Research article

Study on photocatalytic activity of ZnO-Zn2TiO4 for the ceramic glaze

  • Received: 02 July 2025 Revised: 19 August 2025 Accepted: 22 August 2025 Published: 01 September 2025
  • Due to the high sintering temperature of traditional ceramics, most photocatalytic substances in the ceramic glaze will lose efficacy. In this study, the photocatalyst of ZnO-Zn2TiO4 were synthesized by the sol-hydrothermal method and sintered at 1300 ℃. The photocatalytic activity of ZnO-Zn2TiO4 was tested by the degradation of methylene blue (MB) under sunlight irradiation at room temperature. Then, selecting the best catalytic effect of ZnO-Zn2TiO4 was mixed with the ceramic glaze and sintered at 1300 ℃, which was also tested by the degradation of MB. The results showed that when the ZnO-Zn2TiO4 was the molar ratio of Ti:Zn = 1:8 and added into the ceramic glaze with 15% mass percentage after sintering 1300 ℃, it exhibited superior photocatalytic efficiency in degrading MB. This study presents a novel approach for preparing high-temperature (1300 ℃) glazes with enhanced photocatalytic properties.

    Citation: Weida Hu, Jiaming Lin, Qi Xu, Tong Yu, Jingxiong Liu, Zhiquan Xiao, Hong Wang, Qijian Li. Study on photocatalytic activity of ZnO-Zn2TiO4 for the ceramic glaze[J]. AIMS Materials Science, 2025, 12(4): 877-892. doi: 10.3934/matersci.2025038

    Related Papers:

  • Due to the high sintering temperature of traditional ceramics, most photocatalytic substances in the ceramic glaze will lose efficacy. In this study, the photocatalyst of ZnO-Zn2TiO4 were synthesized by the sol-hydrothermal method and sintered at 1300 ℃. The photocatalytic activity of ZnO-Zn2TiO4 was tested by the degradation of methylene blue (MB) under sunlight irradiation at room temperature. Then, selecting the best catalytic effect of ZnO-Zn2TiO4 was mixed with the ceramic glaze and sintered at 1300 ℃, which was also tested by the degradation of MB. The results showed that when the ZnO-Zn2TiO4 was the molar ratio of Ti:Zn = 1:8 and added into the ceramic glaze with 15% mass percentage after sintering 1300 ℃, it exhibited superior photocatalytic efficiency in degrading MB. This study presents a novel approach for preparing high-temperature (1300 ℃) glazes with enhanced photocatalytic properties.



    加载中


    [1] Murugan K, Subasri R, Rao TN, et al. (2013) Synthesis, characterization and demonstration of self-cleaning TiO2 coatings on glass and glazed ceramic tiles. Prog Org Coat 76: 1756–1760. https://doi.org/10.1016/j.porgcoat.2013.05.012 doi: 10.1016/j.porgcoat.2013.05.012
    [2] Hofer M, Penner D (2011) Thermally stable and photocatalytically active titania for ceramic surfaces. J Eur Ceram Soc 31: 2887–2896. https://doi.org/10.1016/j.jeurceramsoc.2011.07.016 doi: 10.1016/j.jeurceramsoc.2011.07.016
    [3] Monrós G, Liusar M, Badenes J, et al. (2022) Sol-gel ceramic glazes with photocatalytic activity. J Sol-Gel Sci Techn 02: 535–549. https://doi.org/10.1007/s10971-022-05787-z doi: 10.1007/s10971-022-05787-z
    [4] Liu J, Wang Y, Ma J, et al. (2019) A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO. J Alloy Compd 783: 898–918. https://doi.org/10.1016/j.jallcom.2018.12.330 doi: 10.1016/j.jallcom.2018.12.330
    [5] Leong S, Razmjou A, Wang K, et al. (2014) TiO2 based photocatalytic membranes: A review. J Membrane Sci 472: 167–184. https://doi.org/10.1016/j.memsci.2014.08.016 doi: 10.1016/j.memsci.2014.08.016
    [6] Yu Z, Qiu R, Li H, et al. (2016) Preparation and photocatalytic activity of SnO2. Mater Lett 170: 25–30. https://doi.org/10.1016/j.matlet.2015.12.100 doi: 10.1016/j.matlet.2015.12.100
    [7] Wang Q, Zhang W, Hu X, et al. (2021) Hollow spherical WO3/TiO2 heterojunction for enhancing photocatalytic performance in visible-light. J Water Process Eng 40: 101943. https://doi.org/10.1016/j.jwpe.2021.101943 doi: 10.1016/j.jwpe.2021.101943
    [8] Qin R, Meng F, Khan MW, et al. (2019) Fabrication and enhanced photocatalytic property of TiO2-ZnO composite photocatalysts. Mater Lett 240: 84–87. https://doi.org/10.1016/j.matlet.2018.12.139 doi: 10.1016/j.matlet.2018.12.139
    [9] Hamdi A, Ferreira DP, Ferraria AM, et al. (2016) TiO2-CdS nanocomposites: Effect of CdS oxidation on the photocatalytic activity. J Nanomater 2016: 6581691. https://doi.org/10.1155/2016/6581691 doi: 10.1155/2016/6581691
    [10] Sangchay W (2016) The self-cleaning and photocatalytic properties of TiO2 doped with SnO2 thin films preparation by sol-gel method. Energy Procedia 89: 170–176. https://doi.org/10.1016/j.egypro.2016.05.023 doi: 10.1016/j.egypro.2016.05.023
    [11] Machida M, Norimoto K, Kimura T (2005) Antibacterial activity of photocatalytic titanium dioxide thin films with photodeposited silver on the surface of sanitary ware. J Am Ceram Soc 88: 95–100. https://doi.org/10.1111/j.1551-2916.2004.00006.x doi: 10.1111/j.1551-2916.2004.00006.x
    [12] Määttä J, Piispanen M, Kuisma R, et al. (2007) Effect of coating on cleanability of glazed surfaces. J Eur Ceram Soc 27: 4555–4560. https://doi.org/10.1016/j.jeurceramsoc.2007.02.204 doi: 10.1016/j.jeurceramsoc.2007.02.204
    [13] Cacciotti I, Nanni F, Campaniello V, et al. (2014) Development of a transparent hydrorepellent modified SiO2 coatings for glazed sanitarywares. Mater Chem Phys 146: 240–252. https://doi.org/10.1016/j.matchemphys.2014.03.005 doi: 10.1016/j.matchemphys.2014.03.005
    [14] Zhuang J, Liu P, Dai W, et al. (2010) A novel application of nano anticontamination technology for outdoor high-voltage ceramic insulators. Int J Appl Ceram Tec 7: 46–53. https://doi.org/10.1111/j.1744-7402.2009.02395.x doi: 10.1111/j.1744-7402.2009.02395.x
    [15] Zeng Z, Cheng P, Hong Y, et al. (2010) Fabrication of a photocatalytic ceramic by doping Si-, P-, and Zr- modified TiO2 nanopowders in glaze. J Am Ceram Soc 93: 2948–2951. https://doi.org/10.1111/j.1551-2916.2010.03910.x doi: 10.1111/j.1551-2916.2010.03910.x
    [16] He C, Tian B, Zhang J (2010) Thermally stable SiO2-doped mesoporous anatase TiO2 with large surface area and excellent photocatalytic activity. J Colloid Interf Sci 344: 382–389. https://doi.org/10.1016/j.jcis.2010.01.002 doi: 10.1016/j.jcis.2010.01.002
    [17] Tulyaganov DU, Agathopoulos S, Fernandes HR, et al. (2007) The influence of incorporation of ZnO-containing glazes on the properties of hard porcelains. J Eur Ceram Soc 27: 1665–1670. https://doi.org/10.1016/j.jeurceramsoc.2006.05.011 doi: 10.1016/j.jeurceramsoc.2006.05.011
    [18] Gonçalves RA, Toledo RP, Joshi N, et al. (2021) Green synthesis and applications of ZnO and TiO2 nanostructures. Molecules 26: 2236. https://doi.org/10.3390/molecules26082236 doi: 10.3390/molecules26082236
    [19] Gabal MA, Angari YMAl (2022) Zinc titanates nanopowders: Synthesis and characterization. Mater Res Express 9: 025010. https://doi.org/10.1088/2053-1591/ac5709 doi: 10.1088/2053-1591/ac5709
    [20] Mayén-Hernández SA, Torres-Delgado G, Castanedo-Pérez R, et al. (2007) Photocatalytic activity in Zn2TiO4 + ZnO thin films obtained by the sol-gel process. J Adv Oxid Technol 10: 90–93. https://doi.org/10.1515/jaots-2007-0115DOI:10.1515/jaots-2007-0115 doi: 10.1515/jaots-2007-0115DOI:10.1515/jaots-2007-0115
    [21] Cheng HH, Chen SS, Yang SY, et al. (2018) Sol-gel hydrothermal synthesis and visible light photocatalytic degradation performance of Fe/N codoped TiO2 catalysts. Materials 11: 939. https://doi.org/10.3390/ma11060939 doi: 10.3390/ma11060939
    [22] Yang T, Liu Y, Xia G, et al. (2021) Degradation of formaldehyde and methylene blue using wood-templated biomimetic TiO2. J Clean Prod 329: 129726. https://doi.org/10.1016/j.jclepro.2021.129726 doi: 10.1016/j.jclepro.2021.129726
    [23] Paredes P, Rauwel E, Wragg D, et al. (2023) Sunlight-driven photocatalytic degradation of methylene blue with facile one-step synthesized Cu-Cu2O-Cu3N nanoparticle mixtures. Nanomaterials 138: 1311. https://doi.org/10.3390/nano13081311 doi: 10.3390/nano13081311
    [24] Sun X, Wang S, Shen C, et al. (2016) Efficient photocatalytic hydrogen production over Rh-doped inverse spinel Zn2TiO4. ChemCatChem 813: 2289–2295. https://doi.org/10.1002/cctc.201600425 doi: 10.1002/cctc.201600425
    [25] Siriwong C, Phanichphant S (2011) Flame-made single phase Zn2TiO4 nanoparticles. Mater Lett 65: 2007–2009. https://doi.org/10.1016/j.matlet.2011.03.058 doi: 10.1016/j.matlet.2011.03.058
    [26] Chai Y, Li L, Lu J, et al. (2019) Germanium-substituted Zn2TiO4 solid solution photocatalyst for conversion of CO2 into fuels. J Catal 371: 144–152. https://doi.org/10.1016/j.jcat.2019.01.017 doi: 10.1016/j.jcat.2019.01.017
    [27] Arin J, Thongtem S, Phuruangrat A, et al. (2017) Characterization of ZnO-TiO2 and zinc titanate nanoparticles synthesized by hydrothermal process. Res Chem Intermediat 43: 3183–3195. https://doi.org/10.1007/s11164-016-2818-y doi: 10.1007/s11164-016-2818-y
    [28] Leśniak M, Partyka J, Sitarz M (2016) Impact of ZnO on the structure of aluminosilicate glazes. J Mol Struct 1126: 251–258. https://doi.org/10.1016/j.molstruc.2016.01.009 doi: 10.1016/j.molstruc.2016.01.009
    [29] Chaves AC, Lima SJG, Araújo RCMU, et al. (2006) Photoluminescence in disordered Zn2TiO4. Int J Quantum Chem 179: 985–992. https://doi.org/10.1016/j.jssc.2005.12.018 doi: 10.1016/j.jssc.2005.12.018
    [30] Mebrek A, Alleg S, Benayache S, et al. (2018) Preparation and characterization of spinel type Zn2TiO4 nanocomposite. Ceram Int 44: 10921–10928. https://doi.org/10.1016/j.ceramint.2018.03.153 doi: 10.1016/j.ceramint.2018.03.153
    [31] Manchala S, Nagappagari LR, Venkatakrishnan SM, et al. (2018) Facile synthesis of noble-metal free polygonal Zn2TiO4 nanostructures for highly efficient photocatalytic hydrogen evolution under solar light irradiation. Int J Hydrogen Energ 43: 13145–13157. https://doi.org/10.1016/j.ijhydene.2018.05.035 doi: 10.1016/j.ijhydene.2018.05.035
    [32] Janani FZ, Khiar H, Taoufik N, et al. (2023) ZnO-Zn2TiO4 heterostructure for highly efficient photocatalytic degradation of pharmaceuticals. Environ Sci Pollut R 30: 81403–81416. https://doi.org/10.1007/s11356-022-22791-6 doi: 10.1007/s11356-022-22791-6
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(521) PDF downloads(32) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog