Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Influence of the thermomechanical behavior of NiTi wires embedded in a damper on its damping capacity: Application to a bridge cable

  • Thanks to high dissipation properties, embedding NiTi Shape Memory Alloys in passive damping devices is effective to mitigate vibrations in building and cable structures. These devices can inconceivably be tested directly on full-scale experimental structures or on structures in service. To predict their effectiveness and optimize the set-up parameters, numerical tools are more and more developed. Most of them consist of Finite Element models representing the structure equipped with the damping device, embedding parts associated with a superelastic behavior. Generally, the implemented behavior laws do not include all the phenomena at the origin of strain energy dissipation, but stress-induced martensitic transformation only. This article presents a thermomechanical behavior law including the following phenomena: (i) intermediate R-phase transformation, (ii) thermal effects and (iii) strain localization. This law was implemented in a commercial Finite Element code to study the dynamic response of a bridge cable equipped with a NiTi wire-based damping device. The numerical results were compared to full-scale experimental ones, by considering the above-mentioned phenomena taken coupled or isolated: it has been shown that it is necessary to take all of these phenomena into account in order to successfully predict the damping capacity of the device.

    Citation: Helbert Guillaume, Dieng Lamine, Chirani Shabnam Arbab, Pilvin Philippe. Influence of the thermomechanical behavior of NiTi wires embedded in a damper on its damping capacity: Application to a bridge cable[J]. AIMS Materials Science, 2023, 10(1): 1-25. doi: 10.3934/matersci.2023001

    Related Papers:

    [1] Saima Rashid, Rehana Ashraf, Fahd Jarad . Strong interaction of Jafari decomposition method with nonlinear fractional-order partial differential equations arising in plasma via the singular and nonsingular kernels. AIMS Mathematics, 2022, 7(5): 7936-7963. doi: 10.3934/math.2022444
    [2] Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876
    [3] Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316
    [4] Saima Rashid, Fahd Jarad, Fatimah S. Bayones . On new computations of the fractional epidemic childhood disease model pertaining to the generalized fractional derivative with nonsingular kernel. AIMS Mathematics, 2022, 7(3): 4552-4573. doi: 10.3934/math.2022254
    [5] Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046
    [6] Ahu Ercan . Comparative analysis for fractional nonlinear Sturm-Liouville equations with singular and non-singular kernels. AIMS Mathematics, 2022, 7(7): 13325-13343. doi: 10.3934/math.2022736
    [7] Hasib Khan, Jehad Alzabut, J.F. Gómez-Aguilar, Praveen Agarwal . Piecewise mABC fractional derivative with an application. AIMS Mathematics, 2023, 8(10): 24345-24366. doi: 10.3934/math.20231241
    [8] Kottakkaran Sooppy Nisar, Aqeel Ahmad, Mustafa Inc, Muhammad Farman, Hadi Rezazadeh, Lanre Akinyemi, Muhammad Mannan Akram . Analysis of dengue transmission using fractional order scheme. AIMS Mathematics, 2022, 7(5): 8408-8429. doi: 10.3934/math.2022469
    [9] Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani . Existence and data dependence results for neutral fractional order integro-differential equations. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052
    [10] Eman A. A. Ziada, Salwa El-Morsy, Osama Moaaz, Sameh S. Askar, Ahmad M. Alshamrani, Monica Botros . Solution of the SIR epidemic model of arbitrary orders containing Caputo-Fabrizio, Atangana-Baleanu and Caputo derivatives. AIMS Mathematics, 2024, 9(7): 18324-18355. doi: 10.3934/math.2024894
  • Thanks to high dissipation properties, embedding NiTi Shape Memory Alloys in passive damping devices is effective to mitigate vibrations in building and cable structures. These devices can inconceivably be tested directly on full-scale experimental structures or on structures in service. To predict their effectiveness and optimize the set-up parameters, numerical tools are more and more developed. Most of them consist of Finite Element models representing the structure equipped with the damping device, embedding parts associated with a superelastic behavior. Generally, the implemented behavior laws do not include all the phenomena at the origin of strain energy dissipation, but stress-induced martensitic transformation only. This article presents a thermomechanical behavior law including the following phenomena: (i) intermediate R-phase transformation, (ii) thermal effects and (iii) strain localization. This law was implemented in a commercial Finite Element code to study the dynamic response of a bridge cable equipped with a NiTi wire-based damping device. The numerical results were compared to full-scale experimental ones, by considering the above-mentioned phenomena taken coupled or isolated: it has been shown that it is necessary to take all of these phenomena into account in order to successfully predict the damping capacity of the device.



    The Hermite-Hadamard inequality, which is one of the basic inequalities of inequality theory, has many applications in statistics and optimization theory, as well as providing estimates about the mean value of convex functions.

    Assume that f:IRR is a convex mapping defined on the interval I of R where a<b. The following statement;

    f(a+b2)1babaf(x)dxf(a)+f(b)2

    holds and known as Hermite-Hadamard inequality. Both inequalities hold in the reversed direction if f is concave.

    The concept of convex function, which is used in many classical and analytical inequalities, especially the Hermite-Hadamard inequality, has attracted the attention of many researchers see [4,7,8,9], and has expanded its application area with the construction of new convex function classes. The introduction of this useful class of functions for functions of two variables gave a new direction to convex analysis. In this sense, in [6], Dragomir mentioned about an expansion of the concept of convex function, which is used in many inequalities in theory and has applications in different fields of applied sciences and convex programming.

    Definition 1.1. Let us consider the bidimensional interval Δ=[a,b]×[c,d] in R2 with a<b,c<d. A function f:ΔR will be called convex on the co-ordinates if the partial mappings fy:[a,b]R,fy(u)=f(u,y) and fx:[c,d]R,fx(v)=f(x,v) are convex where defined for all y[c,d] and x[a,b]. Recall that the mapping f:ΔR is convex on Δ if the following inequality holds,

    f(λx+(1λ)z,λy+(1λ)w)λf(x,y)+(1λ)f(z,w)

    for all (x,y),(z,w)Δ and λ[0,1].

    Transferring the concept of convex function to coordinates inspired the presentation of Hermite-Hadamard inequality in coordinates and Dragomir proved this inequality as follows.

    Theorem 1.1. (See [6]) Suppose that f:Δ=[a,b]×[c,d]R is convex on the co-ordinates on Δ. Then one has the inequalities;

     f(a+b2,c+d2)12[1babaf(x,c+d2)dx+1dcdcf(a+b2,y)dy]1(ba)(dc)badcf(x,y)dxdy14[1(ba)baf(x,c)dx+1(ba)baf(x,d)dx+1(dc)dcf(a,y)dy+1(dc)dcf(b,y)dy]f(a,c)+f(a,d)+f(b,c)+f(b,d)4. (1.1)

    The above inequalities are sharp.

    To provide further information about convexity and inequalities that have been established on the coordinates, see the papers [1,2,5,10,11,12,13,14,15]).

    One of the trending problems of recent times is to present different types of convex functions and to derive new inequalities for these function classes. Now we will continue by remembering the concept of n-polynomial convex function.

    Definition 1.2. (See [16]) Let nN. A non-negative function f:IRR is called n-polynomial convex function if for every x,yI and t[0,1],

    f(tx+(1t)y)1nns=1(1(1t)s)f(x)+1nns=1(1ts)f(y).

    We will denote by POLC(I) the class of all n-polynomial convex functions on interval I.

    In the same paper, the authors have proved some new Hadamard type inequalities, we will mention the following one:

    Theorem 1.2. (See [16]) Let f:[a,b]R be an n-polynomial convex function. If a<b and fL[a,b], then the following Hermite-Hadaamrd type inequalities hold:

    12(nn+2n1)f(a+b2)1babaf(x)dxf(a)+f(b)nns=1ss+1. (1.2)

    Since some of the convex function classes can be described on the basis of means, averages have an important place in convex function theory. In [3], Awan et al. gave the harmonic version on the n-polynomial convexity described on the basis of the arithmetic mean as follows. They have also proved several new integral inequalities of Hadamard type.

    Definition 1.3. (See [3]) Let nN and H(0,) be an interval. Then a nonnegative real-valued function f:H[0,) is said to be an n-polynomial harmonically convex function if

    f(xytx+(1t)y)1nns=1(1(1t)s)f(y)+1nns=1(1ts)f(x)

    for all x,yH and t[0,1].

    Theorem 1.3. (See [3]) Let f:[a,b](0,)[0,) be an n-polynomial harmonically convex function. Then one has

    12(nn+2n1)f(2aba+b)abbabaf(x)x2dxf(a)+f(b)nns=1ss+1 (1.3)

    if fL[a,b].

    The main motivation in this study is to give a new modification of (m,n)-harmonically polynomial convex functions on the coordinates and to obtain Hadamard type inequalities via double integrals and by using Hö lder inequality along with a few properties of this new class of functions.

    In this section, we will give a new classes of convexity that will be called (m,n)-polynomial convex function as following.

    Definition 2.1. Let m,nN and Δ=[a,b]×[c,d] be a bidimensional interval. Then a non-negative real-valued function f:ΔR is said to be (m,n)-harmonically polynomial convex function on Δ on the co-ordinates if the following inequality holds:

    f(xztz+(1t)x,ywsw+(1s)y)1nni=1(1(1t)i)1mmj=1(1(1s)j)f(x,y)+1nni=1(1(1t)i)1mmj=1(1sj)f(x,w)+1nni=1(1ti)1mmj=1(1(1s)j)f(z,y)+1nni=1(1ti)1mmj=1(1sj)f(z,w)

    where (x,y),(x,w),(z,y),(z,w)Δ and t,s[0,1].

    Remark 2.1. If one choose m=n=1, it is easy to see that the definition of (m,n)-harmonically polynomial convex functions reduces to the class of the harmonically convex functions.

    Remark 2.2. The (2,2)-harmonically polynomial convex functions satisfy the following inequality;

    f(xztx+(1t)z,ywsz+(1s)w)3tt223ss22f(x,y)+3tt222ss22f(x,w)+2tt223ss22f(z,y)+2tt222ss22f(z,w)

    where (x,y),(x,w),(z,y),(z,w)Δ and t,s[0,1].

    Theorem 2.1. Assume that b>a>0,d>c>0,fα:[a,b]×[c,d][0,) be a family of the (m,n)-harmonically polynomial convex functions on Δ and f(u,v)=supfα(u,v). Then, f is (m,n)- harmonically polynomial convex function on the coordinates if K={x,y[a,b]×[c,d]:f(x,y)<} is an interval.

    Proof. For t,s[0,1] and (x,y),(x,w),(z,y),(z,w)Δ, we can write

    f(xztz+(1t)x,ywsw+(1s)y)=supfα(xztz+(1t)x,ywsw+(1s)y)1nni=1(1(1t)i)1mmj=1(1(1s)j)supfα(x,y)+1nni=1(1(1t)i)1mmj=1(1sj)supfα(x,w)+1nni=1(1ti)1mmj=1(1(1s)j)supfα(z,y)+1nni=1(1ti)1mmj=1(1sj)supfα(z,w)=1nni=1(1(1t)i)1mmj=1(1(1s)j)f(x,y)+1nni=1(1(1t)i)1mmj=1(1sj)f(x,w)+1nni=1(1ti)1mmj=1(1(1s)j)f(z,y)+1nni=1(1ti)1mmj=1(1sj)f(z,w)

    which completes the proof.

    Lemma 2.1. Every (m,n)-harmonically polynomial convex function on Δ is (m,n)-harmonically polynomial convex function on the co-ordinates.

    Proof. Consider the function f:ΔR is (m,n)-harmonically polynomial convex function on Δ. Then, the partial mapping fx:[c,d]R,fx(v)=f(x,v) is valid. We can write

    fx(vwtw+(1t)v)=f(x,vwtw+(1t)v)=f(x2tx+(1t)x,vwtw+(1t)v)1nni=1(1(1t)i)f(x,v)+1nni=1(1ti)f(x,w)=1nni=1(1(1t)i)fx(v)+1nni=1(1ti)fx(w)

    for all t[0,1] and v,w[c,d]. This shows the (m,n)-harmonically polynomial convexity of fx. By a similar argument, one can see the (m,n)-harmonically polynomial convexity of fy.

    Remark 2.3. Every (m,n)-harmonically polynomial convex function on the co-ordinates may not be (m,n)-harmonically polynomial convex function on Δ.

    A simple verification of the remark can be seen in the following example.

    Example 2.1. Let us consider f:[1,3]×[2,3][0,), given by f(x,y)=(x1)(y2). It is clear that f is harmonically polynomial convex on the coordinates but is not harmonically polynomial convex on [1,3]×[2,3], because if we choose (1,3),(2,3)[1,3]×[2,3] and t[0,1], we have

    RHSf(22t+(1t),93t+3(1t))=f(21t,3)=1+t1tLHS1nni=1(1(1t)i)f(1,3)+1nni=1(1ti)f(2,3)=0.

    Then, it is easy to see that

    f(22t+(1t),93t+3(1t))>1nni=1(1(1t)i)f(1,3)+1nni=1(1ti)f(2,3).

    This shows that f is not harmonically polynomial convex on [1,3]×[2,3].

    Now, we will establish associated Hadamard inequality for (m,n)-harmonically polynomial convex functions on the co-ordinates.

    Theorem 2.2. Suppose that f:ΔR is (m,n)-harmonically polynomial convex on the coordinates on Δ. Then, the following inequalities hold:

    14(mm+2m1)(nn+2n1)f(2aba+b,2cdc+d)14[(mm+2m1)abbabaf(x,2cdc+d)x2dx+(nn+2n1)cddcdcf(2aba+b,y)y2dy]abcd(ba)(dc)badcf(x,y)x2y2dxdy12[1n(cd(dc)dcf(a,y)y2dy+cd(dc)dcf(b,y)y2dy)ns=1ss+1+1m(ab(ba)baf(x,c)x2dx+ab(ba)baf(x,d)x2dx)mt=1tt+1](f(a,c)+f(a,d)+f(b,c)+f(b,d)nm)(ns=1ss+1mt=1tt+1). (2.1)

    Proof. Since f is (m,n)-harmonically polynomial convex function on the co-ordinates, it follows that the mapping hx and hy are (m,n)-harmonically polynomial convex functions. Therefore, by using the inequality (1.3) for the partial mappings, we can write

    12(mm+2m1)hx(2cdc+d)cddcdchx(y)y2dyhx(c)+hx(d)mms=1ss+1 (2.2)

    namely

    12(mm+2m1)f(x,2cdc+d)cddcdcf(x,y)y2dyf(x,c)+f(x,d)mns=1ss+1. (2.3)

    Dividing both sides of (2.2) by (ba)ab and by integrating the resulting inequality over [a,b], we have

    ab2(ba)(mm+2m1)baf(x,2cdc+d)dxabcd(ba)(dc)badcf(x,y)x2y2dydxabbaf(x,c)x2dx+abbaf(x,d)x2dxm(ba)ms=1ss+1. (2.4)

    By a similar argument for (2.3), but now for dividing both sides by (dc)cd and integrating over [c,d] and by using the mapping hy is (m,n)-harmonically polynomial convex function, we get

    cd2(dc)(nn+2n1)dcf(2aba+b,y)y2dyabcd(ba)(dc)badcf(x,y)x2y2dydxcddcf(a,y)y2dy+cddcf(b,y)y2dyn(dc)nt=1tt+1. (2.5)

    By summing the inequalities (2.4) and (2.5) side by side, we obtain the second and third inequalities of (2.1). By the inequality (1.3), we also have:

    12(mm+2m1)f(2aba+b,2cdc+d)cddcdcf(2aba+b,y)y2dy

    and

    12(nn+2n1)f(2aba+b,2cdc+d)abbabaf(x,2cdc+d)x2dx

    which give by addition the first inequality of (2.1). Finally, by using the inequality (1.3), we obtain

    cddcdcf(a,y)y2dyf(a,c)+f(a,d)mns=1ss+1,
    cddcdcf(b,y)y2dyf(b,c)+f(b,d)mns=1ss+1,
    abbabaf(x,c)x2dxf(a,c)+f(b,c)nnt=1tt+1,

    and

    abbabaf(x,d)x2dxf(a,d)+f(b,d)nnt=1tt+1

    which give by addition the last inequality of (2.1).

    In order to prove our main findings, we need the following identity.

    Lemma 2.2. Assume that f:Δ=[a,b]×[c,d](0,)×(0,)R be a partial differentiable mapping on Δ and 2ftsL(Δ). Then, one has the following equality:

    Φ(f)=f(a,c)+f(b,c)+f(a,d)+f(b,d)4+abcd(ba)(dc)badcf(x,y)x2y2dxdy12[cddcdcf(a,y)y2dy+cddcdcf(b,y)y2dy+abbabaf(x,c)x2dx+abbabaf(x,d)x2dx]=abcd(ba)(dc)4×1010(12t)(12s)(AtBs)22fts(abAt,cdBs)dsdt

    where At=tb+(1t)a,Bs=sd+(1s)c.

    Theorem 2.3. Let f:Δ=[a,b]×[c,d](0,)×(0,)R be a partial differentiable mapping on Δ and 2ftsL(Δ). If |2fts|q is (m,n)-harmonically polynomial convex function on Δ, then one has the following inequality:

    |Φ(f)|bd(ba)(dc)4ac(p+1)2p×[c1|2fts(a,c)|q+c2|2fts(a,d)|q+c3|2fts(b,c)|q+c4|2fts(b,d)|q]1q (2.6)

    where

    c1=1nni=1[2F1(2q,1;2;1ab)1i+1.2F1(2q,1;i+2;1ab)]×1mmj=1[2F1(2q,1;2;1cd)1j+1.2F1(2q,1;j+2;1cd)],
    c2=1nni=1[2F1(2q,1;2;1ab)1i+1.2F1(2q,1;i+2;1ab)]×1mmj=1[2F1(2q,1;2;1cd)1j+1.2F1(2q,j+1;j+2;1cd)],
    c3=1nni=1[2F1(2q,1;2;1ab)1i+1.2F1(2q,i+1;i+2;1ab)]×1mmj=1[2F1(2q,1;2;1cd)1j+1.2F1(2q,1;j+2;1cd)],
    c4=1nni=1[2F1(2q,1;2;1ab)1i+1.2F1(2q,i+1;i+2;1ab)]×1mmj=1[2F1(2q,1;2;1cd)1j+1.2F1(2q,j+1;j+2;1cd)],

    and At=tb+(1t)a,Bs=sd+(1s)c for fixed t,s[0,1],p,q>1 and p1+q1=1.

    Proof. By using the identity that is given in Lemma 2.2, we can write

    |Φ(f)|=abcd(ba)(dc)41010|(12t)||(12s)|(AtBs)2|2fts(abAt,cdBs)|dsdt

    By using the well known Hölder inequality for double integrals and by taking into account the definition of (m,n)-harmonically polynomial convex functions, we get

    |Φ(f)|abcd(ba)(dc)4(1010|12t|p|12s|pdtds)1p×(1010(AtBs)2q|2fts(abAt,cdBs)|qdtds)1qabcd(ba)(dc)4(1010(AtBs)2q×(1nni=1(1(1t)i)1mmj=1(1(1s)j)|2fts(a,c)|q+1nni=1(1(1t)i)1mmj=1(1sj)|2fts(a,d)|q+1nni=1(1ti)1mmj=1(1(1s)j)|2fts(b,c)|q+1nni=1(1ti)1mmj=1(1sj)|2fts(b,d)|q)dtds)1q

    By computing the above integrals, we can easily see the followings

    1010(AtBs)2q(1(1t)i)(1(1s)j)dtds=(ab)2q[2F1(2q,1;2;1ab)1i+1.2F1(2q,1;i+2;1ab)]×1mmj=1[2F1(2q,1;2;1cd)1j+1.2F1(2q,1;j+2;1cd)],
    1010(AtBs)2q(1(1t)i)(1sj)dtds=(ab)2q[2F1(2q,1;2;1ab)1i+1.2F1(2q,1;i+2;1ab)]×1mmj=1[2F1(2q,1;2;1cd)1j+1.2F1(2q,j+1;j+2;1cd)],
    1010(AtBs)2q(1ti)(1(1s)j)dtds=(ab)2q[2F1(2q,1;2;1ab)1i+1.2F1(2q,i+1;i+2;1ab)]×1mmj=1[2F1(2q,1;2;1cd)1j+1.2F1(2q,1;j+2;1cd)],

    and

    1010(AtBs)2q(1ti)(1sj)dtds=(ab)2q[2F1(2q,1;2;1ab)1i+1.2F1(2q,i+1;i+2;1ab)]×1mmj=1[2F1(2q,1;2;1cd)1j+1.2F1(2q,j+1;j+2;1cd)]

    where 2F1 is Hypergeometric function defined by

    2F1(2q,1;2;1ba)=1B(b,cb)10tb1(1t)cb1(1zt)adt,

    for c>b>0,|z|<1 and Beta function is defind as B(x,y)=10tx1(1t)y1dt,x,y>0. This completes the proof.

    Corollary 2.1. If we set m=n=1 in (2.6), we have the following new inequality.

    |Φ(f)|bd(ba)(dc)4ac(p+1)2p×[c11|2fts(a,c)|q+c22|2fts(a,d)|q+c33|2fts(b,c)|q+c44|2fts(b,d)|q]1q

    where

    c11=[2F1(2q,1;2;1ab)1i+1.2F1(2q,1;i+2;1ab)]×[2F1(2q,1;2;1cd)1j+1.2F1(2q,1;j+2;1cd)],
    c22=[2F1(2q,1;2;1ab)1i+1.2F1(2q,1;i+2;1ab)]×[2F1(2q,1;2;1cd)1j+1.2F1(2q,j+1;j+2;1cd)],
    c33=[2F1(2q,1;2;1ab)1i+1.2F1(2q,i+1;i+2;1ab)]×[2F1(2q,1;2;1cd)1j+1.2F1(2q,1;j+2;1cd)],
    c44=[2F1(2q,1;2;1ab)1i+1.2F1(2q,i+1;i+2;1ab)]×[2F1(2q,1;2;1cd)1j+1.2F1(2q,j+1;j+2;1cd)],

    Corollary 2.2. Suppose that all the conditions of Theorem 2.3 hold. If we set |2f(t,s)ts|q is bounded, i.e.,

    2f(t,s)ts=sup(t,s)(a,b)×(c,d)|2f(t,s)ts|q<,

    we get

    |Φ(f)|bd(ba)(dc)4ac(p+1)2p2f(t,s)ts×[c1+c2+c3+c4]1q

    where c1,c2,c3,c4 as in Theorem 2.3.

    c1=1nni=1[2F1(2q,1;2;1ab)1i+1.2F1(2q,1;i+2;1ab)]×1mmj=1[2F1(2q,1;2;1cd)1j+1.2F1(2q,1;j+2;1cd)],
    c2=1nni=1[2F1(2q,1;2;1ab)1i+1.2F1(2q,1;i+2;1ab)]×1mmj=1[2F1(2q,1;2;1cd)1j+1.2F1(2q,j+1;j+2;1cd)],
    c3=1nni=1[2F1(2q,1;2;1ab)1i+1.2F1(2q,i+1;i+2;1ab)]×1mmj=1[2F1(2q,1;2;1cd)1j+1.2F1(2q,1;j+2;1cd)],
    c4=1nni=1[2F1(2q,1;2;1ab)1i+1.2F1(2q,i+1;i+2;1ab)]×1mmj=1[2F1(2q,1;2;1cd)1j+1.2F1(2q,j+1;j+2;1cd)],

    N. Mlaiki and T. Abdeljawad would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

    S. Butt would like to thank H. E. C. Pakistan (project 7906) for their support.

    The authors declare that no conflicts of interest in this paper.



    [1] Ungar EE, Kerwin EM (1962) Loss factors of viscoelastic systems in terms of energy concepts. J Acoust Soc Am 34: 954–957. https://doi.org/10.1121/1.1918227 doi: 10.1121/1.1918227
    [2] Cai J, Mao S, Liu Y, et al. (2022) Nb/NiTi laminate composite with high pseudoelastic energy dissipation capacity. Mater Today Nano 19: 100238. https://doi.org/10.1016/j.mtnano.2022.100238 doi: 10.1016/j.mtnano.2022.100238
    [3] Oliveira JP, Zeng Z, Berveiller S, et al. (2018) Laser welding of Cu–Al–Be shape memory alloys: Microstructure and mechanical properties. Mater Design 148: 145–152. https://doi.org/10.1016/j.matdes.2018.03.066 doi: 10.1016/j.matdes.2018.03.066
    [4] Patoor E, Berveiller M (1994) Les Alliages à Mémoire de Formes, Hermes.
    [5] Otsuka K, Wayman C (1998) Shape Memory Materials, Cambridge: Cambridge University Press.
    [6] Udovenko VA (2003) Damping, In: Brailovski V, Prokoschkin S, Terriault P, et al., Shape Memory Alloys Fundamentals, Modelling and Applications, University of Quebec, Montreal, Canada, 279–309.
    [7] Orgéas L, Favier D (1998) Stress-induced martensitic transformation of a NiTi alloy in isothermal shear, tension and compression. Acta Mater 46: 5579–5591.
    [8] Menna C, Auricchio F, Asprone D (2014) Application of shape memory alloys in structural engineering, In: Lecce L, Concilio A, Shape Memory Alloy Engineering: for Aerospace, Structural and Biomedical Applications, Elsevier, 369–403. https://doi.org/10.1016/B978-0-08-099920-3.00013-9
    [9] Matsumoto M, Daito Y, Kanamura T, et al. (1998) Wind-induced vibration of cables of cable-stayed bridges. J Wind Eng Ind Aerod 74: 1015–1027. https://doi.org/10.1016/S0167-6105(98)00093-2 doi: 10.1016/S0167-6105(98)00093-2
    [10] Dieng L, Helbert G, Arbab Chirani S, et al. (2013) Use of shape memory alloys damper device to mitigate vibration amplitudes of bridge cables. Eng Struct 56: 1547–1556. https://doi.org/10.1016/j.engstruct.2013.07.018 doi: 10.1016/j.engstruct.2013.07.018
    [11] Nespoli A, Rigamonti D, Riva M, et al. (2016) Study of pseudoelastic systems for the design of complex passive dampers: static analysis and modeling. Smart Mater Struct 25: 105001. https://doi.org/10.1088/0964-1726/25/10/105001 doi: 10.1088/0964-1726/25/10/105001
    [12] Tobushi H, Shimeno Y, Hachisuka T, et al. (1998) Influence of strain rate on superelastic proporties of TiNi shape memory alloys. Mech Mater 30: 141–150. https://doi.org/10.1016/S0167-6636(98)00041-6 doi: 10.1016/S0167-6636(98)00041-6
    [13] Liu Y, Favier D (2000) Stabilisation of martensite due to shear deformation via variant reorientation in polycrystalline NiTi. Acta Mater 48: 3489–3499. https://doi.org/10.1016/S1359-6454(00)00129-4 doi: 10.1016/S1359-6454(00)00129-4
    [14] Bouvet C, Calloch S, Lexcellent C (2004) A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings. Eur J Mech A-Solid 23: 37–61. https://doi.org/10.1016/j.euromechsol.2003.09.005 doi: 10.1016/j.euromechsol.2003.09.005
    [15] Helbert G, Saint-Sulpice L, Arbab Chirani S, et al. (2014) Experimental charaterisation of three-phase NiTi wires under tension. Mech Mater 79: 85–101. https://doi.org/10.1016/j.mechmat.2014.07.020 doi: 10.1016/j.mechmat.2014.07.020
    [16] Zhu S, Zhang Y (2007) A thermomechanical constitutive model for superelastic SMA wire with strain-rate dependence. Smart Mater Struct 16: 1696. https://doi.org/10.1088/0964-1726/16/5/023 doi: 10.1088/0964-1726/16/5/023
    [17] Heintze O, Seelecke S (2008) A coupled thermomechanical model for shape memory alloys-From single crystal to polycrystal. Mater Sci Eng A-Struct 481–482: 389–394. https://doi.org/10.1016/j.msea.2007.08.028 doi: 10.1016/j.msea.2007.08.028
    [18] Shariat BS, Liu Y, Rio G (2012) Thermomechanical modelling of microstructurally graded shape memory alloys. J Alloys Compd 541: 407–414. https://doi.org/10.1016/j.jallcom.2012.06.027 doi: 10.1016/j.jallcom.2012.06.027
    [19] Xiao Y, Zeng P, Lei L (2019) Micromechanical modelling on thermomechanical coupling of superelastic NiTi alloy. Int J Mech Sci 153–154: 36–47. https://doi.org/10.1016/j.ijmecsci.2019.01.030 doi: 10.1016/j.ijmecsci.2019.01.030
    [20] Otsuka K, Ren X (2005) Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci 50: 511–678. https://doi.org/10.1016/j.pmatsci.2004.10.001 doi: 10.1016/j.pmatsci.2004.10.001
    [21] Oliveira JP, Mirande RM, Braz Fernandez FM (2017) Welding and joining of NiTi shape memory alloys: A review. Prog Mater Sci 88: 412–466. https://doi.org/10.1016/j.pmatsci.2017.04.008 doi: 10.1016/j.pmatsci.2017.04.008
    [22] Šittner P, SedlákP, Landa M, et al. (2006) In situ experimental evidence on R-phase related deformation processes in activated NiTi wires. Mater Sci Eng A-Struct 438–440: 579–584. https://doi.org/10.1016/j.msea.2006.02.200 doi: 10.1016/j.msea.2006.02.200
    [23] Sengupta A, Papadopoulos P (2009) Constitutive modeling and finite element approximation of B2-R-B19' phase transformations in Nitinol polycrystals. Comput Method Appl M 198: 3214–3227. https://doi.org/10.1016/j.cma.2009.06.004 doi: 10.1016/j.cma.2009.06.004
    [24] Sedlák P, Frost M, Benešová B, et al. (2012) Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings. Int J Plast 39: 132–151. https://doi.org/10.1016/j.ijplas.2012.06.008 doi: 10.1016/j.ijplas.2012.06.008
    [25] Rigamonti D, Nespoli A, Villa E, et al. (2017) Implementation of a constitutive model for different annealed superelastic SMA wires with rhombohedral phase. Mech Mater 112: 88–100. https://doi.org/10.1016/j.mechmat.2017.06.001 doi: 10.1016/j.mechmat.2017.06.001
    [26] Zhou T, Yu C, Kang G, et al. (2020) A crystal plasticity based constitutive model accounting for R phase and two-step phase transition of polycrystalline NiTi shape memory alloys. Int J Solids Struct 193–194: 503–526. https://doi.org/10.1016/j.ijsolstr.2020.03.001 doi: 10.1016/j.ijsolstr.2020.03.001
    [27] Shaw JA, Kyriakides S (1995) Thermomechanical aspects of NiTi. J Mech Phys Solids 43: 1243–1281. https://doi.org/10.1016/0022-5096(95)00024-D doi: 10.1016/0022-5096(95)00024-D
    [28] Favier D, Louche H, Schlosser P, et al. (2007) Homogeneous and heterogeneous deformation mechanisms in an austenitic polycrystalline Ti-50.8 at% Ni thin tube under tension. Investigation via temperature and strain fields measurements. Acta Mater 55: 5310–5322. https://doi.org/10.1016/j.actamat.2007.05.027 doi: 10.1016/j.actamat.2007.05.027
    [29] Sedmák P, Pilch J, Heller L, et al. (2016) Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load. Science 353: 559–562. https://doi.org/10.1126/science.aad6700 doi: 10.1126/science.aad6700
    [30] He YJ, Sun QP (2010) Rate-dependent domain spacing in a stretched NiTi strip. Int J Solids Struct 47: 2775–2783. https://doi.org/10.1016/j.ijsolstr.2010.06.006 doi: 10.1016/j.ijsolstr.2010.06.006
    [31] Shariat BS, Bakhtiari S, Yang H, et al. (2020) Controlled initiation and propagation of stress-induced martensitic transformation in functionally graded NiTi. J Alloys Compd 851: 156103. https://doi.org/10.1016/j.jallcom.2020.156103 doi: 10.1016/j.jallcom.2020.156103
    [32] Sun QP, Zhong Z (2000) An inclusion theory for the propagation of martensite band in NiTi shape memory alloy wires under tension. Int J Plast 16: 1169–1187. https://doi.org/10.1016/S0749-6419(00)00006-1 doi: 10.1016/S0749-6419(00)00006-1
    [33] Chan CW, Chan SHJ, Man HC, et al. (2012) 1-D constitutive model for evolution of stress-induced R-phase and localized Lüders-like stress-induced martensitic transformation of super-elastic NiTi wires. Int J Plast 32–33: 85–105. https://doi.org/10.1016/j.ijplas.2011.12.003 doi: 10.1016/j.ijplas.2011.12.003
    [34] Soul H, Yawny A (2013) Thermomechanical model for evaluation of the superelastic response of NiTi shape memory alloys under dynamic conditions. Smart Mater Struct 22: 035017. https://doi.org/10.1088/0964-1726/22/3/035017 doi: 10.1088/0964-1726/22/3/035017
    [35] Xiao Y, Jiang D (2020) Constitutive modelling of transformation pattern in superelastic NiTi shape memory alloy under cyclic loading. Int J Mech Sci 182: 105743. https://doi.org/10.1016/j.ijmecsci.2020.105743 doi: 10.1016/j.ijmecsci.2020.105743
    [36] Zuo XB, Li AQ (2011) Numerical and experimental investigation on cable vibration mitigation using shape memory alloy damper. Struct Control Health Monit 18: 20–39.
    [37] Ben Mekki O, Auricchio F (2011) Performance evaluation of shape-memory-alloy superelastic behavior to control a stay cable in cable-stayed bridges. Int J Non-Linear Mech 46: 470–477. https://doi.org/10.1016/j.ijnonlinmec.2010.12.002 doi: 10.1016/j.ijnonlinmec.2010.12.002
    [38] Torra V, Auguet C, Isalgue A, et al. (2013) Built in dampers for stayed cables in bridges via SMA. The SMARTeR-ESF project: A mesoscopic and macroscopic experimental analysis with numerical simulations. Eng Struct 49: 43–57. https://doi.org/10.1016/j.engstruct.2012.11.011 doi: 10.1016/j.engstruct.2012.11.011
    [39] Morse P, Ingard K (1968) Theoritical Acoustics, Princeton University Press.
    [40] MSC (2008) Marc/mentat volume A: Theory and user information.
    [41] Helbert G, Dieng L, Arbab Chirani S, et al. (2018) Investigation of NiTi based damper effects in bridge cables vibration response: Damping capacity and stiffness changes. Eng Struct 165: 184–197. https://doi.org/10.1016/j.engstruct.2018.02.087 doi: 10.1016/j.engstruct.2018.02.087
    [42] Helbert G, Saint-Sulpice L, Arbab Chirani S, et al. (2017) A uniaxial constitutive model for superelastic NiTi SMA including R-phase and martensite transformations and thermal effects. Smart Mater Struct 26: 025007. https://doi.org/10.1088/1361-665X/aa5141 doi: 10.1088/1361-665X/aa5141
    [43] Helbert G (2014) Contribution à la durabilité des câbles de Génie Civil vis-à-vis de la fatigue par un dispositif amortisseur à base de fils NiTi, Université de Bretagne Sud.
    [44] Qian ZQ, Akisanya AR (1999) An investigation of the stress singularity near the free edge of scarf joints. Eur J Mech A-Solid 18: 443–463. https://doi.org/10.1016/S0997-7538(99)00118-7 doi: 10.1016/S0997-7538(99)00118-7
    [45] Harvey JF (1974) Theory and Design of Modern Pressure Vessels, Van Nostrand Reinhold.
    [46] Auger F, Gonçalvès P, Lemoine O, et al. (1996) Time-frequency toolbox: For use with Matlab. Available from: https://tftb.nongnu.org/
    [47] Piedboeuf MC, Gauvin R, Thomas M (1998) Damping behaviour of shape memory alloys: strain amplitude, frequency and temperature effects. J Sound Vib 214: 895–901. https://doi.org/10.1006/jsvi.1998.1578 doi: 10.1006/jsvi.1998.1578
  • This article has been cited by:

    1. Hua Mei, Aying Wan, Bai-Ni Guo, Basil Papadopoulos, Coordinated MT- s 1 , s 2 -Convex Functions and Their Integral Inequalities of Hermite–Hadamard Type, 2021, 2021, 2314-4785, 1, 10.1155/2021/5586377
    2. Ahmet Ocak Akdemir, Saad Ihsan Butt, Muhammad Nadeem, Maria Alessandra Ragusa, Some new integral inequalities for a general variant of polynomial convex functions, 2022, 7, 2473-6988, 20461, 10.3934/math.20221121
    3. Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Saowaluck Chasreechai, Quantum Hermite-Hadamard type integral inequalities for convex stochastic processes, 2021, 6, 2473-6988, 11989, 10.3934/math.2021695
    4. Suphawat Asawasamrit, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Jessada Tariboon, Quantum Hermite-Hadamard and quantum Ostrowski type inequalities for s-convex functions in the second sense with applications, 2021, 6, 2473-6988, 13327, 10.3934/math.2021771
    5. Artion Kashuri, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Tariq, Ahmed A. Hamoud, Homan Emadifar, Faraidun K. Hamasalh, Nedal M. Mohammed, Masoumeh Khademi, Guotao Wang, Integral Inequalities of Integer and Fractional Orders for n –Polynomial Harmonically t g s –Convex Functions and Their Applications, 2022, 2022, 2314-4785, 1, 10.1155/2022/2493944
    6. Farhat Safdar, Muhammad Attique, Some new generalizations for exponentially (s, m)-preinvex functions considering generalized fractional integral operators, 2021, 1016-2526, 861, 10.52280/pujm.2021.531203
    7. Ying-Qing Song, Saad Ihsan Butt, Artion Kashuri, Jamshed Nasir, Muhammad Nadeem, New fractional integral inequalities pertaining 2D–approximately coordinate (r1,ℏ1)-(r2,ℏ2)–convex functions, 2022, 61, 11100168, 563, 10.1016/j.aej.2021.06.044
    8. Waqar Afzal, Sayed M. Eldin, Waqas Nazeer, Ahmed M. Galal, Some integral inequalities for harmonical cr-h-Godunova-Levin stochastic processes, 2023, 8, 2473-6988, 13473, 10.3934/math.2023683
    9. Serap Özcan, Hermite-Hadamard type inequalities for exponential type multiplicatively convex functions, 2023, 37, 0354-5180, 9777, 10.2298/FIL2328777O
    10. Serap Özcan, Hermite-Hadamard type inequalities for multiplicatively p-convex functions, 2023, 2023, 1029-242X, 10.1186/s13660-023-03032-x
    11. Serap Özcan, Saad Ihsan Butt, Hermite–Hadamard type inequalities for multiplicatively harmonic convex functions, 2023, 2023, 1029-242X, 10.1186/s13660-023-03020-1
    12. Serap Özcan, Simpson, midpoint, and trapezoid-type inequalities for multiplicatively s-convex functions, 2025, 58, 2391-4661, 10.1515/dema-2024-0060
    13. Serap Özcan, Ayça Uruş, Saad Ihsan Butt, Hermite–Hadamard-Type Inequalities for Multiplicative Harmonic s-Convex Functions, 2025, 76, 0041-5995, 1537, 10.1007/s11253-025-02404-4
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2265) PDF downloads(250) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog