

AIMS Materials Science, 12(4): 877–892.

DOI: 10.3934/matersci.2025038

Received: 02 July 2025 Revised: 19 August 2025 Accepted: 22 August 2025 Published: 01 September 2025

https://www.aimspress.com/journal/Materials

Research article

Study on photocatalytic activity of ZnO-Zn₂TiO₄ for the ceramic glaze

Weida Hu^{1,2,3,*}, Jiaming Lin^{1,2}, Qi Xu^{1,2}, Tong Yu², Jingxiong Liu^{1,2}, Zhiquan Xiao¹, Hong Wang³ and Qijian Li³

- School of Materials Science and Engineering, Hunan University of Technology, Zhuzhou, 412007, China
- ² Liling Ceramic College, Hunan University of Technology, Zhuzhou, 412007, China
- ³ Hunan Yangdong Porcelain Insulators & Electric Co. Ltd, The Ultra High Voltage Insulation Materials of Hunan Engineering Technology Research Center, Zhuzhou, 412205, China
- * Correspondence: Email: 203huweida@163.com; Tel: +86-189-7533-4250.

Abstract: Due to the high sintering temperature of traditional ceramics, most photocatalytic substances in the ceramic glaze will lose efficacy. In this study, the photocatalyst of ZnO-Zn₂TiO₄ were synthesized by the sol-hydrothermal method and sintered at 1300 °C. The photocatalytic activity of ZnO-Zn₂TiO₄ was tested by the degradation of methylene blue (MB) under sunlight irradiation at room temperature. Then, selecting the best catalytic effect of ZnO-Zn₂TiO₄ was mixed with the ceramic glaze and sintered at 1300 °C, which was also tested by the degradation of MB. The results showed that when the ZnO-Zn₂TiO₄ was the molar ratio of Ti:Zn = 1:8 and added into the ceramic glaze with 15% mass percentage after sintering 1300 °C, it exhibited superior photocatalytic efficiency in degrading MB. This study presents a novel approach for preparing high-temperature (1300 °C) glazes with enhanced photocatalytic properties.

Keywords: photocatalysis; high temperature; ZnO; Zn₂TiO₄; ceramic glaze

1. Introduction

With the rapid advancement of science and technology, the utilization of anti-pollution materials assumes a pivotal role. In the context of traditional ceramic industry, this is primarily manifested in the incorporation of antibacterial and self-cleaning properties into ceramic glazes. However, it is worth

noting that photocatalysis technology now offers an exceptional solution for decontaminating ceramic glazes [1–3].

Most of the photocatalysts employed are metal oxides or sulfides, such as TiO₂, ZnO, CdS, WO₃, and SnO₂ [4–6]. Alternatively, photocatalysts can be fabricated by coupling two semiconductors; for example, TiO₂-CdS, TiO₂-SnO₂, TiO₂-WO₃, and TiO₂-ZnO [7–10]. To enhance the photocatalytic performance of ceramic glaze, two primary approaches can be employed. Initially, applying a semiconductor thin film with photocatalytic activity onto the surface of the glaze; however, this method often leads to weak bonding between the film and the glaze, making it susceptible to scratching and subsequently reducing its photocatalytic effectiveness. Alternatively, the photocatalysts are incorporated into the ceramic glaze mixture followed by sintering [11–14]. Although this method effectively addresses the limitations of the weak combination between the photocatalytic film and the ceramic glaze, it is essential to ensure a sintering temperature below 1000 °C due to potential degradation of photocatalytic properties at elevated temperatures.

There is limited research on investigating the photocatalytic properties of high-temperature prepared ceramic glazes. For instance, by incorporating modified TiO_2 into the ceramic glaze, the transition temperature from anatase to rutile could be extended from 700 to 900 °C, thereby enhancing the photocatalytic activity of TiO_2 on the ceramic glaze at higher temperatures [15]. He [16] prepared a SiO_2 - TiO_2 composite oxide by incorporating TiO_2 into SiO_2 to retard the formation of rutile, resulting in enhanced high temperature stability and photocatalytic properties. However, when used in ceramic glazes, the presence of alkali metals and alkaline earth metals caused the loss of photocatalytic activity at the high temperature (≥ 1000 °C).

It has been discovered that ZnO, as a semiconductor material, possesses not only a low cost but also exhibits photocatalytic activity. Furthermore, ZnO demonstrates exceptional performance in terms of interfusion and thermal stability when is combined with ceramics [17]. Additionally, the reaction between ZnO and TiO₂ yields enhanced photocatalytic effects compared to pure ZnO or pure TiO₂. Gonçalves [18] provided a comprehensive overview of the synthesis methods for ZnO and TiO₂, revealing the occurrence of three distinct phases, namely ilmenite rhombohedral ZnTiO₃, cubic spinel Zn₂TiO₄, and defective cubic Zn₂Ti₃O₈, which underwent transformation at different temperature ranges. Gabal [19] reported that Zn₂TiO₄ exhibited stability up to 1418 °C, while Sandra investigated the impact of ZnO doping on the photocatalytic performance of Zn₂TiO₄, revealing that ZnO/Zn₂TiO₄ demonstrates superior photocatalytic properties compared to pure Zn₂TiO₄ [20].

The sol-gel hydrothermal method has been widely recognized for its ability to produce materials with enhanced photocatalytic performance. Cheng et al. [21] synthesized Fe/N codoped TiO₂ catalysts using sol-gel hydrothermal method, which exhibited excellent visible light photocatalytic degradation performance. This is attributed to the high surface area and optimal crystalline structure of the synthesized particles, which are key factors in improving photocatalytic efficiency. Besides, the method enables the production of materials at relatively low temperatures compared to traditional solid-state reactions. This not only saves energy but also helps in preserving the structural integrity of the materials, which is essential for maintaining high photocatalytic performance.

In this study, the ZnO-Zn₂TiO₄ composite was synthesized via a sol-hydrothermal method and incorporated into the conventional ceramic glaze, followed by sintering at 1300 °C. Through comprehensive analysis of crystal phase composition, microstructure, and photocatalytic properties of the resulting ceramic glaze, this study presents a novel approach for fabricating high-temperature (1300 °C)

ceramic glaze with enhanced photocatalytic activity. Furthermore, it could offer valuable technical support for imparting antibacterial and self-cleaning functionalities to traditional ceramics glazes.

2. Materials and methods

2.1. Synthesis of Zn-Ti-O compound materials

The TiO₂ sol was prepared as follows: 20 mL of CH₃CH₂OH (analytical grade, Jiangsu Qiangsheng Functional Chemical Corporation), 10 mL of C₆H₁₅NO₃ (analytical grade, Tianjin Kemiou Chemical Reagent Corporation), and 34 mL of C₁₆H₃₆O₄Ti (analytical grade, Tianjin Kemiou Chemical Reagent Corporation) were combined in a beaker and stirred for 1 h. Subsequently, 1 mL of deionized water and 9 mL of CH₃CH₂OH were added to the beaker while continuing stirring for 1 h. Following this step, Zn(CH₃COO)₂·2H₂O (analytical grade, Xilong Scientific Corporation) with varying titanium-zinc ratios (Ti:Zn = 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, and 1:10) was introduced into the aforementioned beaker and stirred for an additional hour.

The beaker's contents were transferred into a reactor and subjected to heating at 140 °C for 12 h. Subsequently, the dried mixture was transferred to an alumina crucible and sintered at 1300 °C in a muffle furnace. After cooling the muffle furnace to room temperature, the mixture within the alumina crucible was milled and passed through a 150-mesh screen to obtain Zn-Ti-O compound materials. The preparation process was illustrated in Figure 1.

The temperature gradient of the muffle furnace was as follows: first, the temperature ramped up from room temperature to 600 °C at a rate of 5 °C/min and held steady at 600 °C for 0.5 h; second, the temperature increased from 600 to 1200 °C at the rate of 5 °C/min and maintained 1200 °C for 0.5 h; third, the temperature rose from 1200 to 1300 °C at a rate of 5 °C/min and maintained 1300 °C for 1 h; finally, the furnace cooled naturally back down to room temperature.

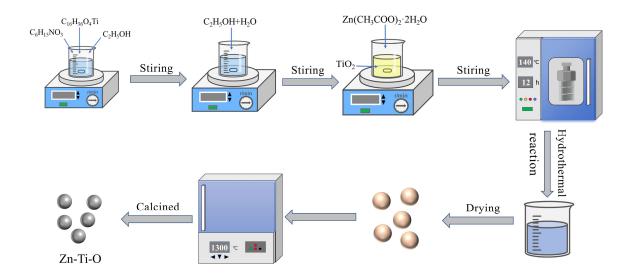


Figure 1. Schematic diagram of the preparation process of Zn-Ti-O compound materials.

2.2. Synthesis of the photocatalytic ceramic glaze

The Zn-Ti-O compound materials exhibiting the highest photocatalytic degradation performance toward methylene blue (MB) were selected for further study. The optimal Zn-Ti-O composite material (Ti:Zn = 1:8) with a mass percentage ranging from 5% to 25% was added to 300-mesh glaze powder, mixed thoroughly, and a 2 g mixture was prepared. This mixture was then placed into a mold with a diameter of 10 mm and a height of 10 mm, and pressed into a cylindrical shape. Then, the cylinder was placed on a ceramic body (diameter 25 mm) and burned in a muffle furnace at 1300 °C. The composition of the ceramic glaze utilized in this study is presented in Table 1.

Composition	SiO ₂	Al ₂ O ₃	Na ₂ O	K ₂ O	MgO	CaO	Fe ₂ O ₃	BaO	
Content (wt%)	76.63	13.55	1.10	2.78	1.72	1.95	1.05	1.22	

Table 1. The composition of ceramic glaze.

2.3. Characterization of the materials

The absorbance of MB following the photocatalytic reaction was measured using a UV-Vis spectrophotometer (UV-7600, Shanghai Jinghua Science and Technology Instrument Corporation).

The absorbance of the solid photocatalyst was measured using an Ultraviolet-visible spectrophotometer (UV-Vis, Shimadzu, UV-2600). The light absorption threshold of the sample was determined through tangential analysis within a scanning wavelength range of 200–800 nm.

The crystal structure of the samples was analyzed using an X-ray diffractometer (XRD, Ultima IV), with a scanning range of 2θ from 20 to 80° and a scanning speed of 10° /min.

The Fourier infrared spectrometer (FT-IR, Shimadzu, IRTracer-100) was employed to assess the alterations in chemical bonds within the wavelength range of 400–2000 cm⁻¹.

The surface morphology and chemical composition of the samples were examined using scanning electron microscopy (SEM, Apreo S) and energy dispersive X-ray spectroscopy (EDX, EDAX ELECT PLUS). Additionally, the microstructure and lattice fringe of the samples were observed using a transmission electron microscope (TEM, JEM-2100).

2.4. Photocatalytic study

MB was used as the target pollutant to systematically evaluate the photocatalytic activity of the prepared samples. The experimental process is shown in Figure 2: (a) 0.6 g of Zn-Ti-O composite material was dispersed in 60 mL of MB solution with an initial concentration of 12 mg/L. Under room natural sunlight at 30 ± 2 °C, 10 mL of MB solution was extracted every 24 h. The supernatant was obtained by centrifugation for absorbance detection. (b) Ceramic glaze slices with added Zn-Ti-O composite material were placed in 60 mL of MB solution with an initial concentration of 12 mg/L. Photocatalytic degradation experiments were carried out using natural light as the light source. Every 24 h, 10 mL of MB solution was extracted. The supernatant was obtained by centrifugation for absorbance detection. The degradation efficiencies of MB were calculated using Eq 1:

Degradation =
$$(C_0 - C)/C_0 \times 100\%$$
 (1)

where C_0 and C were the initial absorbance and degraded absorbance of the MB at 664 nm, respectively [22]. The photo-catalyst band gap energy (Eg) for the samples were measured using Eq 2:

$$E_g = 1240/\lambda g \tag{2}$$

where λg is the wavelength at the overlap of the vertical and horizontal portions in the ultraviolet-visible spectrophotometer with the tangential method [22].

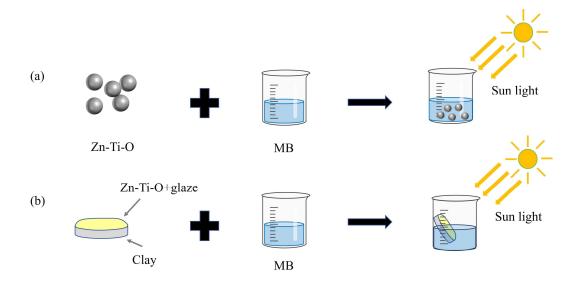
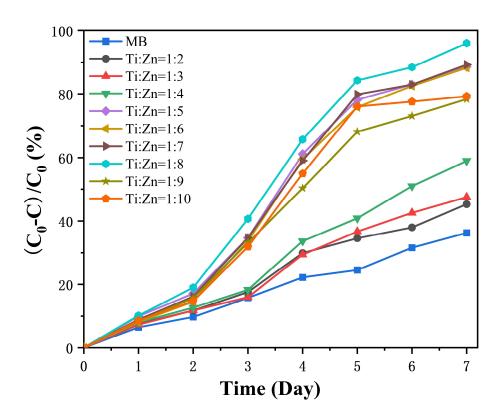


Figure 2. Schematic diagram of the photocatalytic experiment.

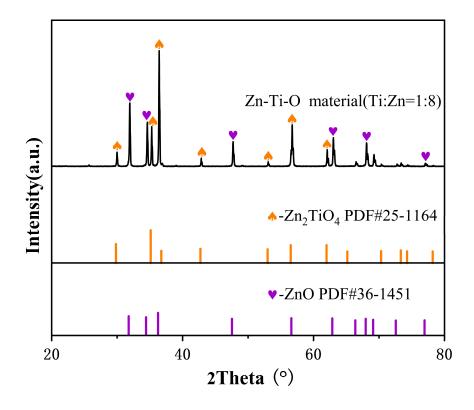
3. Results


3.1. Photocatalytic performance analysis of the Zn-Ti-O compound materials

The degradation of MB in the presence of Zn-Ti-O compound materials (with Ti:Zn molar ratios ranging from 1:2 to 1:10) are illustrated in Figure 3. For comparison, pure MB samples were tested under dark conditions (referred to as D) and sunlight exposure (referred to as L). As depicted in Figure 3a for the first day and Figure 3b for seven days, a gradual degradation of MB was observed with increasing reaction time. Notably, the degradation efficiency of MB was significantly enhanced when using Zn-Ti-O compound materials with a molar ratio of Ti:Zn between 1:5 and 1:8.

Figure 4 shows the degradation curve of MB by Zn-Ti-O composite materials (with Ti: Zn molar ratios ranging from 1:2 to 1:10) under natural light irradiation. As the irradiation time increased, the removal rate of all samples steadily increased. The self-degradation of MB under sunlight does impact the experimental results [23], but it did not mask the photocatalytic ability of ZnO-Zn₂TiO₄ for MB under ultraviolet light in our research. The Zn-Ti-O composite material with a Ti:Zn molar ratio of 1:8 exhibited excellent photocatalytic activity, with a removal rate of 96% after seven days of natural light irradiation, demonstrating outstanding photoresponsive ability.

Figure 3. The pictures of degradation MB (a: 1 day, b: 7 days), MB-dark (named D), MB-sunlight (named L), and Zn-Ti-O compound materials (Ti:Zn = 1:2–1:10) reacted with MB under sunlight.


Figure 4. The degradation curves of MB solution by Zn-Ti-O compound materials (Ti:Zn = 1:2–1:10).

3.2. XRD analysis of the Zn-Ti-O compound material

The crystal structure of Zn-Ti-O compound materials (Ti:Zn = 1:8) was investigated by XRD, and the results are shown in Figure 5. The XRD patterns presented the diffraction peaks of two crystal phases: Zn₂TiO₄ (PDF-25-1164) and ZnO (PDF-36-1451). The presence of the rutile (TiO₂) phase was not detected. The presence of ZnO in the compound material was confirmed, and a portion of Zn²⁺ ions reacted with Ti⁴⁺ to form a new phase of Zn₂TiO₄. The XRD analysis presented in Figure 5 exhibited excellent agreement with other studies [24–26]. The reaction process between TiO₂ sol and (CH₃COO)₂Zn·2H₂O could be described as Eq 3:

$$(CH3COO)2Zn \cdot 2H2O + Ti(OH)4 \xrightarrow{400 \, \text{°C}} ZnO - TiO2 \xrightarrow{>945 \, \text{°C}} ZnO + Zn2TiO4$$
(3)

The occurrence of this reaction could facilitate the formation of a junction between ZnO and Zn₂TiO₄, thereby promoting the efficient separation of photo-generated carriers and resulting in enhanced photocatalytic performance [27].

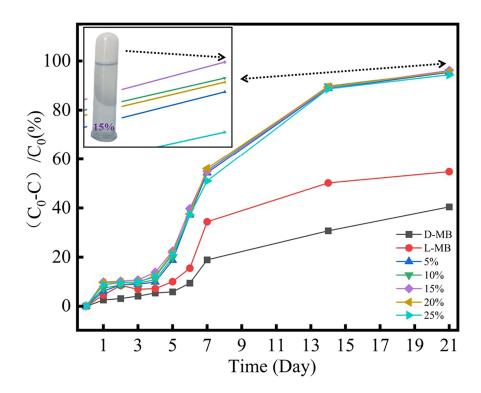


Figure 5. XRD pattern of the Zn-Ti-O compound material (Ti:Zn = 1:8).

3.3. Photocatalytic analysis of the ceramic glaze reacted with ZnO-Zn₂TiO₄

The ceramic glazes reacted with the superior photocatalytic compound material of ZnO-Zn₂TiO₄ (Ti:Zn = 1:8) at mass percentages ranging from 5% to 25%, followed by sintering at a temperature of 1300 °C. The photocatalytic performance of the ceramic glazes was evaluated by reacting with MB under sunlight conditions. For comparison, MB samples were tested in the dark (referred to as D-MB) and under sunlight (referred to as L-MB). It was observed that the absorbance of all collected MB

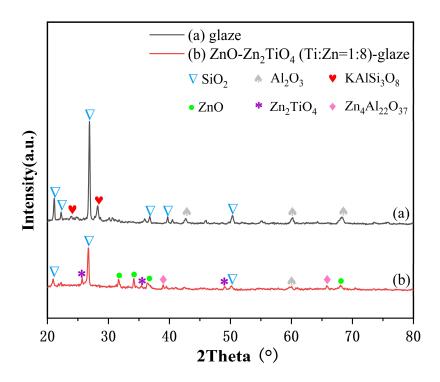
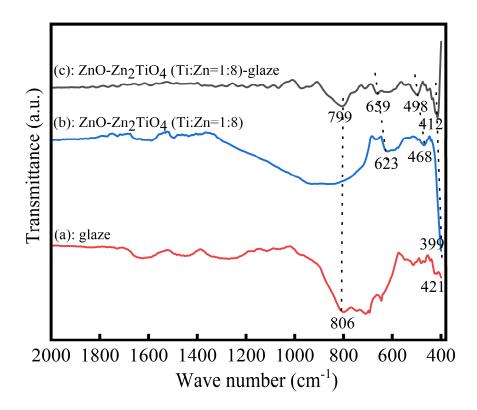

samples gradually decreased over a period of 21 days, but the ceramic glazes reacted with ZnO-Zn₂TiO₄ exhibited superior performance in degrading MB. To identify the best catalytic performance among the ceramic glazes, an enlarged picture showing the degradation of MB over a span of 21 days is presented in Figure 6. After 21 days, almost complete degradation of MB was achieved using the ceramic glaze containing a mass percentage of ZnO-Zn₂TiO₄ at 15%, resulting in a degradation rate of MB reaching up to 96.13%.

Figure 6. The UV-Vis spectrum absorbance of MB degraded by different materials during the 21 days.

3.4. XRD analysis of ceramic glaze

The major crystalline phases of the ceramic glaze consisted of SiO₂ (PDF-46-1045), Al₂O₃ (PDF-04-0878), and KAlSi₃O₈ (PDF-19-0926) in Figure 7a, which were consistent with the composition of the ceramic glaze as shown in Table 1. However, as depicted in Figure 7b, when the ceramic glaze reacted with ZnO-Zn₂TiO₄ at a mass percentage of 15%, new crystalline phases, including Zn₄Al₂₂O₃₇ (PDF-23-1491), ZnO (PDF-36-1451), and Zn₂TiO₄ (PDF-25-1164), appeared. Notably, there was a minor change observed: the crystalline phase KAlSi₃O₈ (2θ = 28.072°) disappeared, while a new crystalline phase Zn₄Al₂₂O₃₇ (PDF-23-1491) emerged instead. This phenomenon could be attributed to the stronger polarization ability of Zn²⁺ compared to Na⁺, resulting in easier generation of Zn₄Al₂₂O₃₇ and transformation of NaO-SiO₂ into the ceramic glaze matrix. XRD analysis confirmed that after sintering at 1300 °C, the composite photocatalyst consisting of ZnO-Zn₂TiO₄ was stably integrated into the ceramic glaze.


Figure 7. XRD analysis of the ceramic glazes. (a) The ceramic glaze and (b) the ceramic glaze reacted with 15% mass percentage $ZnO-Zn_2TiO_4(Ti:Zn = 1:8)$.

3.5. FT-IR analysis of ceramic glaze

To further analyze the reaction between the ceramic glaze and ZnO-Zn₂TiO₄, Figure 8 presents the FT-IR analysis of different materials. In Figure 8a, for the ceramic glaze sintered at 1300 °C, an absorption peak at 806 cm⁻¹ was observed, which could be attributed to the asymmetric stretching vibration of Si–O(Si) and Si–O(Al) bridge bonds. Additionally, a peak at 421 cm⁻¹ was identified as bending vibrations of O–Si–O and O–Al–O bonds. The presence of these two absorption peaks was consistent with the composition of the ceramic glaze [28].

The FT-IR pattern of ZnO-Zn₂TiO₄ in Figure 8b revealed that the absorption peak at 623 cm⁻¹ could be attributed to the absorption band of [TiO₆] octahedral groups, while the absorption peaks at 468 and 399 cm⁻¹ were associated with the absorption bands of [ZnO₄] tetrahedral groups. Upon reaction with ceramic glaze containing 15 wt% mass percentage of ZnO-Zn₂TiO₄, as shown in Figure 8c, a new absorption peak emerged at 659 cm⁻¹, which was assigned to the absorption band of [TiO₆] octahedral groups, along with additional peaks observed at 498 and 412 cm⁻¹ corresponding to the absorption bands of [ZnO₄] tetrahedral groups [29,30].

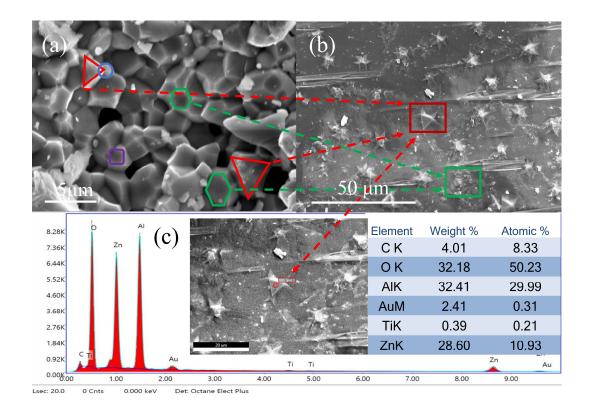

The absorption band exhibited a higher wave number and weaker intensity compared to the corresponding materials in Figure 8b. Furthermore, the absorption peak at 799 cm⁻¹, associated with asymmetric stretching vibration of Si–O(Si) and Si–O(Al) bridge bonds, shifted to a lower wave number and displayed weaker intensity than that observed in the ceramic glaze shown in Figure 8a. The changes depicted in Figure 8c, as opposed to the ceramic glaze, could be attributed to the fusion of Zn²⁺ within the ceramic glaze at high temperatures, resulting in fracture of Si–O(Al) bridge bonds [27]. The FT-IR analysis was consistent with XRD analysis (Figure 7).

Figure 8. FT-IR analysis of ceramic glazes. (a) Glaze, (b) ZnO-Zn₂TiO₄ (Ti:Zn = 1:8), and (c) ceramic glaze mixed with 15% mass percentage ZnO-Zn₂TiO₄ (Ti:Zn = 1:8).

3.6. SEM-EDS analysis of ceramic glaze

The grain size of ZnO-Zn₂TiO₄, as observed in Figure 9a, ranged from 1 to 5 μm and exhibited various shapes, including triangles, hexagons, rectangles, and circles [31]. In Figure 9b, the microstructure of the ceramic glaze mixed with 15% mass percentage of ZnO-Zn₂TiO₄ was depicted, revealing that the triangles and hexagons of ZnO-Zn₂TiO₄ were present and well-integrated with the ceramic glaze. To further confirm the presence of ZnO-Zn₂TiO₄, EDS spectra analysis was conducted on the marked area containing triangles in Figure 9b. As shown in Figure 9c, elements such as C, Au, O, Ti, Zn, and Al were detected in the sample. The presence of C originated from the conductive tape, while Au was derived from the conductive coating. Notably, O, Ti, and Zn were attributed to ZnO-Zn₂TiO₄. The element Al was identified as originating from a crystalline phase known as Zn₄Al₂₂O₃₇. Furthermore, the results obtained through EDS analysis were consistent with those obtained through XRD analysis.

Figure 9. SEM-EDS analysis of ceramic glaze. (a) $ZnO-Zn_2TiO_4(Ti:Zn = 1:8)$, (b) the ceramic glaze mixed with 15% mass percentage of $ZnO-Zn_2TiO_4(Ti:Zn = 1:8)$, and (c) EDS spectra of the $ZnO-Zn_2TiO_4$ in the ceramic glaze.

3.7. TEM analysis of ceramic glaze

As depicted in Figure 10a, distinct lattice striations were observed in selected regions, with lattice fringes of 0.247 and 0.255 nm corresponding to the (101) crystal plane for ZnO (PDF-36-1451) and the (311) crystal plane for Zn₂TiO₄ (PDF-25-1164), respectively. The poly-crystalline structure of ZnO-Zn₂TiO₄ (Ti:Zn = 1:8) was confirmed, exhibiting excellent crystallinity after sintering at 1300 °C. Analysis of Figure 10a revealed the formation of a heterojunction between ZnO and Zn₂TiO₄ at the interface region, which could enhance the efficiency of photogenerated electron-hole separation [27,32]. When the ceramic glaze was mixed with a mass percentage of 15% ZnO-Zn₂TiO₄ and sintered at 1300 °C, as shown in Figure 10b, new poly-crystalline structures similar to the (311) plane for Zn₂TiO₄ (PDF-25-1164) in Figure 10c, the (101) plane for ZnO (PDF-36-1451) in Figure 10d, the (101) plane for SiO₂ (PDF-46-1045) in Figure 10e, and the (110) plane for Zn₄Al₂₂O₃₇ (PDF-23-1491) in Figure 10f, were observed in the ceramic glaze. The TEM analysis indicated that ZnO-Zn₂TiO₄ was a poly-crystalline structure and well fused with the ceramic glaze, which consistently supported the results of XRD and SEM analysis.

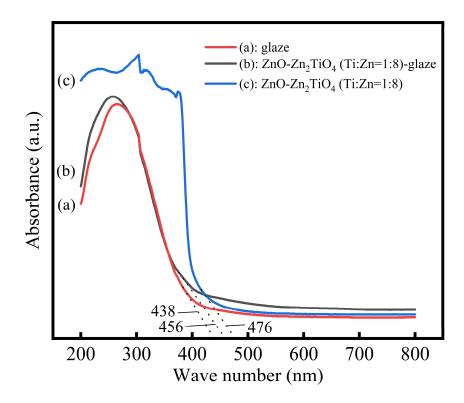


Figure 10. TEM analysis of the ceramic glaze. (a) $ZnO-Zn_2TiO_4$ (Ti:Zn = 1:8), (b) the ceramic glaze mixed with 15% mass percentage $ZnO-Zn_2TiO_4$ (Ti:Zn = 1:8), (c) lattice fringes of Zn_2TiO_4 (311) plane, (d) lattice fringes of ZnO (101) plane, (e) lattice fringes of SiO_2 (101) plane, and (f) lattice fringes of $Zn_4Al_{22}O_{37}$ (110) plane.

3.8. UV-Vis analysis and energy gap calculation of ceramic glaze

To investigate the impact of ZnO-Zn₂TiO₄ on the photocatalytic activity of the ceramic glaze, the UV-Vis spectrum analysis is presented in Figure 11. The UV-Vis absorption threshold value for the ceramic glaze in Figure 11a was determined to be 438 nm, corresponding to an energy gap calculation of 2.83eV. The UV-Vis absorption threshold value for ceramic glaze mixed with 15% mass percentage ZnO-Zn₂TiO₄ (Ti:Zn = 1:8) in Figure 11b was determined to be 456 nm, corresponding to an energy gap calculation of 2.72 eV. For ZnO-Zn₂TiO₄ in Figure 11c, the UV-Vis absorption threshold value was measured at 476 nm, resulting in an energy gap calculation of 2.61 eV.

Compared with the ceramic glaze, it was observed that when reacted with a mass percentage of 15% ZnO-Zn₂TiO₄, there was an increase in the UV-Vis absorption threshold from 438 to 456 nm (the energy gap has been reduced from 2.83 to 2.72eV). This demonstrated that by incorporating ZnO-Zn₂TiO₄ into the ceramic glaze, its photocatalytic performance could be effectively enhanced within the visible region.

Figure 11. UV-Vis analysis: (a) ceramic glaze, (b) ceramic glaze mixed with 15% mass percentage ZnO-Zn₂TiO₄ (Ti:Zn = 1:8), and (c) ZnO-Zn₂TiO₄ (Ti:Zn = 1:8).

4. Conclusions

Our objective of this study was to assess the impact of ZnO-Zn₂TiO₄ on the photocatalytic properties of the ceramic glaze sintered at 1300 °C. Photocatalytic evaluation results for MB decolorization revealed that the ceramic glaze incorporating 15% mass percentage of ZnO-Zn₂TiO₄ (with the Ti:Zn ratio of 1:8) exhibited superior photocatalytic efficiency compared to all other samples, achieving a degradation rate of 96.13% after 21 days under sunlight irradiation.

From the analysis of the XRD and the SEM-EDX, the ZnO-Zn₂TiO₄ exists as a poly-crystalline structure in the ceramic glaze sintered at 1300 °C. According to the analysis of the FT-IR, the Zn²⁺ fused in the glaze at high temperature, causing the silicon-oxygen bond to break. As shown in the TEM, it could be found that the poly-crystalline of ZnO and Zn₂TiO₄ formed an interface region at the crystal plane. This intense interaction between the two could form a heterojunction, which could improve the efficiency of photogenerated electrons and holes separation.

The photo-catalyst band gap energy (Eg) of the ceramic glaze was measured in the UV-Visible spectrum, demonstrating a significant enhancement in photocatalytic performance after reaction with ZnO-Zn₂TiO₄ within the visible region. These findings presented a novel approach for fabricating high temperature ceramic glazes (1300 °C) with exceptional photocatalytic properties and offer valuable technical support for the antibacterial and self-cleaning characteristics of ceramic glazes.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work was supported and grants funded by Hunan Provincial Natural Science Foundation of China (2021JJ50036,2025JJ70041) and Ministry of Education Industry-university Cooperative Education Project of China (220904082254614), excellent youth funding of Hunan Provincial Education Department (24B0526).

Author contributions

Weida Hu: project leader, experimental plan formulation, funding acquisition, supervision; Jiaming Lin: writing-original draft, editing, data collection analysis and interpretation of results; Qi Xu: writing-original draft, experimental setup, experimentation; Tong Yu: experimental testing and data collection.

Conflict of interest

The authors declare no conflict of interest.

References

- 1. Murugan K, Subasri R, Rao TN, et al. (2013) Synthesis, characterization and demonstration of self-cleaning TiO₂ coatings on glass and glazed ceramic tiles. *Prog Org Coat* 76: 1756–1760. https://doi.org/10.1016/j.porgcoat.2013.05.012
- 2. Hofer M, Penner D (2011) Thermally stable and photocatalytically active titania for ceramic surfaces. *J Eur Ceram Soc* 31: 2887–2896. https://doi.org/10.1016/j.jeurceramsoc.2011.07.016
- 3. Monrós G, Liusar M, Badenes J, et al. (2022) Sol-gel ceramic glazes with photocatalytic activity. *J Sol-Gel Sci Techn* 02: 535–549. https://doi.org/10.1007/s10971-022-05787-z
- 4. Liu J, Wang Y, Ma J, et al. (2019) A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO. *J Alloy Compd* 783: 898–918. https://doi.org/10.1016/j.jallcom.2018.12.330
- 5. Leong S, Razmjou A, Wang K, et al. (2014) TiO₂ based photocatalytic membranes: A review. *J Membrane Sci* 472: 167–184. https://doi.org/10.1016/j.memsci.2014.08.016
- 6. Yu Z, Qiu R, Li H, et al. (2016) Preparation and photocatalytic activity of SnO₂. *Mater Lett* 170: 25–30. https://doi.org/10.1016/j.matlet.2015.12.100
- 7. Wang Q, Zhang W, Hu X, et al. (2021) Hollow spherical WO₃/TiO₂ heterojunction for enhancing photocatalytic performance in visible-light. *J Water Process Eng* 40: 101943. https://doi.org/10.1016/j.jwpe.2021.101943
- 8. Qin R, Meng F, Khan MW, et al. (2019) Fabrication and enhanced photocatalytic property of TiO₂-ZnO composite photocatalysts. *Mater Lett* 240: 84–87. https://doi.org/10.1016/j.matlet.2018.12.139
- 9. Hamdi A, Ferreira DP, Ferraria AM, et al. (2016) TiO₂-CdS nanocomposites: Effect of CdS oxidation on the photocatalytic activity. *J Nanomater* 2016: 6581691. https://doi.org/10.1155/2016/6581691

- 10. Sangchay W (2016) The self-cleaning and photocatalytic properties of TiO₂ doped with SnO₂ thin films preparation by sol-gel method. *Energy Procedia* 89: 170–176. https://doi.org/10.1016/j.egypro.2016.05.023
- 11. Machida M, Norimoto K, Kimura T (2005) Antibacterial activity of photocatalytic titanium dioxide thin films with photodeposited silver on the surface of sanitary ware. *J Am Ceram Soc* 88: 95–100. https://doi.org/10.1111/j.1551-2916.2004.00006.x
- 12. Määttä J, Piispanen M, Kuisma R, et al. (2007) Effect of coating on cleanability of glazed surfaces. *J Eur Ceram Soc* 27: 4555–4560. https://doi.org/10.1016/j.jeurceramsoc.2007.02.204
- 13. Cacciotti I, Nanni F, Campaniello V, et al. (2014) Development of a transparent hydrorepellent modified SiO₂ coatings for glazed sanitarywares. *Mater Chem Phys* 146: 240–252. https://doi.org/10.1016/j.matchemphys.2014.03.005
- 14. Zhuang J, Liu P, Dai W, et al. (2010) A novel application of nano anticontamination technology for outdoor high-voltage ceramic insulators. *Int J Appl Ceram Tec* 7: 46–53. https://doi.org/10.1111/j.1744-7402.2009.02395.x
- 15. Zeng Z, Cheng P, Hong Y, et al. (2010) Fabrication of a photocatalytic ceramic by doping Si-, P-, and Zr- modified TiO₂ nanopowders in glaze. *J Am Ceram Soc* 93: 2948–2951. https://doi.org/10.1111/j.1551-2916.2010.03910.x
- 16. He C, Tian B, Zhang J (2010) Thermally stable SiO₂-doped mesoporous anatase TiO₂ with large surface area and excellent photocatalytic activity. *J Colloid Interf Sci* 344: 382–389. https://doi.org/10.1016/j.jcis.2010.01.002
- 17. Tulyaganov DU, Agathopoulos S, Fernandes HR, et al. (2007) The influence of incorporation of ZnO-containing glazes on the properties of hard porcelains. *J Eur Ceram Soc* 27: 1665–1670. https://doi.org/10.1016/j.jeurceramsoc.2006.05.011
- 18. Gonçalves RA, Toledo RP, Joshi N, et al. (2021) Green synthesis and applications of ZnO and TiO₂ nanostructures. *Molecules* 26: 2236. https://doi.org/10.3390/molecules26082236
- 19. Gabal MA, Angari YMA1 (2022) Zinc titanates nanopowders: Synthesis and characterization. *Mater Res Express* 9: 025010. https://doi.org/10.1088/2053-1591/ac5709
- 20. Mayén-Hernández SA, Torres-Delgado G, Castanedo-Pérez R, et al. (2007) Photocatalytic activity in Zn₂TiO₄ + ZnO thin films obtained by the sol-gel process. *J Adv Oxid Technol* 10: 90–93. https://doi.org/10.1515/jaots-2007-0115
- 21. Cheng HH, Chen SS, Yang SY, et al. (2018) Sol-gel hydrothermal synthesis and visible light photocatalytic degradation performance of Fe/N codoped TiO₂ catalysts. *Materials* 11: 939. https://doi.org/10.3390/ma11060939
- 22. Yang T, Liu Y, Xia G, et al. (2021) Degradation of formaldehyde and methylene blue using wood-templated biomimetic TiO₂. *J Clean Prod* 329: 129726. https://doi.org/10.1016/j.jclepro.2021.129726
- 23. Paredes P, Rauwel E, Wragg D, et al. (2023) Sunlight-driven photocatalytic degradation of methylene blue with facile one-step synthesized Cu-Cu₂O-Cu₃N nanoparticle mixtures. *Nanomaterials* 138: 1311. https://doi.org/10.3390/nano13081311
- 24. Sun X, Wang S, Shen C, et al. (2016) Efficient photocatalytic hydrogen production over Rh-doped inverse spinel Zn₂TiO₄. *ChemCatChem* 813: 2289–2295. https://doi.org/10.1002/cctc.201600425
- 25. Siriwong C, Phanichphant S (2011) Flame-made single phase Zn₂TiO₄ nanoparticles. *Mater Lett* 65: 2007–2009. https://doi.org/10.1016/j.matlet.2011.03.058

- 26. Chai Y, Li L, Lu J, et al. (2019) Germanium-substituted Zn₂TiO₄ solid solution photocatalyst for conversion of CO₂ into fuels. *J Catal* 371: 144–152. https://doi.org/10.1016/j.jcat.2019.01.017
- 27. Arin J, Thongtem S, Phuruangrat A, et al. (2017) Characterization of ZnO-TiO₂ and zinc titanate nanoparticles synthesized by hydrothermal process. *Res Chem Intermediat* 43: 3183–3195. https://doi.org/10.1007/s11164-016-2818-y
- 28. Leśniak M, Partyka J, Sitarz M (2016) Impact of ZnO on the structure of aluminosilicate glazes. *J Mol Struct* 1126: 251–258. https://doi.org/10.1016/j.molstruc.2016.01.009
- 29. Chaves AC, Lima SJG, Araújo RCMU, et al. (2006) Photoluminescence in disordered Zn₂TiO₄. *Int J Quantum Chem* 179: 985–992. https://doi.org/10.1016/j.jssc.2005.12.018
- 30. Mebrek A, Alleg S, Benayache S, et al. (2018) Preparation and characterization of spinel type Zn₂TiO₄ nanocomposite. *Ceram Int* 44: 10921–10928. https://doi.org/10.1016/j.ceramint.2018.03.153
- 31. Manchala S, Nagappagari LR, Venkatakrishnan SM, et al. (2018) Facile synthesis of noble-metal free polygonal Zn₂TiO₄ nanostructures for highly efficient photocatalytic hydrogen evolution under solar light irradiation. *Int J Hydrogen Energ* 43: 13145–13157. https://doi.org/10.1016/j.ijhydene.2018.05.035
- 32. Janani FZ, Khiar H, Taoufik N, et al. (2023) ZnO-Zn₂TiO₄ heterostructure for highly efficient photocatalytic degradation of pharmaceuticals. *Environ Sci Pollut R* 30: 81403–81416. https://doi.org/10.1007/s11356-022-22791-6

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)