This study aimed to investigate the potential of utilizing waste materials by adding boric acid (H3BO3) for producing low-fired unglazed tiles under low temperatures. Eighteen formulations containing rice husk ash (RHA), green glass cullet (GGC), and local kaolin clay (LKC) were constructed and divided into three groups with different RHA contents of 0, 10, and 20 wt%. Boric acid was also added with three amounts of 0, 2, and 3 wt% in mixtures. Specimens of these mixtures were produced by uniaxial pressing at 10 MPa and then fired at 900 º С for 1 h. The results showed that the formula of group B contained 10 wt% RHA, 60 wt% GGC, and 30 wt% LKC with the addition of 2 wt% boric acid. Moreover, the formula of group C contained 20 wt% RHA, 50 wt% GGC, and 30 wt% LKC by adding 3 wt% boric acid. Both formulas can achieve the ISO 13006 standard of ceramic tiles in terms of modulus of rupture and water absorption. Characterization of these formulas was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and the CIELAB colorimetric coordinates. SEM results confirmed that the glassy-phase and needle-like wollastonite crystals contributed to the development of the strength and dense microstructure of fired specimens. For XRD patterns, crystalline phases, e.g., nepheline, wollastonite-1A, and calcium silicate can improve the mechanical properties of ceramic bodies. It was concluded that reutilizing RHA and GGC wastes by adding boric acid is feasible to produce eco-friendly unglazed tiles at low sintering temperature.
Citation: Purinut Maingam, Ubolrat Wangrakdiskul, Natthakitta Piyarat. Potential of alternative waste materials: rice husk ash and waste glass cullet with boric acid addition for low-fired unglazed tiles[J]. AIMS Materials Science, 2021, 8(2): 283-300. doi: 10.3934/matersci.2021019
[1] | Maurizio Verri, Giovanna Guidoboni, Lorena Bociu, Riccardo Sacco . The role of structural viscoelasticity in deformable porous media with incompressible constituents: Applications in biomechanics. Mathematical Biosciences and Engineering, 2018, 15(4): 933-959. doi: 10.3934/mbe.2018042 |
[2] | Ziad Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Muhammad Jawad, Rashid Jan, Kamsing Nonlaopon . Thermal boundary layer analysis of MHD nanofluids across a thin needle using non-linear thermal radiation. Mathematical Biosciences and Engineering, 2022, 19(12): 14116-14141. doi: 10.3934/mbe.2022658 |
[3] | K. Maqbool, S. Shaheen, A. M. Siddiqui . Effect of nano-particles on MHD flow of tangent hyperbolic fluid in a ciliated tube: an application to fallopian tube. Mathematical Biosciences and Engineering, 2019, 16(4): 2927-2941. doi: 10.3934/mbe.2019144 |
[4] | Wei-wei Jiang, Xin-xin Zhong, Guang-quan Zhou, Qiu Guan, Yong-ping Zheng, Sheng-yong Chen . An automatic measurement method of spinal curvature on ultrasound coronal images in adolescent idiopathic scoliosis. Mathematical Biosciences and Engineering, 2020, 17(1): 776-788. doi: 10.3934/mbe.2020040 |
[5] | Bei Liu, Wenbin Tan, Xian Zhang, Ziqi Peng, Jing Cao . Recognition study of denatured biological tissues based on multi-scale rescaled range permutation entropy. Mathematical Biosciences and Engineering, 2022, 19(1): 102-114. doi: 10.3934/mbe.2022005 |
[6] | Wei Lin, Fengshuang Yang . Computational analysis of cutting parameters based on gradient Voronoi model of cancellous bone. Mathematical Biosciences and Engineering, 2022, 19(11): 11657-11674. doi: 10.3934/mbe.2022542 |
[7] | Cornel M. Murea, H. G. E. Hentschel . A finite element method for growth in biological development. Mathematical Biosciences and Engineering, 2007, 4(2): 339-353. doi: 10.3934/mbe.2007.4.339 |
[8] | Jianhua Song, Lei Yuan . Brain tissue segmentation via non-local fuzzy c-means clustering combined with Markov random field. Mathematical Biosciences and Engineering, 2022, 19(2): 1891-1908. doi: 10.3934/mbe.2022089 |
[9] | Ewa Majchrzak, Mikołaj Stryczyński . Dual-phase lag model of heat transfer between blood vessel and biological tissue. Mathematical Biosciences and Engineering, 2021, 18(2): 1573-1589. doi: 10.3934/mbe.2021081 |
[10] | Xu Guo, Yuanming Jing, Haizhou Lou, Qiaonv Lou . Effect and mechanism of long non-coding RNA ZEB2-AS1 in the occurrence and development of colon cancer. Mathematical Biosciences and Engineering, 2019, 16(6): 8109-8120. doi: 10.3934/mbe.2019408 |
This study aimed to investigate the potential of utilizing waste materials by adding boric acid (H3BO3) for producing low-fired unglazed tiles under low temperatures. Eighteen formulations containing rice husk ash (RHA), green glass cullet (GGC), and local kaolin clay (LKC) were constructed and divided into three groups with different RHA contents of 0, 10, and 20 wt%. Boric acid was also added with three amounts of 0, 2, and 3 wt% in mixtures. Specimens of these mixtures were produced by uniaxial pressing at 10 MPa and then fired at 900 º С for 1 h. The results showed that the formula of group B contained 10 wt% RHA, 60 wt% GGC, and 30 wt% LKC with the addition of 2 wt% boric acid. Moreover, the formula of group C contained 20 wt% RHA, 50 wt% GGC, and 30 wt% LKC by adding 3 wt% boric acid. Both formulas can achieve the ISO 13006 standard of ceramic tiles in terms of modulus of rupture and water absorption. Characterization of these formulas was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and the CIELAB colorimetric coordinates. SEM results confirmed that the glassy-phase and needle-like wollastonite crystals contributed to the development of the strength and dense microstructure of fired specimens. For XRD patterns, crystalline phases, e.g., nepheline, wollastonite-1A, and calcium silicate can improve the mechanical properties of ceramic bodies. It was concluded that reutilizing RHA and GGC wastes by adding boric acid is feasible to produce eco-friendly unglazed tiles at low sintering temperature.
In the last several decades, the kinetic theory of polyatomic gases witnessed extensive interest due to its vigorous relation with a wide range of practical applications including spacecraft flights, hypersonic flights and aerodynamics [1], plasma physics [20], thermal sciences [13,23], combustion processes, and chemical reactors. In the context of polyatomic gases, Borgnakke and Larsen proposed a microscopic model [6]. Later on, an entropic kinetic model consistent with [6] has been derived [8]. This model originates from the Boltzmann equation, which was a breakthrough in the kinetic theory, and offered an accurate description of the gas flow.
However, it is usually expensive and cumbersome to solve the Boltzmann equation directly. As an alternative to the Boltzmann equation, kinetic theory provides macroscopic models for not too large Knudsen numbers. These models are derived as approximations to the Boltzmann equation and offer high computational speed and explicit equations for macroscopic variables, which are helpful for understanding and analyzing the flow behavior. Macroscopic models are classically obtained by Chapman-Enskog method [5] and moments method [22,18]. Using the Chapman-Enskog method, Nagnibeda and Kustova [19] studied the strong vibrational nonequilibrium in diatomic gases and reacting mixture of polyatomic gases, and derived the first-order distribution function and governing equations. Cai and Li [10] extended the NRxx model to polyatomic gases using the ES-BGK model of [2] and [9]. In [24], the existence result of the ES-BGK model was achieved in the case where the solution lies close to equilibrium.
Simplified Boltzmann models for mixtures of polyatomic gases have also been proposed in [3,12]. The authors of [4] developed a generalized macroscopic 14 field theory for the polyatomic gases, based on the methods of extended thermodynamics [18]. In the full non-linear Boltzmann equation, Gamba and Pavić-Čolić [15] established existence and uniqueness theory in the space homogeneous setting.
The relation of the kinetic theory with the spectral theory was initiated by Grad [17], who was behind the history of serious investigation of the spectral properties of the linearized Boltzmann operator for monoatomic gases. With his pioneering work, Grad showed that the linearized collision operator
In fact, diatomic gases gain a solid importance due to the fact that in the upper atmosphere of the earth, the diatomic molecules Oxygen (
The plan of the document is the following: In section 2, we give a brief recall on the collision model [8], which describes the microscopic state diatomic gases. In section 3, we define the linearized operator
For the sake of clarity, we present the model in [8] on which our work is mainly based. We start with physical conservation equations and proceed as follows.
Without loss of generality, we first assume that the particle mass equals unity, and we denote as usual by
v+v∗=v′+v′∗ | (1) |
12v2+12v2∗+I+I∗=12v′2+12v′2∗+I′+I′∗. | (2) |
From the above equations, we can deduce the following equation representing the conservation of total energy in the center of mass reference frame:
14(v−v∗)2+I+I∗=14(v′−v′∗)2+I′+I′∗=E, |
with
14(v′−v′∗)2=REI′+I′∗=(1−R)E, |
and
I′=r(1−R)EI′∗=(1−r)(1−R)E. |
Using the above equations, we can express the post-collisional velocities in terms of the other quantities by the following
v′≡v′(v,v∗,I,I∗,ω,R)=v+v∗2+√RETω[v−v∗|v−v∗|]v′∗≡v′∗(v,v∗,I,I∗,ω,R)=v+v∗2−√RETω[v−v∗|v−v∗|], |
where
14(v−v∗)2=R′EI+I∗=(1−R′)E, |
and
I=r′(1−R′)EI∗=(1−r′)(1−R′)E. |
Finally, the post-collisional energies can be given in terms of the pre-collisional energies by the following relation
I′=r(1−R)r′(1−R′)II′∗=(1−r)(1−R)(1−r′)(1−R′)I∗. |
The Boltzmann equation for an interacting single polyatomic gas reads
∂tf+v.∇xf=Q(f,f), | (3) |
where
Q(f,f)(v,I)=∫R3×R+×S2×(0,1)2(f′f′∗(I′I′∗)α−ff∗(II∗)α)×B×(r(1−r))α(1−R)2α×IαIα∗(1−R)R1/2dRdrdωdI∗dv∗, | (4) |
where we use the standard notations
Q(f,f)(v,I)=∫R3×R+×S2×(0,1)2(f′f′∗−ff∗)×B×(1−R)R1/2dRdrdωdI∗dv∗, | (5) |
The function
B(v,v∗,I,I∗,r,R,ω)=B(v∗,v,I∗,I,1−r,R,−ω),B(v,v∗,I,I∗,r,R,ω)=B(v′,v′∗,I′,I′∗,r′,R′,ω). | (6) |
Main assumptions on
Together with the above assumption (6), we assume the following boundedness assumptions on the collision cross section
C1φ(R)ψ(r)|ω.(v−v∗)|v−v∗||(|v−v∗|γ+Iγ2+Iγ2∗)≤B(v,v∗,I,I∗,r,R,ω), | (7) |
and
B(v,v∗,I,I∗,r,R,ω)≤C2φ˜α(R)ψ˜β(r)(|v−v∗|γ+Iγ2+Iγ2∗), | (8) |
where for any
ψp(r)=(r(1−r))p,and φp(R)=(1−R)p. |
In addition,
φ(R)≤φ˜α(R),and ψ(r)≤ψ˜β(r), | (9) |
and
We remark that the above assumptions (7) and (8) are compatible with Maxwell molecules, hard spheres and hard potentials in the monoatomic case.
We state first the H-theorem for diatomic gases which was initially established for polyatomic gases in [8]. Namely, suppose that the positivity assumption of
D(f)=∫R3∫R+Q(f,f)logfdIdv≤0, |
and the following are equivalent
1. The collision operator
2. The entropy production vanishes, i.e.
3. There exists
f(v,I)=n(2πkT)32kTe−1kT(12(v−u)2+I), | (10) |
where
Mn,u,T(v,I)=n(2πκT)32kTe−1κT(12(v−u)2+I), | (11) |
where
n=∫R3∫R+fdIdv,nu=∫R3∫R+vfdIdv,52nT=∫R3∫R+((v−u)22+I)fdIdv. |
Without loss of generality, we will consider in the sequel a normalized version
M(v,I)=M1,0,1(v,I)=1(2π)32e−12v2−I. |
We look for a solution
f(v,I)=M(v,I)+M12(v,I)g(v,I). | (12) |
The linearization of the Boltzmann operator (5) around
Lg=M−12[Q(M,M12g)+Q(M12g,M)], |
In particular,
Lg=M−12∫Δ[M′M′12∗g′∗−MM12∗g∗+M′12M′∗g′−M12M∗g]B(1−R)R1/2drdRdωdI∗dv∗. | (13) |
Thanks to the conservation of total energy (2) we have
L(g)=−∫ΔBM12M12∗g∗(1−R)R1/2drdRdωdI∗dv∗−∫ΔBM∗g(1−R)R1/2drdRdωdI∗dv∗+∫ΔBM12∗M′12g′∗(1−R)R1/2drdRdωdI∗dv∗+∫ΔBM12∗M′12∗g′(1−R)R1/2drdRdωdI∗dv∗. |
Here,
L=K−νId, |
where
Kg=∫ΔBM12∗M′12g′∗(1−R)R1/2drdRdωdI∗dv∗+∫ΔBM12∗M′12∗g′(1−R)R1/2drdRdωdI∗dv∗−∫ΔBM12M12∗g∗(1−R)R1/2drdRdωdI∗dv∗, | (14) |
and
ν(v,I)=∫ΔBM∗(1−R)R1/2drdRdωdI∗dv∗, | (15) |
which represents the collision frequency. We write also
K1=∫ΔBM12M12∗g∗(1−R)R1/2drdRdωdI∗dv∗, | (16) |
K2=∫ΔBM12∗M′12g′∗(1−R)R1/2drdRdωdI∗dv∗, | (17) |
and
K3=∫ΔBM12∗M′12∗g′(1−R)R1/2drdRdωdI∗dv∗. | (18) |
The linearized operator
kerL=M1/2span {1,vi,12v2+I}i=1,⋯,3. |
Since
Dom(ν Id)={g∈L2(R3×R+):νg∈L2(R3×R+)}, |
then
We give now the main result on the linearized Boltzmann operator based on the assumptions of the collision cross section (8) and (7). In particular, using (7) we prove that the multiplication operator by
We state the following theorem, which is the main result of the paper.
Theorem 4.1. The operator
We carry out the proof of the coercivity of
Proof. Throughout the proof, we prove the compactness of each
Compactness of
k1(v,I,v∗,I∗)=1(2π)32∫S2×(0,1)2Be−14v2∗−14v2−12I∗−12I(1−R)R1/2drdRdω, |
and therefore
K1g(v,I)=∫R3×R+g(v∗,I∗)k1(v,I,v∗,I∗)dI∗dv∗∀(v,I)∈R3×R+. |
If
Lemma 4.2. With the assumption (8) on
Proof. Applying Cauchy-Schwarz we get
||k1||2L2≤c∫R3∫R+∫R3∫R+(Iγ+Iγ∗+|v−v∗|2γ)e−12v2∗−12v2−I∗−IdIdvdI∗dv∗≤c∫R3e−12v2∗[∫|v−v∗|≤1e−12v2dv+∫|v−v∗|≥1|v−v∗|⌈2γ⌉e−12v2dv]dv∗≤c∫R3e−12v2∗[∫|v−v∗|≥1⌈2γ⌉∑k=0|v|k|v∗|⌈2γ⌉−ke−12v2dv]dv∗≤c⌈2γ⌉∑k=0∫R3|v∗|⌈2γ⌉−ke−12v2∗[∫R3|v|ke−12v2dv]dv∗<∞, |
where
This implies that
Compactness of
Lemma 4.3. Let
σ=Tω(v−v∗|v−v∗|)=v−v∗|v−v∗|−2v−v∗|v−v∗|.ωω, | (19) |
then the Jacobian of the
dω=dσ2|σ−v−v∗|v−v∗||. |
Proof. It's enough to assume that
dσω:R3⟼R3→ω⟶→σ=−2⟨v−v∗|v−v∗|,→ω⟩ω−2⟨v−v∗|v−v∗|,ω⟩→ω. | (20) |
Let
Gram=|→σ1|2|→σ2|2−⟨→σ1,→σ2⟩2, |
where
|→σ1|2=4(⟨v−v∗|v−v∗|,→ω1⟩2+⟨v−v∗|v−v∗|,ω⟩2)=4|v−v∗|v−v∗||2=4,|→σ2|2=4(⟨v−v∗|v−v∗|,→ω2⟩2+⟨v−v∗|v−v∗|,ω⟩2)=4⟨v−v∗|v−v∗|,ω⟩2, |
and
⟨σ1,σ2⟩=0. |
As a result,
Gram=16⟨v−v∗|v−v∗|,ω⟩2=4|σ−v−v∗|v−v∗||2. |
We thus write
K2g(v,I)=∫Δe−I∗2−12r(1−R)((v−v∗)24+I+I∗)−14v2∗−14(v+v∗2+√R(14(v−v∗)2+I+I∗)σ)2×g(v+v∗2−√R(14(v−v∗)2+I+I∗)σ,(1−R)(1−r)[14(v−v∗)2+I+I∗])1(2π)32(1−R)R12B|σ−v−v∗|v−v∗||−1drdRdσdI∗dv∗. | (21) |
We seek first to write
h:R3×R+⟼h(R3×R+)⊂R3×R+(v∗,I∗)⟼(x,y)=(v+v∗2−√R(14(v−v∗)2+I+I∗)σ,(1−R)(1−r)[14(v−v∗)2+I+I∗]), |
for fixed
v∗=2x+2√Rayσ−v,I∗=ay−I−(x−v+√Rayσ)2, |
and
v′=x+2√Rayσ,I′=r1−ry, |
where
J=|∂v∗∂I∗∂x∂y|=8(1−r)(1−R), |
and the positivity of
Hv,IR,r,σ=h(R3×R+)={(x,y)∈R3×R+:ay−I−(x−v+√Rayσ)2>0}. | (22) |
In fact,
Hv,IR,r,σ={(x,y)∈R3×R+:x∈Bv−√Rayσ(√ay−I) and y∈((1−r)(1−R)I,+∞)}. |
Therefore, equation (
K2g=1(2π)32∫(0,1)2×S2∫Hv,IR,r,σ(1−R)R12JB|σ−v−x−√Rayσ|v−x−√Rayσ||−1g(x,y)×e−ay−I−(x−v+√Rayσ)22−r2(1−r)y−14(2x+2√Rayσ−v)2−14(x+2√Rayσ)2dydxdσdrdR. | (23) |
We now point out the kernel form of
Hv,I:={(y,x,σ,r,R)∈Δ:R∈(0,1),r∈(0,1),σ∈S2,x∈Bv−√Rayσ(√ay−I), and y∈((1−r)(1−R)I,+∞)}. |
We remark that
Hv,I=Hv,Ix,y×R3×R+ which is equivalent to Hv,I=(0,1)×(0,1)×S2×Hv,IR,r,σ. |
In other words,
Hv,Ix,y={(r,R,σ)∈(0,1)×(0,1)×S2:(y,x,σ,r,R)∈Hv,I}. | (24) |
Then by Fubini theorem, it holds that
K2g(v,I)=1(2π)32∫Hv,I(1−R)R12JB|σ−v−x−√Rayσ|v−x−√Rayσ||−1g(x,y)×e−ay−I−(x−v+√Rayσ)22−r2(1−r)y−14(2x+2√Rayσ−v)2−14(x+2√Rayσ)2dydxdσdrdR=1(2π)32∫R3×R+∫Hv,Ix,y(1−R)R12JB|σ−v−x−√Rayσ|v−x−√Rayσ||−1g(x,y)×e−ay−I−(x−v+√Rayσ)22−r2(1−r)y−14(2x+2√Rayσ−v)2−14(x+2√Rayσ)2dσdrdRdydx. | (25) |
The kernel of
Lemma 4.4. With the assumption (8) on
k2(v,I,x,y)=1(2π)32∫Hv,Ix,y(1−R)R12JB|σ−v−x−√Rayσ|v−x−√Rayσ||−1×e−ay−I−(x−v+√Rayσ)22−r2(1−r)y−14(2x+2√Rayσ−v)2−14(x+2√Rayσ)2dσdrdR |
is in
Proof. Rewriting
‖k2‖2L2≤c∫R3∫R+∫R3∫R+∫(0,1)2×S2(1−R)2RJ2B2×e−[ay−I−(x−v+√RayTω(v−v∗|v−v∗|))2]−r(1−r)y−12(2x+2√RayTω(v−v∗|v−v∗|)−v)2e−12(x+2√RayTω(v−v∗|v−v∗|))2dωdrdRdydxdIdv. |
Writing back in
‖k2‖2L2≤c∫R3∫R+∫R3∫R+∫(0,1)2×S2e−I∗−12v2∗−r(1−R)((v−v∗)24+I)(1−R)2RJB2(v,v∗,I,I∗,r,R,ω)dωdrdRdI∗dv∗dIdv. |
Assumption (8) on
‖k2‖2L2≤c∫(0,1)2∫R3∫R+∫R3∫R+(1−R)2RJ(|v−v∗|2γ+Iγ+Iγ∗)(r(1−r))2˜β(1−R)2˜α×e−I∗−12v2∗−r(1−R)((v−v∗)24+I)dIdvdI∗dv∗drdR≤c∫(0,1)2r2˜β−52−γ(1−r)2˜β−1R(1−R)2˜α−32−γdrdR<∞. |
with
Remark 1. For any
∫R3∫R+∫R3∫R+IaIb∗|v−v∗|ce−I∗−12v2∗−r(1−R)(v−v∗)24−r(1−R)IdIdvdI∗dv∗≤C(∫R+Iae−r(1−R)IdI)(∫R3[∫R3|v−v∗|ce−r(1−R)(v−v∗)24dv]e−12v2∗dv∗)≤C[r(1−R)]−a−1[r(1−R)]−c+32, |
for some constant
The lemma is thus proved, which implies that
Compactness of
K3g(v,I)=∫Δe−I∗2−12(1−r)(1−R)((v−v∗)24+I+I∗)e−14v2∗−14(v+v∗2−√R(14(v−v∗)2+I+I∗)σ)2g(v+v∗2+√R(14(v−v∗)2+I+I∗)σ,r(1−R)[14(v−v∗)2+I+I∗])1(2π)32R12(1−R)B|σ−v−v∗|v−v∗||−1drdRdσdI∗dv∗, |
inherits the same form as
˜h:R3×R+⟼R3×R+(v∗,I∗)⟼(x,y)=(v+v∗2+√R(14(v−v∗)2+I+I∗)σ,r(1−R)[14(v−v∗)2+I+I∗]), |
is calculated to be
˜J=8r(1−R). |
The final requirement for the kernel of
∫(0,1)2(1−r)2˜β−52−γr2˜β−1R(1−R)2˜α−32−γdrdR<∞, |
which holds by the change of variable
To this extent, the perturbation operator
We give in this section some properties of
Proposition 1 (Coercivity of
ν(v,I)≥c(|v|γ+Iγ/2+1), |
for any
Proof. The collision frequency (15) is
ν(v,I)=∫ΔBe−I∗−12v2∗drdRdωdI∗dv∗, |
where by
ν(v,I)≥c∫S2∫R3(|v−v∗|γ+Iγ/2)e−12v2∗dωdv∗≥c(Iγ/2+∫R3||v|−|v∗||γe−12v2∗dv∗), |
where
ν(v,I)≥c(Iγ/2+∫|v∗|≤12|v|(|v|−|v∗|)γe−12v2∗dv∗)≥c(Iγ/2+|v|γ∫|v∗|≤12e−12v2∗dv∗)≥c(|v|γ+Iγ/2+1). |
For
ν(v,I)≥c(Iγ/2+∫|v∗|≥2(|v∗|−|v|)γe−12v2∗dv∗)≥c(Iγ/2+∫|v∗|≥2e−12v2∗dv∗)≥c(1+Iγ/2+|v|γ). |
The result is thus proved. We give now the following proposition, which is a generalization of the work of Grad [17], in which he proved that the collision frequency of monoatomic single gases is monotonic based on the choice of the collision cross section
Proposition 2 (monotony of
∫(0,1)2×S2(1−R)R12B(|V|,I,I∗,r,R,ω)drdRdω | (26) |
is increasing (respectively decreasing) in
In particular, for Maxwell molecules, where
B(v,v∗,I,I∗,r,R,ω)=Cφ(r)ψ(R)(|v−v∗|γ+Iγ/2+Iγ/2∗), |
the integral (26) is increasing, and thus
In fact, if
Proof. We remark first that
ν(|v|,I)=1(2π)32∫Δ(1−R)R12B(|V|,I,I∗,r,R,ω)e−12(v−V)2−I∗drdRdωdI∗dV, | (27) |
where
The partial derivative of
∂ν∂vi=1(2π)32∫(1−R)R12vi−v∗i|v−v∗|∂B∂|v−v∗|(|v−v∗|,I,I∗,r,R,ω)e−12v2∗−I∗drdRdωdI∗dv∗. | (28) |
Perform the change of variable
∂ν∂vi=1(2π)32∫(1−R)R12Vi|V|∂B∂|V|(|V|,I,I∗,r,R,ω)e−12(v−V)2−I∗drdRdωdI∗dV, |
and thus,
3∑i=1vi∂ν∂vi=1(2π)32∫(1−R)R12v.V|V|∂B∂|V|(|V|,I,I∗,r,R,ω) | (29) |
e−12(v−V)2−I∗drdRdωdI∗dV. | (30) |
Applying Fubini theorem, we write (29) as
3∑i=1vi∂ν∂vi=1(2π)32∫[∫(1−R)R12∂B∂|V|(|V|,I,I∗,r,R,ω)drdRdω]v.V|V| | (31) |
e−12(v−V)2−I∗dI∗dV. | (32) |
The partial derivative of
I∂ν∂I=1(2π)32∫(1−R)R12I∂B∂I(|V|,I,I∗,r,R,ω)e−12(v−V)2−I∗drdRdωdI∗dV=1(2π)32I∫[∫(1−R)R12∂B∂I(|V|,I,I∗,r,R,ω)drdRdω]e−12(v−V)2−I∗dI∗dV. | (33) |
When
∫(1−R)R12∂B∂|V|(|V|,I,I∗,r,R,ω)drdRdω. |
It's clear as well that the partial derivative of
∫(1−R)R12∂B∂I(|V|,I,I∗,r,R,ω)drdRdω. |
As a result, for a collision cross-section
∫(0,1)2×S2(1−R)R12B(|V|,I,I∗,r,R,ω)drdRdω |
is increasing (respectively decreasing) in
[1] |
Pappu A, Saxena M, Asolekar SR (2007) Solid wastes generation in India and their recycling potential in building materials. Build Environ 42: 2311-2320. doi: 10.1016/j.buildenv.2006.04.015
![]() |
[2] | Paliwal A, Chanakya HN (2020) Three-stage reactor design to convert MSW to methanol, In: Ghosh S, Energy Recovery Processes from Wastes, 1 Ed., Singapore: Springer. |
[3] |
Loryuenyong V, Panyachai T, Kaewsimork K, et al. (2009) Effects of recycled glass substitution on the physical and mechanical properties of clay bricks. Waste Manage 29: 2717-2721. doi: 10.1016/j.wasman.2009.05.015
![]() |
[4] |
Tun MM, Juchelkova D, Win MM, et al. (2019) Biomass energy: An overview of biomass sources, energy potential, and management in Southeast Asian countries. Resources 8: 81. doi: 10.3390/resources8020081
![]() |
[5] |
Wangrakdiskul U, Maingam P, Piyarat N (2020) Eco-friendly fired clay tiles with greenish and greyish colored incorporating alternative recycled waste materials. Key Eng Mater 856: 376-383. doi: 10.4028/www.scientific.net/KEM.856.376
![]() |
[6] | Harder J (2018) Glass recycling—Current market trends. Available from: https: //www.recovery-worldwide.com/en/artikel/glass-recycling-current-market-trends_3248774.html. |
[7] | Wangrakdiskul U (2020) Sustainable unglazed and low sintering temperature wall tiles by reutilizing sediment soil from the water supply treatment process and glass cullet. Songklanakarin J Sci Technol 42: 1117-1124. |
[8] |
Phonphuak N, Kanyakam S, Chindaprasirt P (2016) Utilization of waste glass to enhance physical-mechanical properties of fired clay brick. J Cleaner Prod 112: 3057-3062. doi: 10.1016/j.jclepro.2015.10.084
![]() |
[9] | Ogunro AS, Apeh FI, Nwannenna OC, et al. (2018) Recycling of waste glass as aggregate for clay used in ceramic tile production. Am J Eng Res 7: 272-278. |
[10] |
Sevim F, Demir F, Bilen M, et al. (2006) Kinetic analysis of thermal decomposition of boric acid from thermogravimetric data. Korean J Chem Eng 23: 736-740. doi: 10.1007/BF02705920
![]() |
[11] |
Uwe EA, Boccaccini AR, Cook SG, et al. (2007) Effect of borate addition on the sintered properties of pulverised fuel ash. Ceram Int 33: 993-999. doi: 10.1016/j.ceramint.2006.02.013
![]() |
[12] |
Eliche-Quesada D, Felipe-Sesé MA, López-Pérez JA, et al. (2017) Characterization and evaluation of rice husk ash and wood ash in sustainable clay matrix bricks. Ceram Int 43: 463-475. doi: 10.1016/j.ceramint.2016.09.181
![]() |
[13] | Mostari M, Zaman T, Sen A, et al. (2018) Synthesis and characterization of porcelain body developed from rice husk ash. Int J Eng Sci 31: 25-31. |
[14] |
Khoo YC, Johari I, Ahmad ZA (2013) Influence of rice husk ash on the engineering properties of fired-clay brick. Adv Mater Res 795: 14-18. doi: 10.4028/www.scientific.net/AMR.795.14
![]() |
[15] |
Sobrosa FZ, Stochero NP, Marangon E, et al. (2017) Development of refractory ceramics from residual silica derived from rice husk ash. Ceram Int 43: 7142-7146. doi: 10.1016/j.ceramint.2017.02.147
![]() |
[16] |
Njindam OR, Njoya D, Mache JR, et al. (2018) Effect of glass powder on the technological properties and microstructure of clay mixture for porcelain stoneware tiles manufacture. Constr Build Mater 170: 512-519. doi: 10.1016/j.conbuildmat.2018.03.069
![]() |
[17] |
Braganca SR, Bergmann CP (2005) Waste glass in porcelain. Mater Res 8: 39-44. doi: 10.1590/S1516-14392005000100008
![]() |
[18] |
Chidiac SE, Federico LM (2007) Effects of waste glass additions on the properties and durability of fired clay brick. Can J Civil Eng 34: 1458-1466. doi: 10.1139/L07-120
![]() |
[19] |
Tucci A, Esposito L, Rastelli E, et al. (2004) Use of soda-lime scrap-glass as a fluxing agent in a porcelain stoneware tile mix. J Eur Ceram Soc 24: 83-92. doi: 10.1016/S0955-2219(03)00121-3
![]() |
[20] | Hamisi H, Park SE, Choi BH, et al. (2014) Influence of firing temperature on physical properties of same clay and pugu kaolin for ceramic tiles application. Int J Mater Sci Appl 3: 143-146. |
[21] |
Menezes RR, Farias FF, Oliveira MF, et al. (2009) Kaolin processing waste applied in the manufacturing of ceramic tiles and mullite bodies. Waste Manage Res 27: 78-86. doi: 10.1177/0734242X07085338
![]() |
[22] | Wangrakdiskul U, Loetchantharangkun W (2019) Utilizing green glass cullet, local ball clay and white clay for producing light greenish brown color wall tile. EJEST 2: 23-30. |
[23] |
Hernández MF, Violini MA, Serra MF, et al. (2020) Boric acid (H3BO3) as flux agent of clay-based ceramics, B2O3 effect in clay thermal behavior and resultant ceramics properties. J Therm Anal Calorim 139: 1717-1729. doi: 10.1007/s10973-019-08563-4
![]() |
[24] |
Başpınar MS, Kahraman E, Gö rhan G, et al. (2010) Production of fired construction brick from high sulfate-containing fly ash with boric acid addition. Waste Manage Res 28: 4-10. doi: 10.1177/0734242X08096529
![]() |
[25] | ISO 13006/2018, Ceramic tiles—definitions, classification, characteristics and marking. ISO International, 2018. Available from: https://www.iso.org/standard/63406.html. |
[26] |
Kazmi SMS, Abbas S, Munir MJ, et al. (2016) Exploratory study on the effect of waste rice husk and sugarcane bagasse ashes in burnt clay bricks. J Build Eng 7: 372-378. doi: 10.1016/j.jobe.2016.08.001
![]() |
[27] |
Carretero MI, Dondi M, Fabbri B, et al. (2002) The influence of shaping and firing technology on ceramic properties of calcareous and non-calcareous illitic-chloritic clays. Appl Clay Sci 20: 301-306. doi: 10.1016/S0169-1317(01)00076-X
![]() |
[28] |
Habeeb GA, Mahmud HB (2010) Study on properties of rice husk ash and its use as cement replacement material. Mater Res 13: 185-190. doi: 10.1590/S1516-14392010000200011
![]() |
[29] |
Matteucci F, Dondi M, Guarini G (2002) Effect of soda-lime glass on sintering and technological properties of porcelain stoneware tiles. Ceram Int 28: 873-880. doi: 10.1016/S0272-8842(02)00067-6
![]() |
[30] |
Lima NA, Alencar LD, Siu-Li M, et al. (2020) NiWO4 powders prepared via polymeric precursor method for application as ceramic luminescent pigments. J Adv Ceram 9: 55-63. doi: 10.1007/s40145-019-0347-z
![]() |
[31] |
Saravari O, Waipunya H, Chuayjuljit S (2014) Effects of ethylene octene copolymer and ultrafine wollastonite on the properties and morphology of polypropylene-based composites. J Elastom Plast 46: 175-186. doi: 10.1177/0095244312465298
![]() |
[32] |
Tamer M (2013) Quantitative phase analysis based on Rietveld structure refinement for carbonate rocks. J Mod Phys 4: 1149-1157. doi: 10.4236/jmp.2013.48154
![]() |
[33] | Obeid MM (2014) Crystallization of synthetic wollastonite prepared from local raw materials. Int J Mater Chem 4: 79-87. |
[34] |
Guo Y, Zhang Y, Huang H, et al. (2014) Novel glass ceramic foams materials based on red mud. Ceram Int 40: 6677-6683. doi: 10.1016/j.ceramint.2013.11.128
![]() |
[35] |
Azarov GM, Maiorova EV, Oborina MA, et al. (1995) Wollastonite raw materials and their applications (a review). Glass Ceram+ 52: 237-240. doi: 10.1007/BF00681090
![]() |
[36] |
Teo PT, Anasyida AS, Basu P, et al. (2014) Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile. Waste Manage 34: 2697-2708. doi: 10.1016/j.wasman.2014.08.015
![]() |
[37] |
Christogerou A, Lampropoulou P, Panagiotopoulos E (2021) Increase of frost resistance capacity of clay roofing tiles with boron waste addition. Constr Build Mater 280: 122493. doi: 10.1016/j.conbuildmat.2021.122493
![]() |
1. | Shingo Kosuge, Kazuo Aoki, Navier–Stokes Equations and Bulk Viscosity for a Polyatomic Gas with Temperature-Dependent Specific Heats, 2022, 8, 2311-5521, 5, 10.3390/fluids8010005 | |
2. | Niclas Bernhoff, Linearized Boltzmann Collision Operator: I. Polyatomic Molecules Modeled by a Discrete Internal Energy Variable and Multicomponent Mixtures, 2023, 183, 0167-8019, 10.1007/s10440-022-00550-6 | |
3. | Ricardo Alonso, Milana Čolić, Integrability Propagation for a Boltzmann System Describing Polyatomic Gas Mixtures, 2024, 56, 0036-1410, 1459, 10.1137/22M1539897 | |
4. | Niclas Bernhoff, Compactness Property of the Linearized Boltzmann Collision Operator for a Mixture of Monatomic and Polyatomic Species, 2024, 191, 1572-9613, 10.1007/s10955-024-03245-4 | |
5. | Ricardo J. Alonso, Milana Čolić, Irene M. Gamba, The Cauchy Problem for Boltzmann Bi-linear Systems: The Mixing of Monatomic and Polyatomic Gases, 2024, 191, 1572-9613, 10.1007/s10955-023-03221-4 | |
6. | Renjun Duan, Zongguang Li, Global bounded solutions to the Boltzmann equation for a polyatomic gas, 2023, 34, 0129-167X, 10.1142/S0129167X23500362 | |
7. | Gyounghun Ko, Sung-jun Son, Global stability of the Boltzmann equation for a polyatomic gas with initial data allowing large oscillations, 2025, 425, 00220396, 506, 10.1016/j.jde.2025.01.038 | |
8. | Stephane Brull, Annamaria Pollino, An ES-BGK model for non polytropic gases with a general framework, 2025, 0, 1937-5093, 0, 10.3934/krm.2025010 |