Processing math: 100%
Research article

Approximate solutions of Atangana-Baleanu variable order fractional problems

  • Received: 20 December 2019 Accepted: 27 February 2020 Published: 02 March 2020
  • MSC : 65L60, 65R20

  • The main aim of this paper is to propose a new approach for Atangana-Baleanu variable order fractional problems. We introduce a new reproducing kernel function with polynomial form. The advantage is that its fractional derivatives can be calculated explicitly. Based on this kernel function, a new collocation technique is developed for variable order fractional problems in the Atangana-Baleanu fractional sense. To show the accuracy and effectiveness of our approach, we provide three numerical experiments.

    Citation: Xiuying Li, Yang Gao, Boying Wu. Approximate solutions of Atangana-Baleanu variable order fractional problems[J]. AIMS Mathematics, 2020, 5(3): 2285-2294. doi: 10.3934/math.2020151

    Related Papers:

    [1] Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Correction: Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2023, 8(4): 9185-9186. doi: 10.3934/math.2023460
    [2] Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177
    [3] Kui Liu . Stability analysis for (ω,c)-periodic non-instantaneous impulsive differential equations. AIMS Mathematics, 2022, 7(2): 1758-1774. doi: 10.3934/math.2022101
    [4] Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive (k,ψ)-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042
    [5] Noorah Mshary, Hamdy M. Ahmed, Ahmed S. Ghanem . Existence and controllability of nonlinear evolution equation involving Hilfer fractional derivative with noise and impulsive effect via Rosenblatt process and Poisson jumps. AIMS Mathematics, 2024, 9(4): 9746-9769. doi: 10.3934/math.2024477
    [6] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861
    [7] M. Manjula, K. Kaliraj, Thongchai Botmart, Kottakkaran Sooppy Nisar, C. Ravichandran . Existence, uniqueness and approximation of nonlocal fractional differential equation of sobolev type with impulses. AIMS Mathematics, 2023, 8(2): 4645-4665. doi: 10.3934/math.2023229
    [8] Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of ψ-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122
    [9] Rizwan Rizwan, Jung Rye Lee, Choonkil Park, Akbar Zada . Qualitative analysis of nonlinear impulse langevin equation with helfer fractional order derivatives. AIMS Mathematics, 2022, 7(4): 6204-6217. doi: 10.3934/math.2022345
    [10] Kulandhaivel Karthikeyan, Palanisamy Raja Sekar, Panjaiyan Karthikeyan, Anoop Kumar, Thongchai Botmart, Wajaree Weera . A study on controllability for Hilfer fractional differential equations with impulsive delay conditions. AIMS Mathematics, 2023, 8(2): 4202-4219. doi: 10.3934/math.2023209
  • The main aim of this paper is to propose a new approach for Atangana-Baleanu variable order fractional problems. We introduce a new reproducing kernel function with polynomial form. The advantage is that its fractional derivatives can be calculated explicitly. Based on this kernel function, a new collocation technique is developed for variable order fractional problems in the Atangana-Baleanu fractional sense. To show the accuracy and effectiveness of our approach, we provide three numerical experiments.


    Fractional calculus is a modification of the notion of differentiation and integration of arbitrary orders [1,2,3,4,5,6,7]. As there exist various prototypes in engineering and sciences, fractional calculus has attained the researcher's interest. Multiple models in numerous aspects such as; physics, biology, and engineering are tackled as per fractional differential and integral calculus. Some examples are electrochemistry, signal processing, diffusion, finance, acoustic, plasma physics, image processing, and others [8,9,10,11,12,13].

    Integral transforms are notified as one of the most suitable approaches to tackle models regarding applied mathematics, mathematical physics, engineering, and some other branches as well. The primary motivation is to deal with the provided mathematical model via any suitable integral transform and to retrieve the associated outcome in the best possible approach.

    Via an appropriate selection of integral transform, the differential and integral equations can be transformed into an algebraic equations system, which can be easily tackled.

    Various integral transforms and integral transform-based approaches are generated and incorporated for this purpose, such as; Laplace transform [14], Sumudu transform [15], Elzaki transform [16], and Natural transform [17], and many others.

    Definition 1: Shehu transform of the function θ(τ) is defined over the following functions [18,19,20].

    A={ϵ(τ):thereexistsN,k1,k2>0s.t.|θ(τ)|<Nexp(|τ|ki),whereτ(1)j×[0,)}. (1)

    Definition 2: Shehu transform of function ϵ(τ) is defined as follows [18,19,20]:

    S[ϵ(τ)]=F[s,u]=0exp[sτu]ϵ(τ)dτ. (2)

    Definition 3: Inverse Shehu transform is defined as follows [18,19,20]:

    S1[F(s,u)]=ϵ(τ). (3)

    Where s, u are the Shehu transform variables. αR.

    Definition 4: [18,19,20]

    S[ϵ(τ)]=suF[s,u]ϵ(0), (4)
    S[ϵ(τ)]=s2u2F(s,u)suϵ(0)ϵ(0), (5)
    S[ϵ(τ)]=s3u3F[s,u]s2u2ϵ(0)suϵ(0)ϵ(0). (6)

    Definition 5: Linearity property of Shehu transform [18,19,20]:

    S[c1ϵ1(τ)+c2ϵ2(τ)]=c1S[ϵ1(τ)]+c2S[ϵ2(τ)]. (7)

    Definition 6: Linearity property of inverse Shehu transform [18,19,20]:

    If

    ϵ1(τ)=S1[F1(s,u)]andϵ2(τ)=S1[F2(s,u)],

    then

    S1[c1F1(s,u)+c2F2(s,u)]=c1S1[F1(s,u)]+c2S1[F2(s,u)],
    S1[c1F1(s,u)+c2F2(s,u)]=c1ϵ1(τ)+c2ϵ2(τ).

    Definition 7: Shehu transform of Caputo fractional derivative [C.F.D.] [20,21]:

    S[Dαtϵ(μ,τ)]=sαναS[ϵ(μ,τ)]θ1r=0(sν)αr1ϵr(μ,0). (8)

    Definition 8: Mittag-Leffler function considered for two parameters was given in [22,23,24].

    Eμ,ν(n)=k=0nkΓ(kμ+ν). (9)

    Where E1,1(n)=exp(n) and E2,1(n2)=cos(n).

    In Tables 1 and 2 basic formulae regarding Shehu transform and inverse Shehu transform are provided.

    Table 1.  Chart regarding to the Shehu transform [20].
    ϵ(τ) S[ϵ(τ)]=F(s,ν)
    1. 1 νs
    2. τ ν2s2
    3. τm,mN m(νs)m+1
    4. τm,m>1 Γ(m+1)(νs)m+1
    5. eaτ νsaν
    6. sin(mτ) mν2s2+m2ν2
    7. cos(mτ) sν2s2+m2ν2
    8. sinh(mτ) mν2s2m2ν2
    9. cosh(mτ) sν2s2m2ν2

     | Show Table
    DownLoad: CSV
    Table 2.  Chart regarding to the inverse Shehu transform [20].
    F(s,ν) ϵ(τ)=S1[F(s,ν)]
    1. νs 1
    2. ν2s2 τ
    3. (νs)m+1 τmm
    4. Γ(m+1)(νs)m+1 τmΓ(m+1)
    5. νsaν eaτ
    6. mν2s2+m2ν2 sin(mτ)
    7. sν2s2+m2ν2 cos(mτ)
    8. mν2s2m2ν2 sinh(mτ)
    9. sν2s2m2ν2 cosh(mτ)

     | Show Table
    DownLoad: CSV

    1D Non-linear time-fractional Schrödinger equation.

    iDαtθ(μ,τ)=R[θ(μ,τ)]+N[θ(μ,τ)]+ϕ(μ,τ). (10)

    2D Non-linear time-fractional Schrödinger equation.

    iDαtθ(μ1,μ2,τ)=R[θ(μ1,μ2,τ)]+N[θ(μ1,μ2,τ)]+ϕ(μ1,μ2,τ). (11)

    3D Non-linear time-fractional Schrödinger equation.

    iDαtθ(μ1,μ2,μ3,τ)=R[θ(μ1,μ2,μ3,τ)]+N[θ(μ1,μ2,μ3,τ)]+ϕ(μ1,μ2,μ3,τ). (12)

    One of the well-known models in mathematical physics is Schr¨odinger equation model. There exist various implementations in numerous branches, such as; non-linear optics [25], mean-field theory of Bose-Einstein condensates [26,27], and plasma physics [28]. One emerging aspect of quantum physics is considered as fractional Schr¨odinger equation; which is associated with the notion of non-local quantum phenomena.

    Naber [29] notified time-fractional Schr¨odinger equation regarding Caputo derivative. Wang and Xu [30] elaborated on the linear Schr¨odinger equation regarding the space-fractional and time-fractional aspects as well as tackled the models via integral transform approach. Due to the existence of numerous implementations of the time-fractional Schr¨odinger equation; various researchers have worked in this field. Regarding this, novel analytical and numerical regimes have been generated for the time-fractional Schr¨odinger equation [31,32,33,34]. Hemida et al. [35] implemented HAM to provide the approximated results for the space-time fractional Schr¨odinger equation. More work related to fractional Schr¨odinger equation is provided in [36,37,38]. Other noteworthy work in this regard is notified as [39,40,41,42].

    The main advantage of ADM is that it does not rely upon perturbation or linearization or any discretization. Therefore, the actual outcome of the model remains unchanged. Discretization of variables is not demanded, which is a difficult and challenging approach. It means that the obtained results are error-free, which occurred because of discretization. Furthermore, it is accurate in finding the approximated and exact solutions of the non-linear prototypes. Such methods can be implemented to the diversified differential equations such as; integro-differential equations, differential-algebraic equations, differential-difference equations, as well as some functional equations, eigenvalue problems, and Stochastic system problems.

    The main idea of the present study is to concentrate on the implementation of Shehu ADM for attaining the exact solution to the Schr¨odinger equations in various dimensions. Some latest research regarding this field is provided on [43,44,45,46,47].

    Novelty and significance of the paper

    There are several schemes observed in the literature that deal with fractional Schr¨odinger equation in one, two, or three dimensions, but rare methods are provided that tackles fractional Schr¨odinger equation in all one, two, and three dimensions. Therefore, the authors have focused on developing a technique that proves the validity of the approximated-analytical solution of the mentioned equations in one, two, and three dimensions.

    An iterative scheme is developed in the present research regarding the solution of fractional Schr¨odinger equation in one, two, and three dimensions. The present scheme is easy to implement and needs no complex programming regarding numerical discretization. Developing the numerical programs for the fractional PDEs is not an easy task; therefore, developing such iterative schemes is the need of time to find the approximated-analytical solutions. There exist several transforms provided in the literature, but from the calculation aspect, some transforms are easy to implement, and some are not. Shehu ADM is noticed as one of the easiest methods to implement integral transform among all existing integral transforms; as in the case of Shehu ADM, no perturbation parameter is required. Via literature, it is observed that fractional Schrödinger equations have never been solved in one, two, and three dimensions with the aid of a single integral transform. Therefore, due to the importance of such equations, in this research, concentration is focused upon the solution for the same, which retains the novelty of the study. Furthermore, convergence analyses are also incorporated in the article.

    Motivation of the study

    In the present research, an iterative regime is developed and incorporated named Shehu ADM regarding the solution of fractional Schr¨odinger equation in one, two, and three dimensions. The present regime is easy to implement and needs no complex calculation in the process of numerical discretization. Generating the numerical programs to deal with the fractional PDEs is cumbersome; therefore, generating such novel iterative regimes is demanded to fetch the approximated-analytical solutions.

    There exist numerous transforms in the literature, but as per the calculation aspect, some transforms are easy to incorporate, but some are not. Shehu transform ADM is notified as one of the easiest methods. From an exploration of the literature, it is noticed that fractional Schrödinger equations are rarely solved in one, two, and three dimensions with the aid of a single integral transform-based method. Therefore, in this research, the focus is on finding the solution for the same, which contains the novelty of the research. Moreover, error analysis and convergence analysis are also elaborated in this article.

    In the present paper, the convergence of the method is checked numerically. Convergence is affirmed via Tables 38. As per Tables 38, it is observed that on increasing the number of grid points the L error norm got reduced rapidly, which is robust proof of the convergence of the generated semi-analytical techniques.

    Table 3.  Comparison of L errors at different time levels regarding Example 1.
    N L at t=1 L at t=2 L at t=3
    11 2.4979e-08 5.0711e-05 4.3236e-03
    21 4.4755e-16 4.1023e-14 2.0302e-10
    31 4.4755e-16 5.6610e-16 1.3911e-15

    Convergence up to 1016

    Convergence up to 1016

    Convergence up to 1016

     | Show Table
    DownLoad: CSV
    Table 4.  Comparison of L errors at different time levels regarding Example 2.
    N L at t=0.1 L at t=0.2 L at t=0.3
    11 7.8430e-09 1.5949e-05 1.3635e-03
    21 2.4825e-16 4.8963e-15 2.2250e-11
    31 3.7238e-16 5.5788e-16 1.1802e-15

    Convergence up to 1016

    Convergence up to 1016

    Convergence up to 1015

     | Show Table
    DownLoad: CSV
    Table 5.  Comparison of L errors at different time levels regarding Example 3.
    N L at t=1.0 L at t=1.3 L at t=1.5
    21 3.1906e-07 7.8034e-05 1.5627e-03
    31 8.4843e-15 7.0869e-12 5.9702e-10
    41 6.4393e-15 2.9407e-14 5.6576e-14

    Convergence up to 1015

    Convergence up to 1014

    Convergence up to 1014

     | Show Table
    DownLoad: CSV
    Table 6.  Comparison of L errors at different time levels regarding Example 4.
    N L at t=1.0 L at t=1.3 L at t=1.5
    11 1.8114e-06 3.2318e-05 1.5541e-04
    21 1.3092e-16 2.0510e-14 4.0767e-13
    31 2.2377e-16 2.4825e-16 2.4825e-16

    Convergence up to 1016

    Convergence up to 1016

    Convergence up to 1016

     | Show Table
    DownLoad: CSV
    Table 7.  Comparison of L errors at different time levels regarding Example 5.
    N L at t=1 L at t=2 L at t=3
    21 4.0910e-14 8.4807e-08 4.1536e-04
    31 3.3766e-16 1.9860e-15 1.5697e-10
    41 3.3766e-16 1.7342e-15 1.6577e-14

    Convergence up to 1016

    Convergence up to 1015

    Convergence up to 1014

     | Show Table
    DownLoad: CSV
    Table 8.  Comparison of L errors at different time levels regarding Example 6.
    N L at t=1 L at t=2 L at t=3
    21 4.4168e-13 9.1039e-07 4.4156e-03
    31 5.7220e-17 5.5268e-14 1.5682e-08
    41 4.6548e-17 6.9573e-16 8.8374e-15

    Convergence up to 1017

    Convergence up to 1016

    Convergence up to 1015

     | Show Table
    DownLoad: CSV

    ● The present paper is divided into different sections and subsections.

    ● In Section 3, Implementation of the Shehu ADM is developed for various kinds of fractional Schr¨odinger equations.

    ● In Sub-section 3.1, the general formula is generated for 1D time-fractional Schrödinger equation.

    ● In Sub-section 3.2, the general formula is generated for 2D time-fractional Schrödinger equation.

    ● In Sub-section 3.3, the general formula is generated for 3D time-fractional Schrödinger equation.

    ● In Section 4, six examples are elaborated to validate the efficiency and efficacy of the developed regime.

    ● In Section 5, graphical analysis, error analysis, and convergence analysis is notified.

    ● Section 6 is provided as the concluding remarks.

    Applying Shehu transform upon Eq (1):

    iS[Dατθ(μ,τ)]=S[R[θ(μ,τ)]+N[θ(μ,τ)]+ϕ(μ,τ)]S[Dατθ(μ,τ)]=iS[R[θ(μ,τ)]+N[θ(μ,τ)]+ϕ(μ,τ)](sν)αS[θ(μ,τ)]θ1r=0(sν)αr1θr(μ,0)=iS[R[θ(μ,τ)]+N[θ(μ,τ)]+ϕ(μ,τ)](sν)αS[θ(μ,τ)]=θ1r=0(sν)αr1θr(μ,0)iS[R[θ(μ,τ)]+N[θ(μ,τ)]+ϕ(μ,τ)]S[θ(μ,τ)]=(νs)αθ1r=0(sν)αr1θr(μ,0)i(νs)αS[R[θ(μ,τ)]+N[θ(μ,τ)]+ϕ(μ,τ)]θ(μ,τ)=S1[(νs)αθ1r=0(sν)αr1θr(μ,0)]iS1[(νs)αS[R[θ(μ,τ)]+N[θ(μ,τ)]+ϕ(μ,τ)]]n=0θn(μ,τ)=S1[(νs)αθ1r=0(sν)αr1θr(μ,0)+ϕ(μ,τ)]iS1[(νs)αS[R[n=0θn(μ,τ)]+N[n=0θn(μ,τ)]]]. (13)

    Where,

    θ0(μ,τ)=S1[(νs)αθ1r=0(sν)αr1θr(μ,0)+ϕ(μ,τ)]. (14)
    θn+1(μ,τ)=iS1[(νs)αS[R[n=0θn(μ,τ)]+N[n=0θn(μ,τ)]]],n=0,1,2,3, (15)

    Applying Shehu transform upon Eq (2):

    iS[Dαtθ(μ1,μ2,τ)]=S[R[θ(μ1,μ2,τ)]+N[θ(μ1,μ2,τ)]+ϕ(μ1,μ2,τ)]S[Dαtθ(μ1,μ2,τ)]=iS[R[θ(μ1,μ2,τ)]+N[θ(μ1,μ2,τ)]+ϕ(μ1,μ2,τ)](sν)αS[θ(μ1,μ2,τ)]θ1r=0(sν)αr1θr(μ1,μ2,0)=iS[R[θ(μ1,μ2,τ)]+N[θ(μ1,μ2,τ)]+ϕ(μ1,μ2,τ)](sν)αS[θ(μ1,μ2,τ)]=θ1r=0(sν)αr1θr(μ1,μ2,0)iS[R[θ(μ1,μ2,τ)]+N[θ(μ1,μ2,τ)]+ϕ(μ1,μ2,τ)]S[θ(μ1,μ2,τ)]=(νs)αθ1r=0(sν)αr1θr(μ1,μ2,0)i(νs)αS[R[θ(μ1,μ2,τ)]+N[θ(μ1,μ2,τ)]+ϕ(μ1,μ2,τ)]θ(μ1,μ2,τ)=S1[(νs)αθ1r=0(sν)αr1θr(μ1,μ2,0)]iS1[(νs)αS[R[θ(μ1,μ2,τ)]+N[θ(μ1,μ2,τ)]+ϕ(μ1,μ2,τ)]]n=0θn(μ1,μ2,τ)=S1[(νs)αθ1r=0(sν)αr1θr(μ1,μ2,0)+ϕ(μ1,μ2,τ)]iS1[(νs)αS[R[n=0θn(μ1,μ2,τ)]+N[n=0θn(μ1,μ2,τ)]]]. (16)

    Where,

    θ0(μ1,μ2,τ)=S1[(νs)αθ1r=0(sν)αr1θr(μ1,μ2,0)+ϕ(μ1,μ2,τ)].θn+1(μ1,μ2,τ) (17)
    =iS1[(νs)αS[R[n=0θn(μ1,μ2,τ)]+N[n=0θn(μ1,μ2,τ)]]],n=0,1,2,3, (18)

    Applying Shehu transform upon Eq (3):

    iS[Dαtθ(μ1,μ2,μ3,τ)]=S[R[θ(μ1,μ2,μ3,τ)]+N[θ(μ1,μ2,μ3,τ)]+ϕ(x,y,z,t)]S[Dαtθ(μ1,μ2,μ3,τ)]=iS[R[θ(μ1,μ2,μ3,τ)]+N[θ(μ1,μ2,μ3,τ)]+ϕ(x,y,z,t)](sν)αS[θ(μ1,μ2,μ3,τ)]θ1r=0(sν)αr1θr(μ1,μ2,μ3,0)=iS[R[θ(μ1,μ2,μ3,τ)]+N[θ(μ1,μ2,μ3,τ)]+ϕ(μ1,μ2,μ3,τ)](sν)αS[θ(μ1,μ2,μ3,τ)]=θ1r=0(sν)αr1θr(μ1,μ2,μ3,0)iS[R[θ(μ1,μ2,μ3,τ)]+N[θ(μ1,μ2,μ3,τ)]+ϕ(μ1,μ2,μ3,τ)]S[θ(μ1,μ2,μ3,τ)]=(νs)αθ1r=0(sν)αr1θr(μ1,μ2,μ3,0)i(νs)αS[R[θ(μ1,μ2,μ3,τ)]+N[θ(μ1,μ2,μ3,τ)]+ϕ(μ1,μ2,μ3,τ)]θ(μ1,μ2,μ3,τ)=S1[(νs)αθ1r=0(sν)αr1θr(μ1,μ2,μ3,0)]iS1[(νs)αS[R[θ(μ1,μ2,μ3,τ)]+N[θ(μ1,μ2,μ3,τ)]+ϕ(μ1,μ2,μ3,τ)]]n=0θn(μ1,μ2,μ3,τ)=S1[(νs)αθ1r=0(sν)αr1θr(μ1,μ2,μ3,0)+ϕ(μ1,μ2,μ3,τ)]iS1[(νs)αS[R[n=0θn(μ1,μ2,μ3,τ)]+N[n=0θn(μ1,μ2,μ3,τ)]]]. (19)

    Where,

    θ0(μ1,μ2,μ3,τ)=S1[(νs)αθ1r=0(sν)αr1θr(μ1,μ2,μ3,0)+ϕ(μ1,μ2,μ3,τ)].θn+1(μ1,μ2,μ3,τ) (20)
    =iS1[(νs)αS[R[n=0θn(μ1,μ2,μ3,τ)]+N[n=0θn(μ1,μ2,μ3,τ)]]],n=0,1,2,3, (21)

    In the present section, six examples are tested to ensure the validity of the proposed regime, Examples 1–4 are associated with 1D time-fractional Schr¨odinger. Example 5 is provided regarding 2D time-fractional Schrödinger. Example 6 is associated with 3D time-fractional Schrödinger equation. In all the provided cases, approximated and exact profiles are generated.

    Example 1: Considered 1D non-linear time-fractional Schr¨odinger as follows [36]:

    iDαtθ+θμμ+2|θ|2θ=0. (22)

    I.C.: θ(μ,0)=eiμ.

    Applying Shehu transform upon Eq (22):

    iS[Dατθ(μ,τ)]=S[θμμ(μ,τ)+2|θ(μ,τ)|2θ(μ,τ)]S[Dατθ(μ,τ)]=iS[θμμ(μ,τ)+2|θ(μ,τ)|2θ(μ,τ)](sν)αS[θ(μ,τ)]ξ1r=0(sν)αr1θr(μ,0)=iS[θμμ(μ,τ)+2|θ(μ,τ)|2θ(μ,τ)](sν)αS[θ(μ,τ)]=ξ1r=0(sν)αr1θr(μ,0)+iS[θμμ(μ,τ)+2|θ(μ,τ)|2θ(μ,τ)]S[θ(μ,τ)]=(νs)αξ1r=0(sν)αr1θr(μ,0)+i(νs)αS[θμμ(μ,τ)+2|θ(μ,τ)|2θ(μ,τ)]θ(μ,τ)=S1[(νs)αξ1r=0(sν)αr1θr(μ,0)]+iS1[(νs)αS[θμμ(μ,τ)+2|θ(μ,τ)|2θ(μ,τ)]]n=0θn(μ,τ)=S1[(νs)αξ1r=0(sν)αr1θr(μ,0)]+iS1[(νs)αS[(n=0θn(μ,τ))μμ+2n=0An]]. (23)

    Where

    F(θ)=|θ(μ,τ)|2θ(μ,τ)=n=0An.
    θ0(μ,τ)=S1[(νs)αξ1r=0(sν)αr1θr(μ,0)].
    θn+1(μ,τ)=iS1[(νs)αS[(θn(μ,τ))μμ+2An]],n=0,1,2,3,

    Considered, ξ=1:

    θ0(μ,τ)=S1[(νs)αξ1r=0(sν)αr1θr(μ,0)]
    θ0(μ,τ)=S1[(νs)α(sν)α1θ(μ,0)]
    θ0(μ,τ)=θ(μ,0)=eiμ.

    Considered n=0:

    θ1(μ,τ)=iS1[(νs)αS[(θ0(μ,τ))μμ+2A0]].

    Where,

    (θ0)μμ(μ,τ)=eix,A0=F(θ0)=θ20θ0=eiμ.
    θ1(μ,τ)=iS1[(νs)αS[eiμ+2eiμ]].
    θ1(μ,τ)=iS1[(νs)αS[eiμ]]
    θ1(μ,τ)=ieiμS1[(νs)αS[1]]
    θ1(μ,τ)=ieiμS1[(νs)2α]θ1(μ,τ)=ieiμt2α1Γ(2α).

    Considered n=1:

    θ2(μ,τ)=iS1[(νs)αS[(θ1)μμ+2A1]].

    Where,

    (θ1)μμ(μ,τ)=ieiμτ2α1Γ(2α),
    A1=2θ0θ1θ0+θ20θ1=ieiμτ2α1Γ(2α),
    θ2(μ,τ)=iS1[(νs)αS[ieiμτ2α1Γ(2α)+2ieiμτ2α1Γ(2α)]]
    θ2(μ,τ)=iS1[(νs)αS[ieiμτ2α1Γ(2α)]]
    θ2(μ,τ)=(i2eiμ)S1[(νs)α(νs)2α]
    θ2(μ,τ)=(i2eiμ)S1[(νs)3α]
    θ2(μ,τ)=i2eiμτ3α1Γ(3α),
    θ(μ,τ)=θ0(μ,τ)+θ1(μ,τ)+θ2(μ,τ)+θ3(μ,τ)+
    θ(μ,τ)=eiμ+ieiμτ2α1Γ(2α)+i2eiμτ3α1Γ(3α)+
    θ(μ,τ)=eiμ[1+iτ2α1Γ(2α)+i2τ3α1Γ(3α)+].

    Considered α=1:

    θ(μ,τ)=eiμ[1+iτ1!+(iτ)22!+]
    θ(μ,τ)=ei[μ+t].

    Example 2: Considered 1D linear time-fractional Schr¨odinger equation as follows [37]:

    Dατθ(μ,τ)+iθμμ(μ,τ)=0. (23)

    I.C.: θ(μ,0)=e3iμ

    Applying Shehu transform in Eq (23):

    (sν)αS[θ(μ,τ)]ξ1r=0(sν)αr1θr(μ,0)=iS[θμμ(μ,τ)]
    (sν)αS[θ(μ,τ)]=ξ1r=0(sν)αr1θr(μ,0)iS[θμμ(μ,τ)]
    S[θ(μ,τ)]=(νs)αξ1r=0(sν)αr1θr(μ,0)i(νs)αS[θμμ(μ,τ)]
    θ(μ,τ)=S1[(νs)αξ1r=0(sν)αr1θr(μ,0)]iS1[(νs)αS[θμμ(μ,τ)]]
    n=0θn(μ,τ)=S1[(νs)αξ1r=0(sν)αr1θr(μ,0)]iS1[(νs)αS[(n=0θn(μ,τ))μμ]],
    θ0(μ,τ)=S1[(νs)αξ1r=0(sν)αr1θr(μ,0)],
    θn+1(μ,τ)=iS1[(νs)αS[(θn(μ,τ))μμ]],n=0,1,2,3,

    Considered ξ=1:

    θ0(μ,τ)=S1[(νs)α(sν)α1θ(μ,0)]
    θ0(μ,τ)=S1[(νs)θ(μ,0)]
    θ0(μ,τ)=θ(μ,0)S1[νs]
    θ0(μ,τ)=θ(μ,0)=e3iμ.

    Considered n=0:

    θ1(μ,τ)=iS1[(νs)αS[(θ0(μ,τ))μμ]],(θ0)μμ=(3i)2e3iμ
    θ1(μ,τ)=iS1[(νs)αS[(3i)2e3iμ]]
    θ1(μ,τ)=i(3i)2e3iμS1[(νs)αS[1]]
    θ1(μ,τ)=i(3i)2e3iμS1[(νs)2α]
    θ1(μ,τ)=9ie3iμτ2α1Γ(2α).

    Considered n=1:

    θ2(μ,τ)=iS1[(νs)αS[(θ1)μμ]],(θ1(μ,τ))μμ=81i3e3iμτ2α1Γ(2α)
    θ2(μ,τ)=iS1[(νs)αS[81i3e3iμτ2α1Γ(2α)]]
    θ2(μ,τ)=i(81i3e3iμ)S1[(νs)αS[τ2α1Γ(2α)]]
    θ2(μ,τ)=i(81i3e3iμ)S1[(νs)3α]
    θ2(μ,τ)=81i2e3iμτ3α1Γ(3α)
    θ(μ,τ)=θ0(μ,τ)+θ1(μ,τ)+θ2(μ,τ)+θ3(μ,τ)+
    θ(μ,τ)=e3iμ+9ie3iμτ2α1Γ(2α)+81i2e3iμτ3α1Γ(3α)+

    Considered α=1:

    θ(μ,τ)=e3iμ[1+9iτ1!+(9iτ)22!+]
    θ(μ,τ)=e3i[μ+3τ].

    Example 3: Considered 1D linear time-fractional Schr¨odinger equation as follows [37]:

    Dατθ(μ,τ)+iθμμ(μ,τ)=0. (24)

    I.C.: θ(μ,0)=1+cosh(2μ)

    Applying Shehu transform upon Eq (24):

    S[Dατθ]=iS[θμμ]
    (sν)αS[θ(μ,τ)]ξ1r=0(sν)αr1θr(μ,0)=iS[θμμ(μ,τ)]
    (sν)αS[θ(μ,τ)]=ξ1r=0(sν)αr1θr(μ,0)iS[θμμ(μ,τ)]
    S[θ(μ,τ)]=(νs)αξ1r=0(sν)αr1θr(μ,0)i(νs)αS[θμμ(μ,τ)]
    θ(μ,τ)=S1[(νs)αξ1r=0(sν)αr1θr(μ,0)]iS1[(νs)αS[θμμ(μ,τ)]]
    n=0θn(μ,τ)=S1[(νs)αξ1r=0(sν)αr1θr(μ,0)]iS1[(νs)αS[(n=0θn(μ,τ))μμ]].

    Where

    θ0(μ,τ)=S1[(νs)αξ1r=0(sν)αr1θr(μ,0)].
    θn+1(μ,τ)=iS1[(νs)αS[(θn(μ,τ))μμ]],n=0,1,2,3,

    Considered ξ=1:

    θ0(μ,τ)=S1[(νs)α(sν)α1θ(μ,0)]
    θ0(μ,τ)=θ(x,0)S1[νs]
    θ0(μ,τ)=θ(μ,0)=1+cosh(2μ).

    Considered n=0:

    θ1(μ,τ)=iS1[(νs)αS[(θ0(μ,τ))μμ]],(θ0)μμ=4cosh(2μ)
    θ1(μ,τ)=iS1[(νs)αS[4cosh(2μ)]]
    θ1(μ,τ)=4icosh(2μ)S1[(νs)2α]
    θ1(μ,τ)=4icosh(2μ)τ2α1Γ(2α).

    Considered n=1:

    θ2(μ,τ)=iS1[(νs)αS[(θ1)μμ]],(θ1(μ,τ))μμ=16icosh(2μ)τ2α1Γ(2α)
    θ2(μ,τ)=iS1[(νs)αS[16icosh(2μ)τ2α1Γ(2α)]]
    θ2(μ,τ)=16i2cosh(2μ)S1[(νs)3α]
    θ2(μ,τ)=16i2cosh(2μ)τ3α1Γ(3α)
    θ(μ,τ)=θ0(μ,τ)+θ1(μ,τ)+θ2(μ,τ)+θ3(μ,τ)+
    θ(μ,τ)=1+cosh(2μ)4icosh(2μ)τ2α1Γ(2α)+16i2cosh(2μ)τ3α1Γ(3α)

    Considered α=1:

    θ(μ,τ)=1+cosh(2μ)[14iτ1!+(4iτ)22!]
    θ(μ,τ)=1+cosh(2μ)exp[4iτ].

    Example 4: Considered 1D non-linear time-fractional Schr¨odinger equation as follows [38]:

    iDαtθ(μ,τ)+12θμμ(μ,τ)θ(μ,τ)cos2μθ(μ,τ)|θ(μ,τ)|2=0,μ[0,1]. (25)

    I.C.: u(μ,0)=sinμ

    Applying Shehu transform upon Eq (25):

    iS[Dατθ(μ,τ)]=S[12uμμ(μ,τ)+θ(μ,τ)cos2μ+θ(μ,τ)|θ(μ,τ)|2]
    S[Dατθ(μ,τ)]=iS[12uμμ(μ,τ)+θ(μ,τ)cos2μ+θ(μ,τ)|θ(μ,τ)|2]
    (sν)αS[θ(μ,τ)]ξ1r=0(sν)αr1θr(μ,0)=iS[12uμμ(μ,τ)+θ(μ,τ)cos2μ+θ(μ,τ)|θ(μ,τ)|2]
    (sν)αS[θ(μ,τ)]=ξ1r=0(sν)αr1θr(μ,0)iS[12uμμ(μ,τ)+θ(μ,τ)cos2μ+θ(μ,τ)|θ(μ,τ)|2]
    S[θ(μ,τ)]=(νs)αξ1r=0(sν)αr1θr(μ,0)i(νs)αS[12uμμ(μ,τ)+θ(μ,τ)cos2μ+θ(μ,τ)|θ(μ,τ)|2]
    θ(μ,τ)=S1[(νs)αξ1r=0(sν)αr1θr(μ,0)]iS1[(νs)αS[12uμμ(μ,τ)+θ(μ,τ)cos2μ+θ(μ,τ)|θ(μ,τ)|2]]
    n=0θn(μ,τ)=S1[(νs)αξ1r=0(sν)αr1θr(μ,0)]+iS1[(νs)αS[12(n=0un(μ,τ))μμcos2μ(n=0un(μ,τ))n=0An]]
    θ0(μ,τ)=S1[(νs)αξ1r=0(sν)αr1θr(μ,0)],
    θn+1(μ,τ)=iS1[(νs)αS[12(θn(μ,τ))μμcos2μ(θn(μ,τ))An]],n=0,1,2,3,

    Considered ξ=1:

    θ0(μ,τ)=S1[(νs)α(sν)α1θ(μ,0)]
    θ0(μ,τ)=θ(μ,0)S1[νs]
    θ0=u(μ,0)=sinμ.

    Considered n=0:

    θ1(μ,τ)=iS1[(νs)αS[12(θ0)μμcos2μ(θ0)A0]].

    Where,

    (θ0)μμ=sinμ,A0=F(θ0)=θ20θ0=sin3μ
    θ1(μ,τ)=iS1[(νs)αS[12(sinμ)cos2x(sinμ)sin3μ]]
    θ1(μ,τ)=iS1[(νs)αS[32sinμ]]
    θ1(μ,τ)=3i2sinμS1[(νs)2α]
    θ1(μ,τ)=3i2sinμτ2α1Γ(2α).

    Considered n=1:

    θ2(μ,τ)=iS1[(νs)αS[12(θ1(μ,τ))μμcos2μ(θ1(μ,τ))A1]].

    Where

    (θ1)μμ(μ,τ)=(3i2)sinμτ2α1Γ(2α),A1=2θ0θ1θ0+θ20θ1=(3i2)sin3μτ2α1Γ(2α)
    θ2(μ,τ)=iS1[(νs)αS[12((3i2)sinμτ2α1Γ(2α))cos2μ(3i2sinμτ2α1Γ(2α))((3i2)sin3μτ2α1Γ(2α))]]
    θ2(μ,τ)=(9i24)sinμS1[(νs)αS[τ2α1Γ(2α)]]
    θ2(μ,τ)=(9i24)sinμS1[(νs)3α]
    θ2(μ,τ)=(9i24)sinμτ3α1Γ(3α)
    θ(μ,τ)=θ0(μ,τ)+θ1(μ,τ)+θ2(μ,τ)+θ3(μ,τ)+
    θ(μ,τ)=sinμ3i2sinμτ2α1Γ(2α)+(9i24)sinμτ3α1Γ(3α)

    Considered α=1:

    θ(μ,τ)=sinμ[1(3iτ2)1!+(3iτ2)22!]
    θ(μ,τ)=sinμexp[3iτ2].

    Example 5: Considered 2D non-linear time-fractional Schr¨odinger equation as follows [38]:

    iDατθ=12[θμ1μ1+θμ2μ2]+(1sin2μ1sin2μ2)θ+θ|θ|2, (26)

    where μ1,μ­2[0,2π]×[0,2π].

    I.C.: θ(μ1,μ2,0)=sinμ1sinμ2

    Applying Shehu transform in Eq (26):

    iS[Dατθ(μ1,μ2,τ)]=S[12[θμ1μ1(μ1,μ2,τ)+θμ2μ2(μ1,μ2,τ)]+(1sin2μ1sin2μ2)θ(μ1,μ2,τ)+θ(μ1,μ2,τ)|θ(μ1,μ2,τ)|2]
    S[Dατθ(μ1,μ2,τ)]=iS[12[θμ1μ1(μ1,μ2,τ)+θμ2μ2(μ1,μ2,τ)]+(1sin2μ1sin2μ2)θ(μ1,μ2,τ)+θ(μ1,μ2,τ)|θ(μ1,μ2,τ)|2]
    (sν)αS[θ(μ1,μ2,τ)]ξ1r=0(sν)αr1θr(μ1,μ2,0)=iS[12[θμ1μ1(μ1,μ2,τ)+θμ2μ2(μ1,μ2,τ)]+(1sin2μ1sin2μ2)θ(μ1,μ2,τ)+θ(μ1,μ2,τ)|θ(μ1,μ2,τ)|2]
    (sν)αS[θ(μ1,μ2,τ)]=ξ1r=0(sν)αr1θr(μ1,μ2,0)iS[12[θμ1μ1(μ1,μ2,τ)+θμ2μ2(μ1,μ2,τ)]+(1sin2μ1sin2μ2)θ(μ1,μ2,τ)+θ(μ1,μ2,τ)|θ(μ1,μ2,τ)|2]
    S[θ(μ1,μ2,τ)]=(νs)αξ1r=0(sν)αr1θr(μ1,μ2,0)i(νs)αS[12[θμ1μ1(μ1,μ2,τ)+θμ2μ2(μ1,μ2,τ)]+(1sin2μ1sin2μ2)θ(μ1,μ2,τ)+θ(μ1,μ2,τ)|θ(μ1,μ2,τ)|2]
    θ(μ1,μ2,τ)=S1[(νs)αξ1r=0(sν)αr1θr(μ1,μ2,0)]iS1[(νs)αS[12[θμ1μ1(μ1,μ2,τ)+θμ2μ2(μ1,μ2,τ)]+(1sin2μ1sin2μ2)θ(μ1,μ2,τ)+θ(μ1,μ2,τ)|θ(μ1,μ2,τ)|2]]
    n=0θn(μ1,μ2,τ)=S1[(νs)αξ1r=0(sν)αr1θr(μ1,μ2,0)]iS1[(νs)αS[12[(n=0θn(μ1,μ2,τ))μ1μ1+(n=0θn(μ1,μ2,τ))μ2μ2]+(1sin2μ1sin2μ2)n=0un(μ1,μ2,τ)+n=0An]]
    u0(μ1,μ2,τ)=S1[(νs)αξ1r=0(sν)αr1θr(μ1,μ2,0)],
    un+1(μ1,μ2,τ)=iS1[(νs)αS[12[(θn)μ1μ1(μ1,μ2,τ)+(θn)μ2μ2(μ1,μ2,τ)]+(1sin2μ1sin2μ2)θn(μ1,μ2,τ)+An]],n=0,1,2,3,

    Considered ξ=1:

    θ0(μ1,μ2,τ)=S1[(νs)α(sν)α1θ(μ1,μ2,0)]
    θ0(μ1,μ2,τ)=θ(μ1,μ2,0),
    θ0(μ1,μ2,τ)=sinμ1sinμ2.

    Considered n=0:

    u1(μ1,μ2,τ)=iS1[(νs)αS[12[(θ0)μ1μ1(μ1,μ2,τ)+(θ0)μ2μ2(μ1,μ2,τ)]+(1sin2μ1sin2μ2)θ0(μ1,μ2,τ)+A0]].

    Where

    (θ0)μ1μ1(μ1,μ2,τ)=(θ0)μ2μ2(μ1,μ2,τ)=sinμ1sinμ2,

    and

    A0=θ20θ0=sin3μ1sin3μ2
    θ1(μ1,μ2,τ)
    =iS1[(νs)αS[12[2sinμ1sinμ2]+(1sin2μ1sin2μ2)(sinμ1sinμ2)+sin3μ1sin3μ2]]
    θ1(μ1,μ2,τ)=iS1[(νs)αS[2sinμ1sinμ2]]
    θ1(μ1,μ2,τ)=i(2sinμ1sinμ2)S1[(νs)αS[1]]
    θ1(μ1,μ2,τ)=2isinμ1sinμ2S1[(νs)2α]
    θ1(μ1,μ2,τ)=2isinμ1sinμ2τ2α1Γ(2α).

    Considered n=1:

    θ2(μ1,μ2,τ)=iS1[(νs)αS[12[(u1)μ1μ1(μ1,μ2,τ)+(u1)μ2μ2(μ1,μ2,τ)]+(1sin2μ1sin2μ2)u1(μ1,μ2,τ)+A1]].

    Where,

    (θ1)μ1μ1=(θ1)μ2μ2=2isinμ1sinμ2τ2α1Γ(2α),
    (θ1)μ1μ1+(θ1)μ2μ2=4isinμ1sinμ2τ2α1Γ(2α),
    A1=2θ0θ1θ0+θ20θ1=2isin3μ1sin3μ2τ2α1Γ(2α)
    θ2(μ1,μ2,τ)
    =iS1[(νs)αS[12[4isinμ1sinμ2τ2α1Γ(2α)]+(1sin2μ1sin2μ2)(2isinμ1sinμ2τ2α1Γ(2α))+(2isin3xsin3yτ2α1Γ(2α))]]
    θ2(μ1,μ2,τ)=iS1[(νs)αS{4isinμ1sinμ2τ2α1Γ(2α)}]
    θ2(μ1,μ2,τ)=4i2sinμ1sinμ2S1[(νs)3α]
    θ2(μ1,μ2,τ)=4i2sinμ1sinμ2τ3α1Γ(3α)
    θ(μ1,μ2,τ)=u0(μ1,μ2,τ)+u1(μ1,μ2,τ)+u2(μ1,μ2,τ)+u3(μ1,μ2,τ)+
    θ(μ1,μ2,τ)=sinμ1sinμ22isinμ1sinμ2τ2α1Γ(2α)+4i2sinμ1sinμ2τ3α1Γ(3α)

    Considered α=1:

    θ(μ1,μ2,τ)=sinμ1sinμ2[12iτ1!+(2iτ)22!]
    θ(μ1,μ2,τ)=sinμ1sinμ2exp(2iτ).

    Example 6: Considered 2D non-linear time-fractional Schr¨odinger equation as follows [34]:

    iDατθ(μ1,μ2,μ3,τ)=12[θμ1μ1(μ1,μ2,μ3,τ)+θμ2μ2(μ1,μ2,μ3,τ)+θμ3μ3(μ1,μ2,μ3,τ)]+(1sin2μ1sin2μ2sin2μ3)θ(μ1,μ2,μ3,τ)+θ(μ1,μ2,μ3,τ)|θ(μ1,μ2,μ3,τ)|2. (27)

    Where μ1,μ2,μ3[0,2π]×[0,2π]×[0,2π].

    I.C.: θ(μ1,μ2,μ3,0)=sinμ1sinμ2sinμ3

    Applying Shehu transform in Eq (27):

    iS[Dαtθ(μ1,μ2,μ3,τ)]=S[12[θμ1μ1(μ1,μ2,μ3,τ)+θμ2μ2(μ1,μ2,μ3,τ)+θμ3μ3(μ1,μ2,μ3,τ)]+(1sin2μ1sin2μ2sin2μ3)θ(μ1,μ2,μ3,τ)+θ(μ1,μ2,μ3,τ)|θ(μ1,μ2,μ3,τ)|2]
    S[Dαtθ(μ1,μ2,μ3,τ)]=iS[12[θμ1μ1(μ1,μ2,μ3,τ)+θμ2μ2(μ1,μ2,μ3,τ)+θμ3μ3(μ1,μ2,μ3,τ)]+(1sin2μ1sin2μ2sin2μ3)θ(μ1,μ2,μ3,τ)+θ(μ1,μ2,μ3,τ)|θ(μ1,μ2,μ3,τ)|2]
    (sν)αS[θ(μ1,μ2,μ3,τ)]ξ1r=0(sν)αr1ur(x,y,z,0)=iS[12[θμ1μ1(μ1,μ2,μ3,τ)+θμ2μ2(μ1,μ2,μ3,τ)+θμ3μ3(μ1,μ2,μ3,τ)]+(1sin2μ1sin2μ2sin2μ3)θ(μ1,μ2,μ3,τ)+θ(μ1,μ2,μ3,τ)|θ(μ1,μ2,μ3,τ)|2]
    (sν)αS[θ(μ1,μ2,μ3,τ)]=ξ1r=0(sν)αr1θr(x,y,z,0)iS[12[θμ1μ1(μ1,μ2,μ3,τ)+θμ2μ2(μ1,μ2,μ3,τ)+θμ3μ3(μ1,μ2,μ3,τ)]+(1sin2μ1sin2μ2sin2μ3)θ(μ1,μ2,μ3,τ)+θ(μ1,μ2,μ3,τ)|θ(μ1,μ2,μ3,τ)|2]
    S[θ(μ1,μ2,μ3,τ)]=(νs)αξ1r=0(sν)αr1θr(μ1,μ2,μ3,0)i(νs)αS[12[θμ1μ1(μ1,μ2,μ3,τ)+θμ2μ2(μ1,μ2,μ3,τ)+θμ3μ3(μ1,μ2,μ3,τ)]+(1sin2μ1sin2μ2sin2μ3)θ(μ1,μ2,μ3,τ)+θ(μ1,μ2,μ3,τ)|θ(μ1,μ2,μ3,τ)|2]
    θ(μ1,μ2,μ3,τ)=S1[(νs)αξ1r=0(sν)αr1θr(μ1,μ2,μ3,0)]iS1[(νs)αS[12[θμ1μ1(μ1,μ2,μ3,τ)+θμ2μ2(μ1,μ2,μ3,τ)+θμ3μ3(μ1,μ2,μ3,τ)]+(1sin2μ1sin2μ2sin2μ3)θ(μ1,μ2,μ3,τ)+θ(μ1,μ2,μ3,τ)|θ(μ1,μ2,μ3,τ)|2]]
    n=0θn(μ1,μ2,μ3,τ)=S1[(νs)αξ1r=0(sν)αr1θr(μ1,μ2,μ3,0)]iS1[(νs)αS[12[(n=0θn(μ1,μ2,μ3,τ))μ1μ1+(n=0θn(μ1,μ2,μ3,τ))μ2μ2+(n=0θn(μ1,μ2,μ3,τ))μ3μ3]+(1sin2μ1sin2μ2sin2μ3)n=0θn(μ1,μ2,μ3,τ)+n=0An]],
    θ0(μ1,μ2,μ3,τ)=S1[(νs)αξ1r=0(sν)αr1θr(μ1,μ2,μ3,0)],
    θn+1(μ1,μ2,μ3,τ)=iS1[(νs)αS[12[(θn)μ1μ1(μ1,μ2,μ3,τ)+(θn)μ2μ2(μ1,μ2,μ3,τ)+(θn)μ3μ3(μ1,μ2,μ3,τ)]+(1sin2μ1sin2μ2sin2μ3)θn(μ1,μ2,μ3,τ)+An]],n=0,1,2,3,

    Considered ξ=1:

    θ0(μ1,μ2,μ3,τ)=S1[(νs)α(sν)α1θ(μ1,μ2,μ3,0)]
    θ0(μ1,μ2,μ3,τ)=θ(μ1,μ2,μ3,0)
    θ0(μ1,μ2,μ3,τ)=sinμ1sinμ2sinμ3.

    Considered n=0:

    θ1(μ1,μ2,μ3,τ)=iS1[(νs)αS[12[(θ0)μ1μ1(μ1,μ2,μ3,τ)+(θ0)μ2μ2(μ1,μ2,μ3,τ)+(θ0)μ3μ3(μ1,μ2,μ3,τ)]+(1sin2μ1sin2μ2sin2μ3)θ0(μ1,μ2,μ3,τ)+A0]].

    Where

    (θ0)μ1μ1(μ1,μ2,μ3,τ)=(θ0)μ2μ2(μ1,μ2,μ3,τ)=(θ0)μ3μ3(μ1,μ2,μ3,τ)=sinμ1sinμ2sinμ3(θ0)μ1μ1(μ1,μ2,μ3,τ)+(θ0)μ2μ2(μ1,μ2,μ3,τ)+(θ0)μ3μ3(μ1,μ2,μ3,τ)=3sinμ1sinμ2sinμ3,

    and

    A0=θ20θ0=sin3μ1sin3μ2sin3μ3
    θ1(μ1,μ2,μ3,τ)
    =iS1[(νs)αS[12[3sinμ1sinμ2sinμ3]+(1sin2μ1sin2μ2sin2μ3)(sinμ1sinμ2sinμ3)+sin3μ1sin3μ2sin3μ3]]
    θ1(μ1,μ2,μ3,τ)=iS1[(νs)αS[52sinμ1sinμ2sinμ3]]
    θ1(μ1,μ2,μ3,τ)=5i2sinμ1sinμ2sinμ3S1[(νs)αS[1]]
    θ1(μ1,μ2,μ3,τ)=5i2sinμ1sinμ2sinμ3S1[(νs)2α]
    θ1(μ1,μ2,μ3,τ)=5i2sinμ1sinμ2sinμ3τ2α1Γ(2α).

    Considered n=1:

    θ2(μ1,μ2,μ3,τ)=iS1[(νs)αS[12[(θ1)μ1μ1(μ1,μ2,μ3,τ)+(θ1)μ2μ2(μ1,μ2,μ3,τ)+(θ1)μ3μ3(μ1,μ2,μ3,τ)]+(1sin2μ1sin2μ2sin2μ3)θ1(μ1,μ2,μ3,τ)+A1]].

    Where,

    (θ1)μ1μ1(μ1,μ2,μ3,τ)=(θ1)μ2μ2(μ1,μ2,μ3,τ)=(θ1)μ3μ3(μ1,μ2,μ3,τ)
    =(5i2)sinμ1sinμ2sinμ3τ2α1Γ(2α).
    A1=2θ0θ1θ0+θ20θ1=5i2μ1sin3μ2sin3μ3τ2α1Γ(2α)
    θ2(μ1,μ2,μ3,τ)=iS1[(νs)αS{25i4sinμ1sinμ2sinμ3τ2α1Γ(2α)}]
    θ2(μ1,μ2,μ3,τ)=25i24sinμ1sinμ2sinμ3S1[(νs)3α]
    θ2(μ1,μ2,μ3,τ)=25i24sinμ1sinμ2sinμ3τ3α1Γ(3α)
    θ(μ1,μ2,μ3,τ)=θ0(μ1,μ2,μ3,τ)+θ1(μ1,μ2,μ3,τ)+θ2(μ1,μ2,μ3,τ)+θ3(μ1,μ2,μ3,τ)+
    θ(μ1,μ2,μ3,τ)=sinμ1sinμ2sinμ35i2sinμ1sinμ2sinμ3τ2α1Γ(2α)+25i24sinμ1sinμ2sinμ3τ3α1Γ(3α)

    Considered α=1:

    θ(μ1,μ2,μ3,τ)=sinμ1sinμ2sinμ3[1(5iτ2)1!+(5iτ2)22!]
    θ(μ1,μ2,μ3,τ)=sinμ1sinμ2sinμ3exp(5iτ2).

    In the present section, the validity of the proposed regime is affirmed vias graphical and tabular analysis of the results. In Figure 1, approx. and exact profiles are matched at τ = 1, 2, 3, 4, and 5 for Example 1. In Figure 2, matching of approx. and exact profiles are provided at τ = 6, 7, 8, 9, and 10 for Example 1. A wide range of time levels is checked for compatibility. In Figure 3, a match of approx. and exact profiles is provided at τ = 1.0, 1.5, 2.0, 2.5 and 3.0 for Example 2. Figure 4 is related to the approx. and exact profile compatibility at τ = 1, 2, 3, 4, and 5 for Example 3. In Figure 5, compatibility of approx. and exact profiles are matched at τ = 1, 2, 3, 4, and 5 for Example 4. In Figure 6, approx.-exact compatibility is mentioned at τ = 6, 7, 8, 9, and 10 for Example 4. Figures 7 and 8 are related to the mesh-contour and surface-contour presentations at τ = 1 and τ = 2 respectively for Example 5. Figures 9 and 10 are related to the mesh-contour and surface-contour presentations at τ = 1 and τ = 2, respectively for Example 6.

    Figure 1.  Approx. and exact profiles at t = 1, 2, 3, 4 and 5 regarding Example 1.
    Figure 2.  Approx. and exact profiles at t = 6, 7, 8, 9, and 10 where N = 101 regarding Example 1.
    Figure 3.  Approx. and exact profiles at t = 1.0, 1.5, 2.0, 2.5, and 3.0 where N = 101 regarding Example 2.
    Figure 4.  Approx. and exact profiles at t = 1, 2, 3, 4, and 5 where N = 101 regarding Example 3.
    Figure 5.  Approx. and exact profiles at t = 1, 2, 3, 4, and 5 where N = 101 regarding Example 4.
    Figure 6.  Approx. and exact profiles at t = 6, 7, 8, 9, and 10 where N = 101 regarding Example 4.
    Figure 7.  Approx. and exact profiles at t = 1 where N = 51 regarding Example 5.
    Figure 8.  Approx. and exact profiles at t = 2 where N = 51 regarding Example 5.
    Figure 9.  Approx. and exact profiles at t = 1, where N = 101, z = 0.1 regarding Example 6.
    Figure 10.  Approx. and exact profiles at t = 2 where N = 101, z = 0.1 regarding Example 6.

    Via Tables 38, it can be affirmed that the approx. and exact profiles are matched for a wide range of time levels regarding the proposed scheme. Error analysis and convergence property are done by means of Tables 38. In Tables 38, L errors are provided at various grid points and time levels. Via Tables 38, it is reported that on increasing the number of grid points at different time levels, L error got reduced, and in most of the cases, convergence is affirmed up to higher order.

    In the present study, the motive is to deal with 1D, 2D, and 3D time-fractional Schr¨odinger equations regarding the approx.-analytical outcome. Shehu transform ADM is incorporated for this purpose. The prime key of a developed regime is it's easy-to-implement approach and accurate results. Furthermore, with the aid of the six mentioned examples, it is ensured that the retrieved approximated profiles are compatible with exact profiles. The graphical matching aspect between the approximated and exact results is also notified, which ensures that the developed technique is a good alternative to solve complex natured time-fractional PDEs. L error is mentioned inTables 38. Via mentioned tables, it is ensured that the proposed methodology is convergent, as on increasing the number of grid points, L error got reduced. With the aid of the developed regime, various complex natured fractional PDEs can be easily solved.

    This research received funding support from the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation (grant number B05F640092).

    The authors declare no conflict of interest.



    [1] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A
    [2] S. Qureshia, A. Yusuf, A. A. Shaikha, et al. Transmission dynamics of varicella zoster virus modeled by classical and novel fractional operators using real statistical data, Physica A, 534 (2019), 122149.
    [3] A. Yusuf, S. Qureshi, S. F. Shah, Mathematical analysis for an autonomous financial dynamical system via classical and modern fractional operators, Chaos Soliton. Fract., 132 (2020), 109552.
    [4] S. Qureshi, A. Yusuf, Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator, Chaos Soliton. Fract., 126 (2019), 32-40. doi: 10.1016/j.chaos.2019.05.037
    [5] A. Jajarmi, A. Yusuf, D. Baleanu, et al., A new fractional HRSV model and its optimal control: A non-singular operator approach, Physica A, Available from: https://doi.org/10.1016/j.physa.2019.123860.
    [6] S. Qureshi, A. Yusuf, A new third order convergent numerical solver for continuous dynamical systems, J. King Saud Univ. Sci., Available from: https://doi.org/10.1016/j.jksus.2019.11.035.
    [7] A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Soliton. Fract., 89 (2016), 447-454. doi: 10.1016/j.chaos.2016.02.012
    [8] A. Atangana, On the new fractional derivative and application to nonlinear Fishers reactiondiffusion equation, Appl. Math. Comput., 273 (2016), 948-956.
    [9] D. Baleanu, A. Jajarmi, M. Hajipour, A new formulation of the fractional optimal control problems involving Mittag-Leffler nonsingular kernel, J. Optim. Theory Appl., 175 (2017), 718-737. doi: 10.1007/s10957-017-1186-0
    [10] A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Soliton. Fract., 114 (2018), 478-482. doi: 10.1016/j.chaos.2018.07.032
    [11] A. Akgül, M. Modanli, Crank-Nicholson difference method and reproducing kernel function for third order fractional differential equations in the sense of Atangana-Baleanu Caputo derivative, Chaos Soliton. Fract., 127 (2019), 10-16. doi: 10.1016/j.chaos.2019.06.011
    [12] E. K. Akgül, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos, 29 (2019), 023108.
    [13] O. Abu Arqub, B. Maayah, Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense, Chaos Soliton. Fract., 125 (2019), 163-170. doi: 10.1016/j.chaos.2019.05.025
    [14] O. Abu Arqub, M. Al-Smadi, Atangana-Baleanu fractional approach to the solutions of BagleyTorvik and Painlev equations in Hilbert space, Chaos Soliton. Fract., 117 (2018), 161-167. doi: 10.1016/j.chaos.2018.10.013
    [15] O. Abu Arqub, B. Maayah, Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator, Chaos Soliton. Fract., 117 (2018), 117-124. doi: 10.1016/j.chaos.2018.10.007
    [16] O. Abu Arqub, B. Maayah, Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC-Fractional Volterra integro-differential equations, Chaos Soliton. Fract., 126 (2019), 394-402. doi: 10.1016/j.chaos.2019.07.023
    [17] O. Abu Arqub, Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis, Fund. Inform., 166 (2019), 111-137. doi: 10.3233/FI-2019-1796
    [18] S. Yadav, R. K. Pandey, A. K. Shukla, Numerical approximations of Atangana-Baleanu Caputo derivative and its application, Chaos Soliton. Fract., 118 (2019), 58-64. doi: 10.1016/j.chaos.2018.11.009
    [19] S. Hasan, A. El-Ajou, S. Hadid, et al., Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system, Chaos Soliton. Fract., 133 (2020), 109624.
    [20] X. Y. Li, B. Y. Wu, A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations, J. Comput. Appl. Math., 311 (2017), 387-393. doi: 10.1016/j.cam.2016.08.010
    [21] X. Y. Li, B. Y. Wu, A numerical technique for variable fractional functional boundary value problems, Appl. Math. Lett., 43 (2015), 108-113. doi: 10.1016/j.aml.2014.12.012
    [22] X. Y. Li, B. Y. Wu, Error estimation for the reproducing kernel method to solve linear boundary value problems, J. Comput. Appl. Math., 243 (2013), 10-15. doi: 10.1016/j.cam.2012.11.002
    [23] F. Z. Geng, S. P. Qian, Modified reproducing kernel method for singularly perturbed boundary value problems with a delay, Appl. Math. Model., 39 (2015), 5592-5597. doi: 10.1016/j.apm.2015.01.021
    [24] F. Z. Geng, S. P. Qian, Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers, Appl. Math. Lett., 26 (2013), 998-1004. doi: 10.1016/j.aml.2013.05.006
    [25] L. C. Mei, Y. T. Jia, Y. Z. Lin, Simplified reproducing kernel method for impulsive delay differential equations, Appl. Math. Lett., 83 (2018), 123-129. doi: 10.1016/j.aml.2018.03.024
    [26] O. A. Arqub, Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm, Int. J. Numer. Method H., 28 (2018), 828-856. doi: 10.1108/HFF-07-2016-0278
    [27] O. A. Arqub, B. Maayah, Solutions of Bagley-Torvik and Painlev equations of fractional order using iterative reproducing kernel algorithm with error estimates, Neural Comput. Appl., 29 (2018), 1465-1479. doi: 10.1007/s00521-016-2484-4
    [28] M. Al-Smadi, O. Abu Arqub, Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of Dirichlet functions type with error estimates, Appl. Math. Comput., 342 (2019), 280-294.
    [29] M. Al-Smadi, Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation, Ain Shams Eng. J., 9 (2018), 2517-2525. doi: 10.1016/j.asej.2017.04.006
    [30] Z. Altawallbeh, M. Al-Smadi, I. Komashynska, et al., Numerical solutions of fractional systems of two-point BVPs by using the iterative reproducing kernel algorithm, Ukr. Math. J., 70 (2018), 687-701. doi: 10.1007/s11253-018-1526-8
    [31] A. Akgül, Reproducing kernel Hilbert space method based on reproducing kernel functions for investigating boundary layer flow of a Powell-Eyring non-Newtonian fluid, J. Taibah Univ. Sci., 13 (2019), 858-863. doi: 10.1080/16583655.2019.1651988
    [32] A. Akgül, E. K. Akgül, A novel method for solutions of fourth-order fractional boundary value problems, Fractal Fract., 3 (2019), 1-13. doi: 10.3390/fractalfract3010001
    [33] E. K. Akgül, Reproducing kernel Hilbert space method for nonlinear boundary-value problems, Math. Method Appl. Sci., 41 (2018), 9142-9151. doi: 10.1002/mma.5102
    [34] B. Boutarfa, A. Akgül, M. Inc, New approach for the Fornberg-Whitham type equations, J. Comput. Appl. Math., 312 (2017), 13-26. doi: 10.1016/j.cam.2015.09.016
    [35] A. Akgül, E. K. Akgül, S. Korhan, New reproducing kernel functions in the reproducing kernel Sobolev spaces, AIMS Math., 5 (2020), 482-496. doi: 10.3934/math.2020032
    [36] N. Aronszajn, Theory of reproducing kernel, Trans. A.M.S., 168 (1950), 1-50.
    [37] K. Diethelm, The analysis of fractional differential equations, New York: Springer, 2010.
    [38] J. Shawe-Taylor, N. Cristianini, Kernel methods for pattern analysis, New York: Cambridge University Press, 2004.
  • This article has been cited by:

    1. Nourhane Attia, Ali Akgül, Djamila Seba, Abdelkader Nour, Manuel De la Sen, Mustafa Bayram, An Efficient Approach for Solving Differential Equations in the Frame of a New Fractional Derivative Operator, 2023, 15, 2073-8994, 144, 10.3390/sym15010144
    2. Mamta Kapoor, Samanyu Khosla, Series Solution to Fractional Telegraph Equations Using an Iterative Scheme Based on Yang Transform, 2024, 0971-3514, 10.1007/s12591-024-00679-w
    3. Mamta Kapoor, Varun Joshi, A comparative study of Sumudu HPM and Elzaki HPM for coupled Burgers’ equation, 2023, 9, 24058440, e15726, 10.1016/j.heliyon.2023.e15726
    4. M. L. Rupa, K. Aruna, Optical solitons of time fractional Kundu–Eckhaus equation and massive Thirring system arises in quantum field theory, 2024, 56, 0306-8919, 10.1007/s11082-023-05914-2
    5. Mamta Kapoor, A Robust study upon fuzzy fractional 2D Heat equation via semi-analytical technique, 2025, 26668181, 101207, 10.1016/j.padiff.2025.101207
    6. Somayeh Nemati, Salameh Sedaghat, Sajedeh Arefi, A new numerical approach for solving space–time fractional Schrödinger differential equations via fractional-order Chelyshkov functions, 2025, 26, 25900374, 100584, 10.1016/j.rinam.2025.100584
    7. Wan-ran Ding, Si-ming Li, Hui-ning Xue, Almost global existence for d-dimensional fractional nonlinear Schrödinger equation on flat torus, 2025, 40, 1005-1031, 480, 10.1007/s11766-025-5328-0
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4609) PDF downloads(495) Cited by(19)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog