Citation: Rudolf Kawalla, Anett Stöcker, Ulrich Prahl, Xuefei Wei, Jens Dierdorf, Gerhard Hirt, Martin Heller, Stefan Roggenbuck, Sandra Korte-Kerzel, Hannes Alois Weiss, Philipp Tröber, Lucas Böhm, Wolfram Volk, Nora Leuning, Kay Hameyer. Low-loss FeSi sheet for energy-efficient electrical drives[J]. AIMS Materials Science, 2018, 5(6): 1184-1198. doi: 10.3934/matersci.2018.6.1184
[1] | Chungen Liu, Huabo Zhang . Ground state and nodal solutions for fractional Kirchhoff equation with pure critical growth nonlinearity. Electronic Research Archive, 2021, 29(5): 3281-3295. doi: 10.3934/era.2021038 |
[2] | Senli Liu, Haibo Chen . Existence and asymptotic behaviour of positive ground state solution for critical Schrödinger-Bopp-Podolsky system. Electronic Research Archive, 2022, 30(6): 2138-2164. doi: 10.3934/era.2022108 |
[3] | Xiaoyong Qian, Jun Wang, Maochun Zhu . Existence of solutions for a coupled Schrödinger equations with critical exponent. Electronic Research Archive, 2022, 30(7): 2730-2747. doi: 10.3934/era.2022140 |
[4] | Ping Yang, Xingyong Zhang . Existence of nontrivial solutions for a poly-Laplacian system involving concave-convex nonlinearities on locally finite graphs. Electronic Research Archive, 2023, 31(12): 7473-7495. doi: 10.3934/era.2023377 |
[5] | Shiyong Zhang, Qiongfen Zhang . Normalized solution for a kind of coupled Kirchhoff systems. Electronic Research Archive, 2025, 33(2): 600-612. doi: 10.3934/era.2025028 |
[6] | Zhiyan Ding, Hichem Hajaiej . On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29(5): 3449-3469. doi: 10.3934/era.2021047 |
[7] | Lingzheng Kong, Haibo Chen . Normalized solutions for nonlinear Kirchhoff type equations in high dimensions. Electronic Research Archive, 2022, 30(4): 1282-1295. doi: 10.3934/era.2022067 |
[8] | Jun Wang, Yanni Zhu, Kun Wang . Existence and asymptotical behavior of the ground state solution for the Choquard equation on lattice graphs. Electronic Research Archive, 2023, 31(2): 812-839. doi: 10.3934/era.2023041 |
[9] | Zijian Wu, Haibo Chen . Multiple solutions for the fourth-order Kirchhoff type problems in RN involving concave-convex nonlinearities. Electronic Research Archive, 2022, 30(3): 830-849. doi: 10.3934/era.2022044 |
[10] | Xiaoguang Li . Normalized ground states for a doubly nonlinear Schrödinger equation on periodic metric graphs. Electronic Research Archive, 2024, 32(7): 4199-4217. doi: 10.3934/era.2024189 |
Our goal of this paper is to consider the existence of nodal solution and ground state solution for the following fractional Kirchhoff equation:
{−(a+b‖u‖2K)LKu+V(x)u=|u|2∗α−2u+kf(x,u),x∈Ω,u=0,x∈R3∖Ω, | (1) |
where
LKu(x)=12∫R3(u(x+y)+u(x−y)−2u(x))K(y)dy,x∈R3, |
the kernel
(ⅰ)
(ⅱ) there exists
(ⅲ)
We note that when
(−Δ)αu(x)=−C(α)2∫R3(u(x+y)+u(x−y)−2u(x))|y|3+2αdy |
and in this case
∫R3∫R3|u(x)−u(y)|2K(x−y)dxdy=2C(α)∫R3|(−Δ)α/2u(x)|2dx, |
where
When
{(−Δ)αu+V(x)u=|u|2∗α−2u+kf(x,u),x∈Ω,u=0,x∈R3∖Ω. | (2) |
Equation (2) is derived from the fractional Schrödinger equation and the nonlinearity
(a+b∫R3∫R3|u(x)−u(y)|2|x−y|3+2αdxdy)(−Δ)αu=f(x,u), | (3) |
where
utt+(a+b∫R3∫R3|u(x)−u(y)|2|x−y|3+2αdxdy)(−Δ)αu=f(x,u). | (4) |
As a special significant case, the nonlocal aspect of the tension arises from nonlocal measurements of the fractional length of the string. For more mathematical and physical background on Schrödinger-Kirchhoff type problems, we refer the readers to [6] and the references therein.
In the remarkable work of Caffarelli and Silvestre [2], the authors express this nonlocal operator
In past few years, some researchers began to search for nodal solutions of Schrödinger type equation with critical growth nonlinearity and have got some interesting results. For example, Zhang [20] considered the following Schrödinger-Poisson system:
{−Δu+u+k(x)ϕu=a(x)|u|p−2u+u5,x∈R3,−Δϕ=k(x)u2,x∈R3, | (5) |
where
Wang [17] studies the following Kirchhoff-type equation:
{−(a+b∫Ω|∇u|2dx)Δu=|u|4u+λf(x,u), x∈Ω,u=0, x∈∂Ω, | (6) |
where
However, as for fractional Kirchhoff types equation, to the best of our knowledge, few results involved the existence and asymptotic behavior of ground state and nodal solutions in case of critical growth. If
It's worth noting that, the Brouwer degree method used in [18] strictly depends on the nonlinearity
Throughout this paper, we let
E={u∈X:∫R3V(x)u2dx<∞,u=0a.e.inR3∖Ω}, |
where the space X introduced by Servadei and Valdinoci ([12,13]) denotes the linear space of Lebesgue measurable functions
((x,y)→(u(x)−u(y))√K(x−y)∈L2((R3×R3)∖(Ωc×Ωc),dxdy) |
with the following norm
||u||2X=||u||2L2+∫Q|u(x)−u(y)|2K(x−y)dxdy, |
where
⟨u,v⟩=a2∫R3∫R3(u(x)−u(y))(v(x)−v(y))K(x−y)dxdy+∫ΩV(x)uvdx,∀u,v∈E |
and the norm
‖u‖2=a2∫R3∫R3|u(x)−u(y)|2K(x−y)dxdy+∫ΩV(x)u2dx. |
The following result for the space
Lemma 1.1. ([12]) Let
A weak solution
12(a+b‖u‖2K)∫R3∫R3(u(x)−u(y))(v(x)−v(y))K(x−y)dxdy+∫ΩV(x)u(x)v(x)dx−∫Ω|u(x)|2∗α−2u(x)v(x)dx−k∫Ωf(x,u(x))v(x)dx=0, |
for any
⟨u,v⟩+b‖u‖2K(u,v)K−k∫Ωf(x,u)vdx−∫Ω|u|2∗α−2uvdx=0,∀v∈E. |
As for the function
(f1):
(f2): There exists
(f3):
Remark 1. We note that under the conditions (
The main results can be stated as follows.
Theorem 1.2. Suppose that
Remark 2. The ground state nodal solution
Jk(uk)=ck:=infu∈MkJk(u), |
where
u+=max{u(x),0},u−=min{u(x),0}. |
We recall that the nodal set of a continuous function
Theorem 1.3. Suppose that
Jk(uk)>2c∗, |
where
Comparing with the literature, the above two results can be regarded as a supplementary of those in [3,4,14,17].
The remainder of this paper is organized as follows. In Section 2, we give some useful preliminaries. In Section 3, we study the existence of ground state and nodal solutions of (1) and we prove Theorems 1.1-1.2.
We define the energy functional associated with equation (1) as follows:
Jk(u)=12‖u‖2+b4‖u‖4K−k∫ΩF(x,u)dx−12∗α∫Ω|u|2∗αdx,∀u∈E. |
According to our assumptions on
⟨J′k(u),v⟩=⟨u,v⟩+b‖u‖2K(u,v)K−k∫Ωf(x,u)vdx−∫Ω|u|2∗α−2uvdx,∀u,v∈E. |
Note that, since (1) involves pure critical nonlinearity
For fixed
H(s,t)=⟨J′k(su++tu−),su+⟩,G(s,t)=⟨J′k(su++tu−),tu−⟩. |
The argument generally used is to modify the method developed in [11]. The nodal Nehari manifold is defined by
Mk={u∈E,u±≠0and⟨J′k(u),u+⟩=⟨J′k(u),u−⟩=0}, | (7) |
which is a subset of the Nehari manifold
Jk(u)=Jk(u+)+Jk(u−), |
it brings difficulties to construct a nodal solution.
The following result describes the shape of the nodal Nehari manifold
Lemma 2.1. Assume that
Proof. From
|f(x,t)|≤ε|t|+Cε|t|q−1,∀t∈R. | (8) |
By above equality and Sobolev's embedding theorems, we have
H(s,t):=s2‖u+‖2+b‖su++tu−‖2K(su++tu−,su+)K−∫Ω|su+|2∗αdx−k∫Ωf(x,su+)su+dx−ast2∫R3∫R3[u+(x)u−(y)+u−(x)u+(y)]K(x−y)dxdy≥s2‖u+‖2−C1s2∗α‖u+‖2∗α−kεC2s2‖u+‖2−kCεC3sq‖u+‖q. | (9) |
By choosing
G(s,t):=t2‖u−‖2+b‖su++tu−‖2K(su++tu−,tu−)K−∫Ω|tu−|2∗αdx−k∫Ωf(x,tu−)tu−dx−ast2∫R3∫R3[u+(x)u−(y)+u−(x)u+(y)]K(x−y)dxdy>0, | (10) |
for
H(δ1,t)>0,G(s,δ1)>0. | (11) |
For any
H(δ2,t)≤δ22‖u+‖2+b‖δ2u++tu−‖2K(δ2u++tu−,δ2u+)K−δ22∗α∫R3|u+|2∗αdx+δ2tD(u). |
Similarly, we have
G(s,δ2)≤δ22‖u−‖2+b‖su++δ2u−‖2K(su++δ2u−,δ2u−)K−δ22∗α∫R3|u−|2∗αdx+sδ2D(u). |
By choosing
H(δ2,t)<0,G(s,δ2)<0 | (12) |
for all
Following (11) and (12), we can use Miranda's Theorem (see Lemma 2.4 in [17]) to get a positive pair
Lastly, we will prove that
s2u‖u+‖2+s2uD(u)+s4ub(‖u+‖2K+‖u−‖2K+2D(u))(‖u+‖2K+D(u))≥s2u‖u+‖2+sutuD(u)+b(s2u‖u+‖2K+t2u‖u−‖2K+2sutuD(u))(s2u‖u+‖2K+sutuD(u))=s2∗αu∫R3|u+|2∗αdx+k∫R3f(x,suu+)suu+dx. | (13) |
On the other hand,
‖u+‖2+D(u)+b(‖u+‖2K+‖u−‖2K+2D(u))(‖u+‖2K+D(u))≤∫R3|u+|2∗αdx+k∫R3f(x,u+)u+dx. | (14) |
From (13) - (14), we can see that
(1s2u−1)(‖u+‖2+D(u))≥(s2∗α−4u−1)∫R3|u+|2∗αdx+k∫R3[f(x,suu+)(suu+)3−f(x,u+)(u+)3](u+)4dx. |
So we have
Lemma 2.2. There exists
Proof. For any
‖u±‖2+b‖u‖2K(u,u±)K=k∫R3f(x,u±)u±dx+∫R3|u±|2∗αdx. |
Hence, in view of (8), we have
‖u±‖2≤kεC1‖u±‖2+kC2‖u±‖q+C3‖u±‖2∗α. |
By choosing
‖u±‖≥ρ | (15) |
for some
f(x,t)t−4F(x,t)≥0, | (16) |
and
Jk(u)=14‖u‖2+(14−12∗α)∫R3|u|2∗αdx+k4∫R3[f(x,u)u−4F(x,u)]dx≥14‖u‖2. |
So
Let
s2∗αk∫R3|u+|2∗αdx+t2∗αk∫R3|u−|2∗αdx≤‖sku++tku−‖2+b‖sku++tku−‖4K≤2s2k‖u+‖2+2t2k‖u−‖2+4bs4k‖u+‖4K+4bt4k‖u−‖4K, |
which implies
‖sknu++tknu−‖2+b‖sknu++tknu−‖4K=∫R3|sknu++tknu−|2∗αdx+kn∫R3f(sknu++tknu−)(sknu++tknu−)dx. | (17) |
Because
0≤ck≤Jk(sku++tku−)≤s2k‖u+‖2+t2k‖u−‖2+2bs4k‖u+‖4K+2bt4k‖u−‖4K, |
so
u±n→u±inLp(R3)∀p∈(2,2∗α),u±n(x)→u±(x)a.e.x∈R3. |
Denote
S:=infu∈E∖{0}‖u‖2(∫R3|u|2∗αdx)22∗α. |
Sobolev embedding theorem insures that
By
‖u±n‖2−‖u±n−u±‖2=2⟨u±n,u±⟩−‖u±‖2. |
By taking
limn→∞‖u±n‖2=limn→∞‖u±n−u±‖2+‖u±‖2. |
On the other hand, by (8) we have
∫R3F(x,su±n)dx→∫R3F(x,su±)dx. |
Then,
lim infn→∞Jk(su+n+tu−n)≥s22limn→∞(‖u+n−u+‖2+‖u+‖2)+t22limn→∞(‖u−n−u−‖2+‖u−‖2)+bs44[limn→∞‖u+n−u+‖2K+‖u+‖2K]2+bt44[limn→∞‖u−n−u−‖2K+‖u−‖2K]2+stlim infn→∞D(un)+bs2t24a2lim infn→∞D2(un)+bs2t22lim infn→∞(‖u+n‖2K‖u−n‖2K)+bs3t2alim infn→∞(D(un)‖u+n‖2K)+bst32alim infn→∞(D(un)‖u−n‖2K)−s2∗α2∗αlimn→∞(|u+n−u+|2∗α2∗α+|u+|2∗α2∗α)−t2∗α2∗αlimn→∞(|u−n−u−|2∗α2∗α+|u−|2∗α2∗α)−k∫R3F(x,su+)dx−k∫R3F(x,tu−)dx, |
where
lim infn→∞Jk(su+n+tu−n)≥Jk(su++tu−)+s22limn→∞‖u+n−u+‖2+t22limn→∞‖u−n−u−‖2−s2∗α2∗αlimn→∞|u+n−u+|2∗α2∗α−t2∗α2∗αlimn→∞|u−n−u−|2∗α2∗α+bs42limn→∞‖u+n−u+‖2K‖u+‖2K+bs44(limn→∞‖u+n−u+‖2K)2+bt42limn→∞‖u−n−u−‖2K‖u−‖2K+bt44(limn→∞‖u−n−u−‖2K)2=Jk(su++tu−)+s22A1−s2∗α2∗αB1+t22A2−t2∗α2∗αB2+bs42A3‖u+‖2K+bs44A23+bt42A4‖u−‖2K+bt44A24, |
where
A1=limn→∞‖u+n−u+‖2,A2=limn→∞‖u−n−u−‖2,B1=limn→∞|u+n−u+|2∗α2∗α,B2=limn→∞|u−n−u−|2∗α2∗α,A3=limn→∞‖u+n−u+‖2K,A4=limn→∞‖u−n−u−‖2K. |
From the inequality above, we deduce that
Jk(su++tu−)+s22A1−s2∗α2∗αB1+t22A2−t2∗α2∗αB2+bs42A3‖u+‖2K+bs44A23+bt42A4‖u−‖2K+bt44A24≤ck. | (18) |
We next prove
β=α3S32α≤α3(A1(B1)22∗α)32α. |
It happens that,
α3(A1(B1)22∗α)32α=maxs≥0{s22A1−s2∗α2∗αB1}≤maxs≥0{s22A1−s2∗α2∗αB1+bs42A3‖u+‖2K+bs44A23}. |
The inequality (18) and
β≤maxs≥0{s22A1−s2∗α2∗αB1+bs42A3‖u+‖2K+bs44A23}≤ck<β, |
which is a contradiction. Thus
Then, we consider the key point to the proof of Theorem 1.1, that is
Similarly, we only prove
Case 1:
ˉs22A1−ˉs2∗α2∗αB1+bˉs42A3‖u+‖2K+bˉs44A23=maxs≥0{s22A1−s2∗α2∗αB1+bs42A3‖u+‖2K+bs44A23}, |
ˉt22A2−ˉt2∗α2∗αB2+bˉt42A4‖u−‖2K+bˉt44A24=maxt≥0{t22A2−t2∗α2∗αB2+bt42A4‖u−‖2K+bt44A24}. |
Since
φu(su,tu)=max(s,t)∈[0,ˉs]×[0,ˉt]φu(s,t). |
If
By direct computation, we get
s22A1−s2∗α2∗αB1+bs42A3‖u+‖2K+bs44A23>0, | (19) |
t22A2−t2∗α2∗αB2+bt42A4‖u−‖2K+bt44A24>0, | (20) |
for all
β≤ˉs22A1−ˉs2∗α2∗αB1+bˉs42A3‖u+‖2K+bˉs44A23+t22A2−t2∗α2∗αB2+bt42A4‖u−‖2K+bt44A24, |
β≤ˉt22A2−ˉt2∗α2∗αB2+bs42A3‖u+‖2K+bs44A23+s22A1−s2∗α2∗αB1+bˉt42A4‖u−‖2K+bˉt44A24. |
In view of (18), it follows that
ck≥Jk(suu++tuu−)+s2u2A1−s2∗αu2∗αB1+t2u2A2−t2∗αu2∗αB2+bs4u2A3‖u+‖2K+bs4u4A23+bt4u2A4‖u−‖2K+bt4u4A24>Jk(suu++tuu−)≥ck. |
It is impossible. The proof of Case 1 is completed.
Case 2:
φu(su,tu)=max(s,t)∈[0,ˉs]×[0,∞)φu(s,t). |
We need to prove that
β≤ˉs22A1−ˉs2∗α2∗αB1+bˉs42A3‖u+‖2K+bˉs44A23+t22A2−t2∗α2∗αB2+bt42A4‖u−‖2K+bt44A24. |
Thus also from (20) and
ck≥Jk(suu++tuu−)+s2u2A1−s2∗αu2∗αB1+t2u2A2−t2∗αu2∗αB2+bs4u2A3‖u+‖2K+bs4u4A23+bt4u2A4‖u−‖2K+bt4u4A24>Jk(suu++tuu−)≥ck, |
which is a contradiction.
Since
⟨J′k(u),u±⟩≤lim infn→∞‖u±n‖2+blim infn→∞‖un‖2K(un,u±n)K−limn→∞∫R3f(x,u±n)u±ndx−limn→∞∫R3|u±n|2∗α+lim infn→∞L(un)≤limn→∞⟨J′k(un),u±n⟩=0. |
By Lemma 2.1, we know
ck≤Jk(˜u)−14⟨J′k(˜u),˜u⟩=14(‖suu+‖2+‖tuu−‖2)+(14−12∗α)(|suu+|2∗α2∗α+|tuu−|2∗α2∗α)+k4∫R3[f(x,suu+)(suu+)−4F(x,suu+)]dx+k4∫R3[f(x,tuu−)(tuu−)−4F(x,tuu−)]dx≤lim infn→∞[Jk(un)−14⟨J′k(un),un⟩]=ck. |
So, we have completed proof of Lemma 2.2.
In this section, we will prove main results.
Proof. Since
\begin{align} J _{ k}(su_k^{+}+tu_k^{-}) < c_{k}. \end{align} | (21) |
If
\|J'_k(v)\|\geq\theta,\; {\text{for}}\; {\text{all}}\; \|v-u_k\|\leq3\delta. |
We know by the result (15), if
\begin{align} \overline{c}_{ k}: = \max\limits_{\partial Q}I\circ g < c_{ k}. \end{align} | (22) |
Let
To finish the proof of Theorem 1.1, one of the key points is to prove that
\begin{align} \max\limits_{(s,t)\in\bar{Q}}J _{ k}(\eta(1,g(s,t))) < c_k. \end{align} | (23) |
The other is to prove that
\begin{align} J _{ k}(\eta(1,v))\leq J _{ k}(\eta(0,v)) = J _{ k}(v),\;\;\forall v\in E. \end{align} | (24) |
For
\begin{align*} J _{ k}(\eta(1,g(s,t)))\leq J _{ k}(g(s,t)) < c_k. \end{align*} |
If
\begin{align*} J _{ k}(\eta(1,g(1,1)))\leq c_k-\varepsilon < c_k. \end{align*} |
Thus (23) holds. Then, let
\begin{align*} \Upsilon(s,t): = (\frac{1}{s}\langle J'_k(\varphi(s,t)),(\varphi(s,t))^{^{+}}\rangle, \frac{1}{t}\langle J'_k(\varphi(s,t)),(\varphi(s,t))^{^{-}}\rangle). \end{align*} |
The claim holds if there exists
\begin{align*} \|g(s,t)-u_k\|^{2} = &\|(s-1)u_k^{+}+(t-1)u_k^{-}\|^{2}\\ \geq&|s-1|^2\|u_k^{+}\|^{2} > |s-1|^2(6\delta)^{2}, \end{align*} |
and
\begin{align*} \Upsilon(\frac{1}{2},t) = \large(2\langle J'_k(\frac{1}{2}u_k^{+}+t u_k^{-}),\frac{1}{2}u_k^{+}\rangle,\frac 1t\langle J _{ k}'(\frac{1}{2}u_k^{+}+t u_k^{-}),tu^{-}\rangle\large). \end{align*} |
On the other hand, from (9) and
\begin{align*} H(t,t) = &(t^{2}-t^4)(\|u^{+}\|^{2}+D(u))+(t^{4}-t^{2_\alpha^*}) \int_{\mathbb{R}^{3}}|u^{+}|^{2^{\ast}_{\alpha}}dx\\ &+kt^4\int_{\mathbb{R}^{3}}\left(f(x,u^+)- \frac{f(x,tu^{+})}{t^3}\right) u^{+}dx. \end{align*} |
According to
\begin{align*} H(\frac{1}{2},t) = &\|\frac{1}{2}u_k^{+}\|^2+\frac{t}{2}D(u_k)\\ &+b\big(\frac{1}{4}\|u_k^{+}\|_{K}^2+t^2\|u_k^{-}\|_{K}^2+ \frac taD(u_k)\big)\big(\frac{1}{4}\|u_k^{+}\|_{K}^2+\frac{t}{2a}D(u_k)\big)\\ &-(\frac{1}{2})^{2^{\ast}_{\alpha}}\int_{\mathbb{R}^{3}}|u_k^{+}|^{2^{\ast}_{\alpha}}dx - k\int_{\mathbb{R}^{3}}f(x,\frac{1}{2}u_k^{+})\frac{1}{2}u_k^{+}dx\geq H(\frac 12, \frac 12) > 0, \end{align*} |
which implies that
\begin{align} H(\frac{1}{2},t) > 0,\;\;\forall t\in[\frac{1}{2},\frac{3}{2}]. \end{align} | (25) |
Analogously,
\begin{align*} H(\frac{3}{2},t) = &\|\frac{3}{2}u_k^{+}\|^2+\frac{3t}{2}D(u_k) +b\big(\frac{9}{4}\|u_k^{+}\|_{K}^2+t^2\|u_k^{-}\|_{K}^2\\ &+\frac{3t}aD(u_k)\big)\big(\frac{9}{4}\|u_k^{+}\|_{K}^2+\frac{3t}{2a}D(u_k)\big)\\ &-(\frac{3}{2})^{2^{\ast}_{\alpha}}\int_{\mathbb{R}^{3}}|u_k^{+}|^{2^{\ast}_{\alpha}}dx - k\int_{\mathbb{R}^{3}}f(x,\frac{3}{2}u_k^{+})\frac{3}{2}u_k^{+}dx\leq H(\frac{3}{2},\frac{3}{2}) < 0, \end{align*} |
that is,
\begin{align} H(\frac{3}{2},t) < 0,\;\;\forall t\in[\frac{1}{2},\frac{3}{2}]. \end{align} | (26) |
By the same way,
\begin{align} G(s,\frac{1}{2}) > 0,\;\;\forall s\in[\frac{1}{2},\frac{3}{2}],\;\;\rm{and}\;\; G(s,\frac{3}{2}) > 0,\;\;\forall s\in[\frac{1}{2},\frac{3}{2}]. \end{align} | (27) |
From (25)-(27), the assumptions of Miranda's Theorem (see Lemma 2.4 in [17]) are satisfied. Thus, there exists
Proof. Recall that
Firstly, we prove that
\begin{align*} \beta\leq&\frac{\tilde{t}^{2}}{2}A-\frac{\tilde{t}^{2^{\ast}_{\alpha}}}{2^{\ast}_{\alpha}}B : = \max\limits_{t\geq0}\{\frac{t^{2}}{2}A-\frac{t^{2^{\ast}_{\alpha}}}{2^{\ast}_{\alpha}}B\}\\ \leq&\max\limits_{t\geq0}\{\frac{t^{2}}{2}A-\frac{t^{2^{\ast}_{\alpha}}}{2^{\ast}_{\alpha}}B +\frac{bt^{4}}{4}(C^2+2C\|v_k\|_{K}^2)\}\le c^* < \beta. \end{align*} |
Which is a contradiction.
Then, we prove that
c^*\le J _{ k}(t_vv_k) < J _{ k}(t_vv_k)+\frac{t_v^{2}}{2}A-\frac{t_v^{2^{\ast}_{\alpha}}}{2^{\ast}_{\alpha}}B +\frac{bt_v^{4}}{4}(C^2+2C\|v_k\|_{K}^2)\le c^*. |
From the above arguments we know
\begin{align*} c^*\le& J _{ k}(\tilde v)-\frac 14 \langle J'_k(\tilde{v}),\tilde{v}\rangle \le\frac 14\|v_k\|^2\\ &+(\frac 1{4}-\frac 1{2^{\ast}_{\alpha}})|v_k|_{2^{\ast}_{\alpha}}^{2^{\ast}_{\alpha}}+\frac k4\int_{\mathbb{R}^3}[f(x,v_k)v_k-4F(x,v_k)]dx\\ = &\liminf\limits_{n\to \infty}[J _{ k}(v_n)-\frac 14 \langle J'_k(v_n),v_n\rangle] = c^*. \end{align*} |
Therefore,
By standard arguments, we can find
s_{u^{+}}u^{+}\in \mathcal{N}_k,\;\;\; t_{u^{-}}u^{-}\in \mathcal{N}_k. |
Thus, the above fact follows that
\begin{align*} 2c^{\ast}\leq J _{ k}(s_{u^{+}}u^{+})+J _{ k}(t_{u^{-}}u^{-})\leq J _{ k}(s_{u^{+}}u^{+}+t_{u^{-}}u^{-}) < J _{ k}(u^{+}+u^{-}) = c_k. \end{align*} |
[1] |
Cui S, Jung IH (2017) Critical reassessment of the Fe-Si system. Calphad 56: 108–125. doi: 10.1016/j.calphad.2016.11.003
![]() |
[2] |
Schmidtchen M, Kawalla R (2016) Fast numerical simulation of symmetric flat rolling processes for inhomogeneous materials using a layer model-Part I: Basic theory. Steel Res Int 87: 1065–1081. doi: 10.1002/srin.201600047
![]() |
[3] | Stöcker A, Schmidtchen M, Kawalla R (2017) Hot rolling simulation for non-oriented electrical steel. AIP Conf Proc 1896: 190021. |
[4] | Wei X, Hojda S, Dierdorf J, et al. (2016) Crystal plasticity finite element analysis of texture evolution during cold rolling of a non-oriented electrical steel. 10th International Rolling Conference and the 7th European Rolling Conference, 494–504. |
[5] | Wei X, Hojda S, Dierdorf J, et al. (2017) Model for texture evolution in cold rolling of 2.4 wt.-% Si non-oriented electrical steel. AIP Conf Proc 1896: 170005. |
[6] | Roters F, Diehl M (2018) "DAMASK", Max-Planck-Institut für Eisenforschung. Available from: https://damask.mpie.de/Home/WebHome. |
[7] |
Mießen C, Liesenjohann M, Barrales-Mora LA, et al. (2015) An advanced level set approach to grain growth-Accounting for grain boundary anisotropy and finite triple junction mobility. Acta Mater 99: 39–48. doi: 10.1016/j.actamat.2015.07.040
![]() |
[8] | IMM Microstructure Generator, 2017. Available from: https://github.com/GraGLeS/IMM_MicrostructureGenerator. |
[9] | GraGLeS2D-Grain Growth Level Set 2dim, 2017. Available from: https://github.com/GraGLeS/GraGLeS2D. |
[10] |
Leuning N, Steentjes S, Stöcker A, et al. (2018) Impact of the interaction of material production and mechanical processing on the magnetic properties of non-oriented electrical steel. AIP Adv 8: 047601. doi: 10.1063/1.4994143
![]() |
[11] | Kestens L, Jacobs S (2008) Texture control during the manufacturing of nonoriented electrical steels. Texture Stress Microstruct 2018: 173083. |
[12] |
Weiss H, Leuning N, Steentjes S, et al. (2017) Influence of shear cutting parameters on the electromagnetic properties of non-oriented electrical steel sheets. J Magn Magn Mater 421: 250–259. doi: 10.1016/j.jmmm.2016.08.002
![]() |
[13] | Weiss H, Trober P, Golle R, et al. (2017) Loss reduction due to blanking parameter optimization for different non-grain oriented electrical steel grades. IEEE International Electric Machines and Drives Conference (IEMDC). |
[14] |
Leuning N, Steentjes S, Schulte M, et al. (2016) Effect of elastic and plastic tensile mechanical loading on the magnetic properties of NGO electrical steel. J Magn Magn Mater 417: 42–48. doi: 10.1016/j.jmmm.2016.05.049
![]() |
[15] |
Moses AJ (2012) Energy efficient electrical steels: Magnetic performance prediction and optimization. Scripta Mater 67: 560–565. doi: 10.1016/j.scriptamat.2012.02.027
![]() |
[16] | Steentjes S, Leuning N, Dierdorf J, et al. (2016) Effect of the interdependence of cold rolling strategie and subsequent punching on magnetic properties of NO steel sheets. IEEE T Magn 52: 1–4. |
[17] | Lee K, Park S, Huh M, et al. (2014) Effect of texture and grain size on magnetic flux density and core loss in non-oriented electrical steel containing 3.15% Si. J Magn Magn Mater 354: 324–332. |
[18] |
Leuning N, Steentjes S, Hameyer K (2019) Effect of grain size and magnetic texture on iron-loss components in NO electrical steel at different frequencies. J Magn Magn Mater 469: 373–382. doi: 10.1016/j.jmmm.2018.07.073
![]() |
[19] |
Pfeifer F, Kunz W (1977) Bedeutung von Kornstruktur und Fremdkörpereinschlüssen für die Magnetisierungseigenschaften hochpermeabler Ni-Fe-legierungen. J Magn Magn Mater 4: 214–219. doi: 10.1016/0304-8853(77)90038-5
![]() |
[20] |
Bertotti G (1988) General properties of power losses in soft ferromagnetic materials. IEEE T Magn 24: 621–630. doi: 10.1109/20.43994
![]() |
[21] | Lordache VE, Hug E, Buiron N (2003) Magnetic behaviour versus tensile deformation mechanisms in a non-oriented Fe–(3 wt.%)Si steel. Mat Sci Eng A-Struct 359: 62–74. |
[22] |
Campos M, Teixeira JC, Landgraf F (2006) The optimum grain size for minimizing energy losses in iron. J Magn Magn Mater 301: 94–99. doi: 10.1016/j.jmmm.2005.06.014
![]() |
[23] |
Barros J, Schneider J, Verbeken K, et al. (2008) On the correlation between microstructure and magnetic losses in electrical steel. J Magn Magn Mater 320: 2490–2493. doi: 10.1016/j.jmmm.2008.04.056
![]() |
[24] |
Landgraf F, da Silveira J, Rodrigues Jr. D (2011) Determining the effect of grain size and maximum induction upon coercive field of electrical steels. J Magn Magn Mater 323: 2335–2339. doi: 10.1016/j.jmmm.2011.03.034
![]() |
[25] | Leuning N, Steentjes S, Hameyer K (2017) Effect of magnetic anisotropy on Villari Effect in non-oriented FeSi electrical steel. Int J Appl Electrom 55: 23–31. |
[26] | Bertotti G (1998) Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers, Academic Press, San Diego. |
[27] |
Eggers D, Steentjes S, Hameyer K (2012) Advanced iron-loss estimation for nonlinear material behavior. IEEE T Magn 48: 3021–3024. doi: 10.1109/TMAG.2012.2208944
![]() |
[28] | Steentjes S, Leßmann M, Hameyer K (2013) Semi-physical parameter identification for an iron-loss formula allowing loss-separation. J Appl Phys 113: 17A319. |
[29] |
Leuning N, Steentjes S, Hameyer K (2017) On the homogeneity and isotropy of non-grain-oriented electrical steel sheets for the modeling of basic magnetic properties from microstructure and texture. IEEE T Magn 53: 1–5. doi: 10.1109/TMAG.2018.2792846
![]() |
[30] | Ruf A, Steentjes S, von Pfingsten G, et al. (2016) Requirements on soft magnetic materials for electric traction motors. Proceedings: 7th International Conference on Magnetism and Metallurgy: WMM'16, Rome, Italy. |
1. | Yue Wang, Wei Wei, Ying Zhou, The Existence, Uniqueness, and Multiplicity of Solutions for Two Fractional Nonlocal Equations, 2023, 12, 2075-1680, 45, 10.3390/axioms12010045 |