Mini review

Atomistic modeling and molecular dynamic simulation of polymer nanocomposites for thermal and mechanical property characterization: A review

  • Received: 13 August 2022 Revised: 11 December 2022 Accepted: 20 December 2022 Published: 09 February 2023
  • Epoxy resins are formed when epoxy monomers react with crosslinkers that have active hydrogen sites on them such as amine and anhydrides. These cross-linked structures are highly unpredictable and depend on different parameters during curing. Epoxy material when reinforced with nanoparticles has got importance because of its extraordinary enhanced mechanical and thermal properties for structural application. Experimentally it is challenging to tailor these nanostructures and manufacture epoxy-based nanocomposites with desired properties. An experimental approach to preparing these is tedious and costly. The improvement of such materials requires huge experimentation and a better level of control of their properties can't be accomplished up till now. There is a need for numerical experimentation to guide these experimental procedures. With the headway of computational techniques, an alternative for these experiments had given an effective method to characterize these nanocomposites and study their reaction kinetics. Molecular dynamics (MD) simulation is one such technique that works on density function theory and Newton*s second law to characterize these materials with different permutations and combinations during their curing. This review is carried out for MD simulation studies done to date on different epoxies and epoxy-based nanocomposites for their thermal, mechanical, and thermo-mechanical characterization.

    Citation: Nilesh Shahapure, Dattaji Shinde, Ajit Kelkar. Atomistic modeling and molecular dynamic simulation of polymer nanocomposites for thermal and mechanical property characterization: A review[J]. AIMS Materials Science, 2023, 10(2): 249-287. doi: 10.3934/matersci.2023014

    Related Papers:

  • Epoxy resins are formed when epoxy monomers react with crosslinkers that have active hydrogen sites on them such as amine and anhydrides. These cross-linked structures are highly unpredictable and depend on different parameters during curing. Epoxy material when reinforced with nanoparticles has got importance because of its extraordinary enhanced mechanical and thermal properties for structural application. Experimentally it is challenging to tailor these nanostructures and manufacture epoxy-based nanocomposites with desired properties. An experimental approach to preparing these is tedious and costly. The improvement of such materials requires huge experimentation and a better level of control of their properties can't be accomplished up till now. There is a need for numerical experimentation to guide these experimental procedures. With the headway of computational techniques, an alternative for these experiments had given an effective method to characterize these nanocomposites and study their reaction kinetics. Molecular dynamics (MD) simulation is one such technique that works on density function theory and Newton*s second law to characterize these materials with different permutations and combinations during their curing. This review is carried out for MD simulation studies done to date on different epoxies and epoxy-based nanocomposites for their thermal, mechanical, and thermo-mechanical characterization.



    加载中


    [1] Bandyopadhyay A, Valavala P, Clancy T, et al. (2010) Atomistic modeling of cross-linked epoxy polymer. 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 19th AIAA/ASME/AHS Adaptive Structures Conference 13th, Denver, Colordo. https://doi.org/10.2514/6.2011-1920
    [2] Lefrant S, Buisson JP, Schreiber J, et al. (2004) Raman studies of carbon nanotubes and polymer nanotube composites. Mol Cryst Liq Cryst 415: 125–132. https://doi.org/10.1080/15421400490482844 doi: 10.1080/15421400490482844
    [3] Li X, Chen W, Zhan Q, et al. (2006) Direct measurements of interactions between polypeptides and carbon nanotubes. J Phys Chem B 110: 12621–12625. https://doi.org/10.1021/jp061518d doi: 10.1021/jp061518d
    [4] Rahmat M, Hubert P (2011) Carbon nanotube-polymer interactions in nanocomposites: a review. Compos Sci Technol 72: 72–84. https://doi.org/10.1016/j.compscitech.2011.10.002 doi: 10.1016/j.compscitech.2011.10.002
    [5] Pielichowski K, Pielichowska K (2018) 11-Polymer nanocomposites, Handbook of Thermal Analysis and Calorimetry, Elsevier, 6: 431–485. https://doi.org/10.1016/B978-0-444-64062-8.00003-6
    [6] Zeng QH, Yu AB, Lu GQ (2008) Multiscale modeling and simulation of polymer nanocomposites. Prog Polym Sci 33: 191–269. https://doi.org/10.1016/j.progpolymsci.2007.09.002 doi: 10.1016/j.progpolymsci.2007.09.002
    [7] Zhao J, Wu L, Zhan C, et al. (2017) Overview of polymer nanocomposites: Computer simulation understanding of physical properties. Polymer 133: 272–287. https://doi.org/10.1016/j.polymer.2017.10.035 doi: 10.1016/j.polymer.2017.10.035
    [8] Lee JY, Baljon ARC, Loring RF, et al. (1998) Simulation of polymer melt intercalation in layered nanocomposites. J Chem Phys 109: 10321–10330. https://doi.org/10.1063/1.477687 doi: 10.1063/1.477687
    [9] Smith GD, Bedrov D, Li LW, et al. (2002) A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites. J Chem Phys 117: 9478–9489. https://doi.org/10.1063/1.1516589 doi: 10.1063/1.1516589
    [10] Smith JS, Bedrov D, Smith GD (2003) A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite. Compos Sci Technol 63: 1599–1605. https://doi.org/10.1016/S0266-3538(03)00061-7 doi: 10.1016/S0266-3538(03)00061-7
    [11] Zeng QH, Yu AB, Lu GQ, et al. (2003) Molecular dynamics simulation of organic-inorganic nanocomposites: layering behavior and interlayer structure of organoclays. Chem Mater 15: 4732–4738. https://doi.org/10.1021/cm0342952 doi: 10.1021/cm0342952
    [12] Vacatello M (2003) Predicting the molecular arrangements in polymer-based nanocomposites. Macromol Theor Simul 12: 86–91. https://doi.org/10.1002/mats.200390000 doi: 10.1002/mats.200390000
    [13] Zeng QH, Yu AB, Lu GQ (2005) Interfacial interactions and structure of polyurethane intercalated nanocomposite. Nanotechnology 16: 2757–2763. https://doi.org/10.1088/0957-4484/16/12/002 doi: 10.1088/0957-4484/16/12/002
    [14] Allen MP, Tildesley DJ (1989) Computer Simulation of Liquids, Oxford: Clarendon Press. https://doi.org/10.1063/1.2810937
    [15] Frenkel D, Smit B (2002) Understanding Molecular Simulation: from Algorithms to Applications, 2 Eds., San Diego: Academic Press.
    [16] Metropolis N, Rosenbluth AW, Marshall N, et al. (1953) Equation of state calculations by fast computing machines. J Chem Phys 21: 1087–1092. https://doi.org/10.1063/1.1699114 doi: 10.1063/1.1699114
    [17] Gibson JB, Zhang K, Ke Chen, et al. (1999) Simulation of colloid-polymer systems using dissipative particle dynamics. Mol Simulat 23: 1–41. https://doi.org/10.1080/08927029908022109 doi: 10.1080/08927029908022109
    [18] Dzwinel V, Yuen DA (2000) A two-level, discrete particle approach for large-scale simulation of colloidal aggregates. Int J Mod Phys C 11: 1037–1061. https://doi.org/10.1142/S0129183100000882 doi: 10.1142/S0129183100000882
    [19] Dzwinel W, Yuen DA (2000) A two-level discrete-particle approach for simulating ordered colloidal structures. J Colloid Interface Sci 225: 179-190. https://doi.org/10.1006/jcis.2000.6751 doi: 10.1006/jcis.2000.6751
    [20] Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30: 329–364. https://doi.org/10.1146/annurev.fluid.30.1.329 doi: 10.1146/annurev.fluid.30.1.329
    [21] Meyyappan M (2004) Carbon Nanotubes: Science and Applications, Boca Raton: CRC Press. https://doi.org/10.1201/9780203494936
    [22] Altevogt P, Ever OA, Fraaije JGEM, et al. (1999) The Meso Dyn project: software for mesoscale chemical engineering. J Mol Struct 463: 139–143. https://doi.org/10.1016/S0166-1280(98)00403-5 doi: 10.1016/S0166-1280(98)00403-5
    [23] Kawakatsu T, DoiM, Hasegawa A (1999) Dynamic density functional approach to phase separation dynamics of polymer systems. Int J Mod Phys C 10: 1531–1540. https://doi.org/10.1142/S0129183199001315 doi: 10.1142/S0129183199001315
    [24] Morita H, Kawakatsu T, DoiM (2001) Dynamic density functional study on the structure of thin polymer blend films with a free surface. Macromolecules 34: 8777–8783. https://doi.org/10.1021/ma010346+ doi: 10.1021/ma010346+
    [25] Computer Simulation of Polymeric Materials (2016) Computer Simulation of Polymeric Materials: Applications of the OCTA System, Springer Singapore. https://doi.org/10.1007/978-981-10-0815-3
    [26] Montazeri A, Mehrafrooz B (2018) 14-theoretical modeling of CNT-polymer interactions, In: Rafiee R, Carbon Nanotube-Reinforced Polymers: From Nanoscale to Macroscale-A Volume in Micro and Nano Technologies, Elsevier, 347–383. https://doi.org/10.1016/B978-0-323-48221-9.00014-5
    [27] Verma A, Parashar A, Packirisamy M (2018) Atomisticmodeling of graphene/hexagonal boron nitride polymer nanocomposites: a review. WIRES-Comput Molr Sci 8: e1346. https://doi.org/10.1002/wcms.1346 doi: 10.1002/wcms.1346
    [28] Sindu BS, Sasmal S (2015) Evaluation of mechanical characteristics of nano modified epoxy based polymers using molecular dynamics. Comp Mater Sci 96: 146–158. https://doi.org/10.1016/j.commatsci.2014.09.003 doi: 10.1016/j.commatsci.2014.09.003
    [29] Hu H, Onyebueke L, Abatan A (2010) Characterizing and modeling mechanical properties of nanocomposites-review and evaluation. JMMCE 9: 275–319. https://doi.org/10.4236/jmmce.2010.94022 doi: 10.4236/jmmce.2010.94022
    [30] Lau KT, Gu C, Hui D (2006) A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos Part B-Eng 37: 425–436. https://doi.org/10.1016/j.compositesb.2006.02.020 doi: 10.1016/j.compositesb.2006.02.020
    [31] Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102: 7338–7364. https://doi.org/10.1021/jp980939v doi: 10.1021/jp980939v
    [32] Allinger NL, Yuh YH, Lii JH (1989) Molecular mechanics The MM3 force field for hydrocarbons. J Am Chem Soc 111: 8551–8566. https://doi.org/10.1021/ja00205a001 doi: 10.1021/ja00205a001
    [33] Lii JH, Allinger NL (1991) The MM3 force field for amides, polypeptides and proteins. J Comput Chem 12: 186–199. https://doi.org/10.1002/jcc.540120208 doi: 10.1002/jcc.540120208
    [34] Allinger NL, Li F, Yan L (1990) Molecular mechanics The MM3 force field for alkenes. J Comput Chem 11: 848–867. https://doi.org/10.1002/jcc.540110708 doi: 10.1002/jcc.540110708
    [35] Allinger NL, Rahman M, Lii JH (1990) A molecular mechanics force field (MM3) for alcohols and ethers. J Am Chem Soc 112: 8293–8307. https://doi.org/10.1021/ja00179a012 doi: 10.1021/ja00179a012
    [36] Awaja F, Zhang S, Tripathi M, et al. (2016) Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair. Prog Mater Sci 83: 536–573. https://doi.org/10.1016/j.pmatsci.2016.07.007 doi: 10.1016/j.pmatsci.2016.07.007
    [37] Zaminpayma E (2014) Molecular dynamics simulation of mechanical properties and interaction energy of polythiophene/polyethylene/poly(p-phenylenevinylene) and CNTs composites. Polym Compos 35: 2261–2268. https://doi.org/10.1002/pc.22891 doi: 10.1002/pc.22891
    [38] Arash B, Wang Q, Varadan VK (2014) Mechanical properties of carbon nanotube/polymercomposites. Sci Rep 4: 1–8. https://doi.org/10.1038/srep06479 doi: 10.1038/srep06479
    [39] Arab B, Shokuhfar A (2013) Molecular dynamics simulation of cross-linked epoxy polymers:the effect of force field on the estimation of properties. J Nano-Electron Phys 5: 01013.
    [40] Jeyranpour F, Alahyarizadeh G, Arab B (2015) Comparative investigation of thermal and mechanical properties of cross-linked epoxy polymers with different curing agents by molecular dynamics simulation. J Mol Graph Model 62: 157–164. https://doi.org/10.1016/j.jmgm.2015.09.012 doi: 10.1016/j.jmgm.2015.09.012
    [41] Shenogina NB, Tsige M, Patnaik SS, et al. (2012) Molecular modeling approach to prediction of thermo-mechanical behavior of thermoset polymer networks. Macromolecules 45: 5307–5315. https://doi.org/10.1021/ma3007587 doi: 10.1021/ma3007587
    [42] Choi J, Shin H, Yang S, et al. (2015) The influence of nanoparticle size on the mechanical properties of polymer nanocomposites and the associated interphase region: A multiscale approach. Compos Struct 119: 365–376. https://doi.org/10.1016/j.compstruct.2014.09.014 doi: 10.1016/j.compstruct.2014.09.014
    [43] Ingvason GA, Rollin V (2014) Molecular dynamics simulation of a pullout test on a carbon nanotube in a polymer matrix. MRS OPL 1700: 61-66. https://doi.org/10.1557/opl.2014.715 doi: 10.1557/opl.2014.715
    [44] Volodin A, Ahlskog M, Seynaeve E, et al. (2000) Imaging the elastic properties of coiled carbon nanotubes with atomic force microscopy. Phys Rev Lett 84: 3342. https://doi.org/10.1103/PhysRevLett.84.3342 doi: 10.1103/PhysRevLett.84.3342
    [45] Chen J, Liu B, Gao X, et al. (2018) A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Adv 8: 28048–28085. https://doi.org/10.1039/C8RA04205E doi: 10.1039/C8RA04205E
    [46] Mohan R, Fefey E, Kelkar A (2012) Predictive mechanical properties of EPON 862 (DGEBF) cross-linked with curing agent W (DETDA) and SWCNT using MD simulations-Effect of carbon vacancy defects. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 1821, Honolulu, Hawaii. https://doi.org/10.2514/6.2012-1821
    [47] Rahman A, Deshpande P, Radue MS, et al. (2021) A machine learning framework fo rpredicting the shear strength of carbon nanotube-polymer interfaces based on molecular dynamics simulation data. Compos Sci Technol 207: 108627. https://doi.org/10.1016/j.compscitech.2020.108627 doi: 10.1016/j.compscitech.2020.108627
    [48] Zhang J, Koo B, Subramanian N, et al. (2016) An optimized cross-linked network model to simulate the linear elastic material response of a smart polymer. J Intel Mat Syst Str 27: 1461–1475. https://doi.org/10.1177/1045389X15595292 doi: 10.1177/1045389X15595292
    [49] Park C, Yun GJ (2018) Characterization of interfacial properties of graphene-reinforced polymer nanocomposites by molecular dynamics-shear deformation model. J Appl Mech 85: 91007. https://doi.org/10.1115/1.4040480 doi: 10.1115/1.4040480
    [50] Kallivokas SV, Sgouros AP, Theodorou DN (2019) Molecular dynamics simulations of EPON-862/DETDA epoxy networks: structure, topology, elastic constants, and local dynamics. Soft Matter 15: 721–733. https://doi.org/10.1039/C8SM02071J doi: 10.1039/C8SM02071J
    [51] Aghadavoudi F, Golestanian H, Zarasvand KA (2019) Elastic behavior of hybrid cross-linked epoxy-based nanocomposite reinforced with GNP and CNT: experimental and multiscale modeling. Polym Bull 76: 4275–4294. https://doi.org/10.1007/s00289-018-2602-9 doi: 10.1007/s00289-018-2602-9
    [52] Fasanella N, Sundararaghavan V (2015) Molecular dynamics of SWNT/epoxy nanocomposites. 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Kissimmee, Florida. https://doi.org/10.2514/6.2015-0124
    [53] Kwon W, Han M, Kim J, et al. (2021) Comparative study on toughening effect of PTS and PTK in various epoxy resins. Polymers 13: 518. https://doi.org/10.3390/polym13040518 doi: 10.3390/polym13040518
    [54] Al Mahmud H, Radue MS, Chinkanjanarot S, et al. (2019) Multiscale modeling of carbon fiber-graphene nanoplatelet-epoxy hybrid composites using a reactive force field. Compos Part B-Eng 172: 628–635. https://doi.org/10.1016/j.compositesb.2019.05.035 doi: 10.1016/j.compositesb.2019.05.035
    [55] Aboudi J, Arnold SM, Bednarcyk BA (2013) Micromechanics of Composite Materials, Elsevier. https://doi.org/10.1016/C2011-0-05224-9
    [56] Pramanik C, Nepal D, Nathanson M, et al. (2018) Molecular engineering of interphases in polymer/carbon nanotube composites to reach the limits of mechanical performance. Compos Sci Technol 166: 86–94. https://doi.org/10.1016/j.compscitech.2018.04.013 doi: 10.1016/j.compscitech.2018.04.013
    [57] Aluko O, Gowtham S, Odegard GM (2020) The assessment of carbon nanotube (CNT) geometry on the mechanical properties of epoxy nanocomposites. JMMP 5: 2050005. https://doi.org/10.1142/S2424913020500058 doi: 10.1142/S2424913020500058
    [58] Yang S (2021) Understanding covalent grafting of nanotubes onto polymer nanocomposites: molecular dynamics simulation study. Sensors 21: 2621. https://doi.org/10.3390/s21082621 doi: 10.3390/s21082621
    [59] Zhu F, Park C, Jin Yun G (2021) An extended Mori-Tanaka micromechanics model for wavy CNT nanocomposites with interface damage. Mech Adv Mater Struc 28: 295–307. https://doi.org/10.1080/15376494.2018.1562135 doi: 10.1080/15376494.2018.1562135
    [60] Subramanian N, Rai A, Chattopadhyay A (2017) Atomistically derived cohesive behavior of interphases in carbon fiber reinforced CNT nanocomposites. Carbon 117: 55–64. https://doi.org/10.1016/j.carbon.2017.02.068 doi: 10.1016/j.carbon.2017.02.068
    [61] Bamane SS, Gaikwad PS, Radue MS, et al. (2021) Wetting simulations of high-performance polymer resins on carbon surfaces as a function of temperature using molecular dynamics. Polymers 13: 2162. https://doi.org/10.3390/polym13132162 doi: 10.3390/polym13132162
    [62] Bandyopadhyay A, Valavala PK, Clancy TC, et al. (2011) Molecular modeling of crosslinked epoxy polymers: The effect of crosslink density on thermomechanical properties. Polymer 52: 2445–2452. https://doi.org/10.1016/j.polymer.2011.03.052 doi: 10.1016/j.polymer.2011.03.052
    [63] Bandyopadhyay A, Odegard GM (2013) Molecular modeling of physical aging in epoxy polymers. J Appl Polym Sci 128: 660–666. https://doi.org/10.1002/app.38245 doi: 10.1002/app.38245
    [64] Wang Z, Yang X, Wang Q, et al. (2011) Epoxy resin nanocomposites reinforced with ionized liquid stabilized carbon nanotubes. Int J Smart Nano Mat 2: 176–193. https://doi.org/10.1080/19475411.2011.594104 doi: 10.1080/19475411.2011.594104
    [65] Hadipeykani M, Aghadavoudi F, Toghraie D (2020) A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer based epoxy nanocomposite reinforced by CNT: a statistical study. Physica A 546: 128384. https://doi.org/10.1016/j.physa.2019.123995 doi: 10.1016/j.physa.2019.123995
    [66] Henry MM, Thomas S, Alberts MT, et al. (2020) General-purpose coarse-grained toughened thermoset model for 44DDS/DGEBA/PES. Polymers 12: 2547. https://doi.org/10.3390/polym12112547 doi: 10.3390/polym12112547
    [67] Crawford AO, Hamerton I, Cavalli G, et al. (2012) Quantifying the effect of polymer blending through molecular modelling of cyanurate polymers. PLoS ONE 7: e44487. https://doi.org/10.1371/journal.pone.0044487 doi: 10.1371/journal.pone.0044487
    [68] Hall SA, Howlin BJ, Hamerton I, et al. (2012) Solving the problem of building models of crosslinked polymers: An example focussing on validation of the properties of crosslinked epoxy resins. PLoS ONE 7: e42928. https://doi.org/10.1371/journal.pone.0042928 doi: 10.1371/journal.pone.0042928
    [69] Koo B, Liu Y, Zou J, et al. (2014) Study of glass transition temperature (Tg) of novel stress-sensitive composites using molecular dynamic simulation. Model Simul Mater Sc 22: 5018. https://doi.org/10.1088/0965-0393/22/6/065018 doi: 10.1088/0965-0393/22/6/065018
    [70] Sul JH, Prusty BG, Kelly DW (2014) Application of molecular dynamics to evaluate the design performance of low aspect ratio carbon nanotubes in fibre reinforced polymer resin. Compos Part A-Appl S 65: 64–72. https://doi.org/10.1016/j.compositesa.2014.03.004 doi: 10.1016/j.compositesa.2014.03.004
    [71] Farhadinia M, Arab B, Jam J (2016) Mechanical properties of CNT-reinforced polymer nano-composites: A molecular dynamics study. MACS 3: 113–121. https://doi.org/10.22075/macs.2016.473 doi: 10.22075/macs.2016.473
    [72] Emmanwori L, Shinde DK, Kelkar AD (2013) Mechanical properties assesment of electrospun TEOS nanofibers with EPON 862/W resin system in a fiber glass composite. SAMPE Technical Conference Proceedings, Wichita, KS, 21–24. Available from: https://www.nasampe.org/store/viewproduct.aspx?ID=4403730.
    [73] Wang, YT, Wang CS, Yin YH, et al. (2012) Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: Thermal and mechanical properties. Express Polym Lett 6: 719–728. https://doi.org/10.3144/expresspolymlett.2012.77 doi: 10.3144/expresspolymlett.2012.77
    [74] Shinde DK, Kelkar AD (2014) Effect of TEOS electrospun nanofiber modified resin on interlaminar shear strength of glass fiber/epoxy composite. WASET Org 8: 54–60.
    [75] Al Hasan NHJ (2018) Prediction of mechanical properties of EPON 862 (DGEBF) cross-linked with curing agent (TETA) and SiO2 nanoparticle based on materials studio. IOP Conf Ser-Mater Sci Eng 454: 012139. https://doi.org/10.1088/1757-899X/454/1/012139 doi: 10.1088/1757-899X/454/1/012139
    [76] Estridge CE (2018) The effects of competitive primary and secondary amine reactivity on the structural evolution and properties of an epoxy thermoset resin during cure: A molecular dynamics study. Polymer 141: 12–20. https://doi.org/10.1016/j.polymer.2018.02.062 doi: 10.1016/j.polymer.2018.02.062
    [77] Giannopoulos GI, Georgantzinos SK (2021) Thermomechanical behavior of bone-shaped SWCNT/polyethylene nanocomposites via molecular dynamics. Materials 14: 2192. https://doi.org/10.3390/ma14092192 doi: 10.3390/ma14092192
    [78] Agarwal BD, Broutman LJ (1974) Three-dimensional finite element analysis of spherical particle composites. Fibre Sci Technol 7: 63–77. https://doi.org/10.1016/0015-0568(74)90006-2 doi: 10.1016/0015-0568(74)90006-2
    [79] Treacy MJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381: 678–680. https://doi.org/10.1038/381678a0 doi: 10.1038/381678a0
    [80] Popov VN, Van Doren VE, Balkanski M (2020) Elastic properties of single-walled carbon nanotubes. Phys Rev B 61: 3078–3084. https://doi.org/10.1103/PhysRevB.61.3078 doi: 10.1103/PhysRevB.61.3078
    [81] Li C, Chou T (2006) Multiscale modeling of compressive behavior of carbon nanotube/polymer composites. Compos Sci Technol 66: 2409–2414. https://doi.org/10.1016/j.compscitech.2006.01.013 doi: 10.1016/j.compscitech.2006.01.013
    [82] Shi D, Feng X, Jiang H, et al. (2005) Multiscale analysis of fracture of carbon nanotubes embedded. Int J Fract 134: 369–386. https://doi.org/10.1007/s10704-005-3073-1 doi: 10.1007/s10704-005-3073-1
    [83] Bagha AK, Bahl S (2020) Finite element analysis of VGCF/pp reinforced square representative volume element to predict its mechanical properties for different loadings. Mater Today Proc 39: 54–59. https://doi.org/10.1016/j.matpr.2020.06.108 doi: 10.1016/j.matpr.2020.06.108
    [84] Tserpes KI, Papanikos P, Labeas G, et al. (2007) Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites. Theor Appl Fract Mech 49: 51–60. https://doi.org/10.1016/j.tafmec.2007.10.004 doi: 10.1016/j.tafmec.2007.10.004
    [85] Sanei SHR, Doles R (2020) Representative volume element for mechanical properties of carbon nanotube nanocomposites using stochastic finite element analysis. J Eng Mater Technol 142: 031004. https://doi.org/10.1115/1.4045708 doi: 10.1115/1.4045708
    [86] Tserpes KI, Papanikos P (2006) A progressive fracture model for carbon nanotubes. Compos Part B-Eng 37: 662–669. https://doi.org/10.1016/j.compositesb.2006.02.024 doi: 10.1016/j.compositesb.2006.02.024
    [87] Tserpes KI, Papanikos P, Labeas G, et al. (2008) Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites. Theoret Appl Fract Mech 49: 51–60. https://doi.org/10.1016/j.tafmec.2007.10.004 doi: 10.1016/j.tafmec.2007.10.004
    [88] Bhuiyan MA, Pucha RV, Worthy J, et al. (2013) Understanding the effect of CNT characteristics on the tensile modulus of CNT reinforced polypropylene using finite element analysis. Comp Mater Sci 79: 368–376. https://doi.org/10.1016/j.commatsci.2013.06.046 doi: 10.1016/j.commatsci.2013.06.046
    [89] Chawla N, Sidhu RS, Ganesh VV (2006) Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites. Acta Mater 54: 1541–1548. https://doi.org/10.1016/j.actamat.2005.11.027 doi: 10.1016/j.actamat.2005.11.027
    [90] Georgantzinos SK, Antoniou PA, Giannopoulos GI, et al. (2021) Design of laminated composite plates with carbon nanotube inclusions against buckling: Waviness and agglomeration effects. Nanomaterials 11: 2261. https://doi.org/10.3390/nano11092261 doi: 10.3390/nano11092261
    [91] Georgios I. Giannopoulos, Ilias G. Kallivokas (2014), Mechanical properties of graphene based nanocomposites incorporating a hybrid interphase. Finite Elem Anal Des 90: 31–40. https://doi.org/10.1016/j.finel.2014.06.008. doi: 10.1016/j.finel.2014.06.008
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1432) PDF downloads(234) Cited by(0)

Article outline

Figures and Tables

Figures(19)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog