3)δ as follows

    (2+cosx3)θ0<sinxx<(2+cosx3)ϑ0 (1.2)

    for 0<x<π/2, where ϑ0=1 and θ0=(lnπln2)/(ln3ln2) are the best possible constants such that the double inequality (1.2) holds for all 0<x<π/2. Inequality (1.2) was proved by Sun and Zhu in [41]. Recently, the generalizations, improvements and variants for the Cusa-Huygens inequality (1.1) have been the subject of much research.

    Inspired by inequalities (1.1) and (1.2), the first aim of this paper is to improve the Cusa-Huygens inequality by considering the monotonicity of the functions

    U(x)=1x41x53sinxcosx+2 (1.3)

    and

    G(x)=1x2[lnsinxlnxln(2+cosx)ln31] (1.4)

    on a wider range (0,π) instead of (0,π/2). Our first aim of the article is to prove the following Theorems 1.1 and 1.2.

    Theorem 1.1. Let U(x) be defined by (1.3). Then the following statemsnts are true:

    (i) There exists x0(π/2,π) such that U(x) is increasing on (0,x0) and decreasing on (x0,π), and the double inequality

    (1α1x4)cosx+23<sinxx<(1β1x4)cosx+23 (1.5)

    holds for x(0,π/2) with the best possible constants α1=16(π3)/π5=0.007403 and β1=1/180=0.005555. Moreover, the right hand side inequality of (1.5) also holds for x(0,π).

    (ii) The function

    xU(x)=1x31x43sinxcosx+2 (1.6)

    is increasing on (0,π), and the inequality

    (1x3π3)2+cosx3<sinxx (1.7)

    holds for x(0,π).

    From Theorem 1.1, we get Corollary 1.1 immediately.

    Corollary 1.1. The double inequality

    (1x3π3)2+cosx3<sinxx<(1x4180)cosx+23 (1.8)

    holds for all x(0,π) with the best possible constants π3 and 180.

    Theorem 1.2. The function G(x) defined by (1.4) is strictly increasing on (0,π).

    Let

    ϑ1=G(0+)=130, (1.9)
    θ1=G((π2))=4π2(ln(2/π)ln(2/3)1)=0.046097 (1.10)

    and

    G(π)=.

    Then Theorem 1.2 leads to Corollary 1.2 immediately.

    Corollary 1.2. (i) The double inequality

    (2+cosx3)1+θ1x2<sinxx<(2+cosx3)1+ϑ1x2 (1.11)

    holds for all x(0,π/2) with the best possible constants ϑ1 and θ1 given in (1.9) and (1.10).

    (ii) The inequality

    sinxx<(2+cosx3)1+θ1x2 (1.12)

    holds for all x(π/2,π) with the best constant θ1 given by (1.9).

    A real-valued function f is said to be absolutely monotonic on the interval I if f has derivatives of all orders on I such that

    f(n)(x)>0

    for all xI and n0.

    The second aim of the article is to provide an absolute monotonicity result for a special function and derive a new Cusa-Huygens type inequality.

    Theorem 1.3. The function

    J(x)=1(sinx)/x1(2+cosx)/3 (1.13)

    is absolutely monotonic on (0,2π), and

    From Theorem 1.3, we can easily obtain the following Corollary 1.3.

    Corollary 1.3. Let J(x) be defined by (1.13) Then the function

    Hn(x)=J(x)nk=16|B2k|(2k1)!x2k2x2n

    is absolutely monotonic on (0,2π), and the double inequality

    [nk=16|B2k|(2k1)!x2k2+μnx2n]2+cosx3[nk=26|B2k|(2k1)!x2k2+μnx2n]
    <sinxx<[nk=16|B2k|(2k1)!x2k2+λnx2n]2+cosx3[nk=26|B2k|(2k1)!x2k2+λnx2n]

    holds for all x(0,π/2) with the best possible constants

    λn=6|B2n+2|(2n+1)!

    and

    μn=[3(12π)nk=16|B2k|(2k1)!(π2)2k2](2π)2n,

    where Bk is the Bernoulli number.

    Remark 1.1. Let n=1 and n=2. Then Corollary 1.3 leads to the conclusion that

    [1+8(π3)π3x2]2+cosx38(π3)π3x2
    <sinxx<(1+130x2)2+cosx3130x2 (1.14)

    and

    (1+130x2+μ2x4)2+cosx3(130x2+μ2x4)
    <sinxx<(1+130x2+λ2x4)2+cosx3(130x2+λ2x4) (1.15)

    for 0<x<π/2 with λ2=1/840=0.001190 and μ2=(16/π4)(26/ππ2/120)=0.001296.

    In order to prove our main results, we need the monotone form of the L'Hô spital rule [42,43,44].

    Lemma 2.1. (See [42,43,44]) Let f,g:[a,b]R be continuous on [a,b] and differentiable on (a,b) such that g0 on (a,b) and f/g is (strictly) increasing (decreasing) on (a,b). Then both the functions (f(x)f(b))/(g(x)g(b)) and (f(x)f(a))/(g(x)g(a)) are (strictly) increasing (decreasing) on [a,b].

    Lemma 2.2. Let Bn be the Bernoulli number. Then we have the following power series formulas

    cotx=1xn=122n(2n)!|B2n|x2n1, (2.1)
    1sin2x=1x2+n=1(2n1)22n(2n)!|B2n|x2n2, (2.2)
    1sinx=1x+n=122n2(2n)!|B2n|x2n1 (2.3)

    and

    cosxsin2x=1x2n=1(2n1)(22n2)(2n)!|B2n|x2n2 (2.4)

    for all x(0,π).

    Proof. The power series formulas (2.1) and (2.3) can be found in the literature [45], and the power series formulas (2.2) and (2.4) can be obtained from (2.1) and (2.3) together with the facts that

    1sin2x=csc2x=(cotx)

    and

    cosxsin2x=(1sinx).

    (i) We clearly see that the function U(x) can be rewritten as

    U(x)=x5(2x3sinx+xcosx)cosx+2:=p(x)q(x).

    Differentiation yields

    p(x)=15x6sinx1x4sinx7x5cosx8x5,q(x)=sinx,
    p(x)q(x)=1x6(8xsinx+7xcosxsinx+x215).

    Expanding in power series leads to

    p(x)q(x)=1x6[8+8n=122n2(2n)!|B2n|x2n+77n=122n(2n)!|B2n|x2n+x215]
    =n=322n16(2n)!|B2n|x2n6,

    which gives

    [p(x)q(x)]=n=3(2n6)(22n16)(2n)!|B2n|x2n7>0.

    It follows from the identities

    (pq)=qq2(pqqp)=qq2Hp,q (3.1)

    and

    Hp,q=(pq)q (3.2)

    given in [44] that Hp,q>0 due to (p/q)>0 and q>0.

    From the formula

    Hp,q(x)=p(x)q(x)q(x)p(x)
    =1x6(8xsinx+7xcosxsinx+x215)(cosx+2)1x5(2x3sinx+xcosx).

    we get

    Hp,q(0+)=184,Hp,q(π2)=1920608ππ6=0.01031,Hp,q(π)=,

    which implies that Hp,q(x)<0 for x(0,π/2), and there exists x0(π/2,π) such that Hp,q(x)<0 for x(0,x0) and Hp,q(x)>0 for x(x0,π). It follows from q=sinx<0 and (3.1) that (p/q)>0 on (0,π/2), and (p/q)>0 on (0,x0) and (p/q)<0 on (x0,π).

    Therefore, the double inequality (1.3) follows from the monotonicity of U(x) on (0,π/2).

    Using the piecewise monotonicity of U(x) on (0,π), we arrive at

    U(x)>min{U(0),U(π)}=min{1180,1π4}=1180,

    which prove that the right hand side inequality of (1.3) also holds for x(0,π).

    (ii) Differentiation yields

    (xU)=3(cosx+5)(cosx+1)x5(cosx+2)2V(x),

    where

    V(x)=4(cosx+2)sinx(cosx+5)(cosx+1)x.

    It follows from

    V(x)=(3cosx)(1cosx)2(1+cosx)(5+cosx)2>0

    for x(0,π) and V(0)=0 that V(x)>0 for x(0,π), and so is (xU). Therefore, the inequality

    xU(x)<πU(π)=1π3

    holds for x(0,π).

    Let

    G(x)=lnxln3+ln(2+cosx)lnsinxx2[ln3ln(2+cosx)]:=a(x)b(x),0<x<π.

    Then from Lemma 2.1 we clearly see that it suffices to prove that b(x)/a(x) is strictly decreasing on (0,π) due to a(0+)=b(0+)=0.

    Elaborated computations lead to

    b(x)a(x)=2x[ln3ln(2+cosx)]+x2(sinx)/(2+cosx)1/xcotx(sinx)/(2+cosx):=h1(x)h2(x)+h3(x),

    where

    h1(x)=ln3ln(2+cosx)x2,
    h2(x)=2x31/xcotx(sinx)/(2+cosx)

    and

    h3(x)=x2(sinx)/(2+cosx)1/xcotx(sinx)/(2+cosx).

    Next, we prove that hi(x) is decreasing on (0,π) for i=1,2,3 and hi(x) is positive for i=1,2.

    (i) Let

    h1(x)=ln3ln(2+cosx)x2=:u(x)v(x)=u(x)u(0+)v(x)v(0+),0<x<π.

    Then

    u(x)=sinxcosx+2,v(x)=2x

    and

    v(x)u(x)=2x(cosx+2)sinx=4xsinx+2xcosxsinx=6+n=122n+18(2n)!|B2n|x2n

    is clearly increasing on (0,π). It follows from Lemma 2.1 that h1(x) is decreasing on (0,π).

    (ii) To prove that h2(x) is positive and decreasing on (0,π), it suffices to prove that 1/h2(x) is positive and increasing on (0,π). Note that

    2h2(x)=(2sinx+cosxsinxx2xcosx)x4(sinx)(cosx+2)
    =(1x41x3cosxsinx13x2)+(13x21x3sinxcosx+2)
    =K(x)+13x[xU(x)], (3.3)

    where

    K(x)=1x41x3cosxsinx13x2

    and xU(x) is defined as (1.6), which is strictly increasing on (0,π) by Theorem 1.1. We clearly see that it suffices to prove that K(x) is strictly increasing on (0,π). Indeed, by Lemma 2.2 we have

    K(x)=1x41x3[1xn=122n(2n)!|B2n|x2n1]13x2=n=222n(2n)!|B2n|x2n4,

    which is obviously increasing on (0,π).

    (iii) To prove that h3(x) is decreasing on (0,π), it suffices to prove that 1/h3(x) is positive and increasing on (0,π). Note that

    1h3(x)=1x3(cosxsinxxsin2x+2sinx2xcosxsin2x).

    It follows from Lemma 2.2 that

    x3h3(x)=1xn=122n(2n)!|B2n|x2n11xn=1(2n1)22n(2n)!|B2n|x2n1
    +2x+2n=122n2(2n)!|B2n|x2n12x+2n=1(2n1)(22n2)(2n)!|B2n|x2n1
    =n=2(22n4)|B2n|(2n1)!x2n1

    and

    1h3(x)=n=2(22n4)|B2n|(2n1)!x2n4,

    which is evidently positive and increasing on (0,π). The proof of Theorem 1.2 is completed.

    It is obviously that J(x) can be rewritten as

    J(x)=32sin2(x/2)3xcos(x/2)sin(x/2)
    =32[4x2+n=1(2n1)22n(2n)!|B2n|(x2)2n2]
    3x[1xn=122n(2n)!|B2n|(x2)2n1]=n=16|B2n|(2n1)!x2n2,

    which is clearly absolutely monotonic on (0,2π).

    Remark 4.1. One of the referees asserted that the Cusa-Huygens inequality (1.1) holds for all x0. In fact, inequality (1.1) is equivalent to

    D(x)=3sinx2+cosxx<0.

    Differentiation yields

    D(x)=(cosx1)2(cosx+2)20

    for all xR. If x>0, then D(x)<D(0)=0 and inequality (1.1) holds for x>0. If x<0, then D(x)>D(0)=0 and inequality (1.1) also holds for x<0.

    Remark 4.2. We clearly see that the right hand side inequality of (1.5) is stronger than the Cusa-Huygens inequality (1.1).

    Remark 4.3. Our double inequality (1.11) is clearly better than the inequality (1.2). Moreover, by Theorem 1.2 we deduce that the function

    x2G(x)=lnsinxlnxln(2+cosx)ln3

    is also strictly increasing on (0,π). This conclusion immediately leads to the inequality (1.2) and the following new result: the inequality

    sinxx<(2+cosx3)θ0 (4.1)

    holds for all x(π/2,π) with the best constant θ0=(lnπln2)/(ln3ln2).

    Remark 4.4. The right-hand side inequality of (1.14) is stronger than the Cusa-Huygens inequality (1.1) due to

    [(1+130x2)2+cosx3130x2]2+cosx3=190x2(cosx1)<0

    for all x(0,π/2).

    Remark 4.5. Numerical calculations and computer simulation experiments show that the double inequality (1.15) is stronger than the inequalities (1.5) and (1.11) on (0,π/2).

    Final, the following power series formula

    G(x)=ln[(sinx)/x]ln[(cosx+2)/3]=1+130x2+1252x4+12592x6+5149688x8+O(x10)

    inspires us to propose the Conjecture 4.1.

    Conjecture 4.1. The function G(x) above mentioned is absolutely monotonic on (0,π/2).

    In the article, we have discussed the monotonicity of the functions U(x), xU(x) and G(x) defined by (1.3) and (1.4) on the interval (0,π), and the absolute monotonicity of the function J(x) given in (1.13) on the interval (0,2π). Consequences, we have discovered several new Cusa-Huygens type inequalities, which are the improvements and refinements of some earlier known results.

    The author would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.

    The research is supported by the Natural Science Foundation of China (Grant No. 61772025).

    The author declares that he has no competing interest.



    [1] S. Rashid, M. A. Noor, K. I. Noor, et al. Hermite-Hadamrad type inequalities for the class of convex functions on time scale, Mathematics, 7 (2019), 1-20.
    [2] M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4
    [3] M. U. Awan, N. Akhtar, S. Iftikhar, et al. New Hermite-Hadamard type inequalities for npolynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
    [4] M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
    [5] A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Space., 2020 (2020), 1-18.
    [6] M. U. Awan, S. Talib, Y. M. Chu, et al. Some new refinements of Hermite-Hadamard-type inequalities involving Ψk-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 1-10.
    [7] I. Abbas Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-7.
    [8] S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1-18. doi: 10.1186/s13662-019-2438-0
    [9] S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629- 2645.
    [10] S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 1-12.
    [11] M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
    [12] S. Khan, M. Adil Khan, Y. M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Method. Appl. Sci., 43 (2020), 2577- 2587.
    [13] M. Adil Khan, J. Pečarić, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Math., 5 (2020), 4931-4945. doi: 10.3934/math.2020315
    [14] X. M. Hu, J. F. Tian, Y. M. Chu, et al. On Cauchy-Schwarz inequality for N-tuple diamond-alpha integral, J. Inequal. Appl., 2020 (2020), 1-15. doi: 10.1186/s13660-019-2265-6
    [15] T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14. doi: 10.1007/s13398-019-00732-2
    [16] M. K. Wang, M. Y. Hong, Y. F. Xu, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., 14 (2020), 1-21.
    [17] Z. H. Yang, Refinements of a two-sided inequality for trigonometric functions, J. Math. Inequal., 7 (2013), 601-615.
    [18] Z. H. Yang, Three families of two-parameter means constructed by trigonometric functions, J. Inequal. Appl., 2013 (2013), 541.
    [19] Y. J. Bagul, Remark on the paper of Zheng Jie Sun and Ling Zhu, J. Math. Inequal., 13 (2019), 801-803.
    [20] G. D. Wang, X. H. Zhang, Y. M. Chu, A power mean inequality for the Grötzsch ring function, Math. Inequal. Appl., 14 (2011), 833-837.
    [21] M. K. Wang, Y. M. Chu, Y. P. Jiang, Ramanujan's cubic transformation inequalities for zerobalanced hypergeometric functions, Rocky Mt. J. Math., 46 (2016), 679-691. doi: 10.1216/RMJ-2016-46-2-679
    [22] Y. M. Chu, M. Adil Khan, T. Ali, et al. Inequalities for α-fractional differentiable functions, J. Inequal. Appl., 2017 (2017), 1-12. doi: 10.1186/s13660-016-1272-0
    [23] S. Rashid, F. Jarad, M. A. Noor, et al. Inequalities by means of generalized proportional fractional integral operators with respect another function, Mathematics, 7 (2019), 1-18.
    [24] S. S. Zhou, S. Rashid, F. Jarad, et al. New estimates considering the generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2020 (2020), 1-15. doi: 10.1186/s13662-019-2438-0
    [25] Y. Khurshid, M. Adil Khan, Y.-M. Chu, Conformable fractional integral inequalities for GG- and GA-convex function, AIMS Math., 5 (2020), 5012-5030. doi: 10.3934/math.2020322
    [26] S. Rafeeq, H. Kalsoom, S. Hussain, et al. Delay dynamic double integral inequalities on time scales with applications, Adv. Differ. Equ., 2020 (2020), 1-32. doi: 10.1186/s13662-019-2438-0
    [27] S. Rashid, İ. İşcan, D. Baleanu, et al. Generation of new fractional inequalities via n polynomials s-type convexixity with applications, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
    [28] M. K. Wang, H. H. Chu, Y. M. Chu, Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals, J. Math. Anal. Appl., 480 (2019), 1-9.
    [29] M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
    [30] T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Mathematics, 5 (2020), 4512-4528. doi: 10.3934/math.2020290
    [31] M. K. Wang, H. H. Chu, Y. M. Li, et al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255- 271.
    [32] W. M. Qian, Z. Y. He, Y. M. Chu, Approximation for the complete elliptic integral of the first kind, RACSAM, 114 (2020), 1-12. doi: 10.1007/s13398-019-00732-2
    [33] Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93.
    [34] S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4
    [35] M. U. Awan, N. Akhtar, A. Kashuri, et. al. 2D approximately reciprocal ρ-convex functions and associated integral inequalities, AIMS Math., 5 (2020), 4662-4680. doi: 10.3934/math.2020299
    [36] S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mapping with application, AIMS Math., 5 (2020), 3525-3546. doi: 10.3934/math.2020229
    [37] W. M. Qian, Y. Y. Yang, H. W. Zhang, et al. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean, J. Inequal. Appl., 2019 (2019), 1-12. doi: 10.1186/s13660-019-1955-4
    [38] W. M. Qian, Z. Y. He, H. W. Zhang, et al. Sharp bounds for Neuman means in terms of twoparameter contraharmonic and arithmetic mean, J. Inequal. Appl., 2019 (2019), 1-13. doi: 10.1186/s13660-019-1955-4
    [39] B. Wang, C. L. Luo, S. H. Li, et al. Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, RACSAM, 114 (2020), 1-10. doi: 10.1007/s13398-019-00732-2
    [40] C. P. Chen, W. S. Cheung, Sharp Cusa and Becker-Stark inequalities, J. Inequal. Appl., 2011 (2011), 1-6. doi: 10.1186/1029-242X-2011-1
    [41] Z. J. Sun, L. Zhu, Simple proofs of the Cusa-Huygens-type and Becker-Stark-type inequalities, J. Math. Inequal., 7 (2011), 563-567.
    [42] G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Inequalities for quasiconformal mappings in space, Pac. J. Math., 160 (1993), 1-18. doi: 10.2140/pjm.1993.160.1
    [43] G. D. Anderson, S. L. Qiu, M. K. Vamanamurthy, et al. Generalized elliptic integrals and modular equations, Pac. J. Math., 192 (2000), 1-37. doi: 10.2140/pjm.2000.192.1
    [44] Z. H. Yang, Y. M. Chu, M. K. Wang, Monotonicity criterion for the quotient of power series with applications, J. Math. Anal. Appl., 428 (2015), 587-604. doi: 10.1016/j.jmaa.2015.03.043
    [45] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, U.S. Government Printing Office, Washington, 1964.
  • This article has been cited by:

    1. Yiting Wu, Gabriel Bercu, New refinements of Becker-Stark and Cusa-Huygens inequalities via trigonometric polynomials method, 2021, 115, 1578-7303, 10.1007/s13398-021-01030-6
    2. Ling Zhu, Wilker inequalities of exponential type for circular functions, 2021, 115, 1578-7303, 10.1007/s13398-020-00973-6
    3. Yogesh J. Bagul, Christophe Chesneau, Marko Kostić, On the Cusa–Huygens inequality, 2021, 115, 1578-7303, 10.1007/s13398-020-00978-1
    4. Lina Zhang, Xuesi Ma, Dimitri Mugnai, Some New Results of Mitrinović–Cusa’s and Related Inequalities Based on the Interpolation and Approximation Method, 2021, 2021, 2314-4785, 1, 10.1155/2021/5595650
    5. Yogesh J. Bagul, Bojan Banjac, Christophe Chesneau, Marko Kostić, Branko Malešević, New Refinements of Cusa-Huygens Inequality, 2021, 76, 1422-6383, 10.1007/s00025-021-01392-8
    6. Ling Zhu, High Precision Wilker-Type Inequality of Fractional Powers, 2021, 9, 2227-7390, 1476, 10.3390/math9131476
    7. Wei-Dong Jiang, New sharp inequalities of Mitrinovic-Adamovic type, 2023, 17, 1452-8630, 76, 10.2298/AADM210507010J
    8. Yogesh J. Bagul, Christophe Chesneau, Sharp Extensions of a Cusa-Huygens Type Inequality, 2024, 1829-1163, 1, 10.52737/18291163-2024.16.14-1-12
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3684) PDF downloads(244) Cited by(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog