
Citation: Laura J. Weiser, Erik E. Santiso. Molecular modeling studies of peptoid polymers[J]. AIMS Materials Science, 2017, 4(5): 1029-1051. doi: 10.3934/matersci.2017.5.1029
[1] | Ali Khalouta, Abdelouahab Kadem . A new computational for approximate analytical solutions of nonlinear time-fractional wave-like equations with variable coefficients. AIMS Mathematics, 2020, 5(1): 1-14. doi: 10.3934/math.2020001 |
[2] | D. Priyadarsini, P. K. Sahu, M. Routaray, D. Chalishajar . Numerical treatment for time fractional order phytoplankton-toxic phytoplankton-zooplankton system. AIMS Mathematics, 2024, 9(2): 3349-3368. doi: 10.3934/math.2024164 |
[3] | Muhammad Imran Liaqat, Sina Etemad, Shahram Rezapour, Choonkil Park . A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients. AIMS Mathematics, 2022, 7(9): 16917-16948. doi: 10.3934/math.2022929 |
[4] | Sumbal Ahsan, Rashid Nawaz, Muhammad Akbar, Saleem Abdullah, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar . Numerical solution of system of fuzzy fractional order Volterra integro-differential equation using optimal homotopy asymptotic method. AIMS Mathematics, 2022, 7(7): 13169-13191. doi: 10.3934/math.2022726 |
[5] | M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397 |
[6] | Rahat Zarin, Abdur Raouf, Amir Khan, Aeshah A. Raezah, Usa Wannasingha Humphries . Computational modeling of financial crime population dynamics under different fractional operators. AIMS Mathematics, 2023, 8(9): 20755-20789. doi: 10.3934/math.20231058 |
[7] | Hayman Thabet, Subhash Kendre, James Peters . Travelling wave solutions for fractional Korteweg-de Vries equations via an approximate-analytical method. AIMS Mathematics, 2019, 4(4): 1203-1222. doi: 10.3934/math.2019.4.1203 |
[8] | Omar Barkat, Awatif Muflih Alqahtani . Analytical solutions for fractional Navier–Stokes equation using residual power series with ϕ-Caputo generalized fractional derivative. AIMS Mathematics, 2025, 10(7): 15476-15496. doi: 10.3934/math.2025694 |
[9] | Ahmad Qazza, Rania Saadeh, Emad Salah . Solving fractional partial differential equations via a new scheme. AIMS Mathematics, 2023, 8(3): 5318-5337. doi: 10.3934/math.2023267 |
[10] | Abdul Samad, Imran Siddique, Fahd Jarad . Meshfree numerical integration for some challenging multi-term fractional order PDEs. AIMS Mathematics, 2022, 7(8): 14249-14269. doi: 10.3934/math.2022785 |
Fractional calculus is a field of applied mathematics that deals with derivatives and integrals of arbitrary orders [6,9,11,17]. Recently, fractional partial differential equations play an important role in interpretation and modeling of many of realism matters appear in applied mathematics and physics including fluid mechanics, electrical circuits, diffusion, damping laws, relaxation processes, optimal control theory, chemistry, biology, and so on [7,13,14,15,16]. Therefore, the search of the solutions for fractional partial differential equations is an important aspect of scientific research.
Many powerful and efficient methods have been proposed to obtain numerical solutions and analytical solutions of fractional partial differential equations. The most commonly used ones are: Adomian decomposition method (ADM) [5], variational iteration method (VIM) [18], new iterative method (NIM) [8], fractional difference method (FDM) [11], reduced differential transform method (RDTM) [1], homotopy analysis method (HAM) [3], homotopy perturbation method (HPM) [4].
The main objective of this paper is to present a new numerical technique called modified generalized Taylor fractional series method (MGTFSM) to obtain the approximate and exact solutions of Caputo time-fractional biological population equation. The proposed algorithm provides the solution in a rapid convergent series which may lead to the solution in a closed form. The main advantage of the proposed method compare with the existing methods is, that method solves the nonlinear problems without using linearization and any other restriction.
Consider the following Caputo time-fractional biological population equation
Dαtu=∂2u2∂x2+∂2u2∂y2+F(u), | (1.1) |
with the initial condition
u(x,y,0)=u0(x,y), | (1.2) |
where Dαt=∂α∂tα is the Caputo fractional derivative operator of order α, 0<α≤1,u=u(x,y,t),(x,y)∈R2,t>0 denotes the population density and F represents the population supply due to birth and death, α is a parameter describing the order of the fractional derivative.
The plan of our paper is as follows: In Section 2, we present some necessary definitions and properties of the fractional calculus theory. In Section 3, we will propose an analysis of the modified generalized Taylor fractional series method (MGTFSM) for solving the Caputo time-fractional biological population equation (1.1) subject to the initial condition (1.2). In Section 4, we present three numerical examples to show the efficiency and effectiveness of this method. In Section 5, we discuss our obtained results represented by figures and tables. These results were verified with Matlab (version R2016a). Section 6, is devoted to the conclusions on the work.
In this section, we present some basic definitions and properties of the fractional calculus theory which are used further in this paper. For more details see, [9,11].
Definition 2.1. A real function u(X,t), X=(x1,x2,...,xn)∈RN,N∈N∗,t∈R+, is considered to be in the space Cμ(RN×R+), μ∈ R, if there exists a real number p>μ, so that u(X,t)=tpv(X,t), where v ∈C(RN×R+), and it is said to be in the space Cnμ if u(n)∈Cμ(RN×R+),n∈N.
Definition 2.2. The Riemann-Liouville fractional integral operator of order α≥0 of u∈Cμ(RN×R+),μ≥−1, is defined as follows
Iαtu(X,t)={1Γ(α)t∫0(t−ξ)α−1u(X,ξ)dξ,α>0,t>ξ>0,u(X,t), α=0, | (2.1) |
where Γ(.) is the well-known Gamma function.
Definition 2.3. The Caputo time-fractional derivative operator of order α>0 of u∈Cn−1(RN×R+),n∈N, is defined as follows
Dαtu(X,t)={1Γ(n−α)t∫0(t−ξ)n−α−1u(n)(X,ξ)dξ,n−1<α<n,u(n)(X,t), α=n. | (2.2) |
For this definition we have the following properties
(1)
Dαt(c)=0, where c is a constant. |
(2)
Dαttβ={Γ(β+1)Γ(β−α+1)tβ−α if β>n−1,0, if β≤n−1. |
Definition 2.3. The Mittag-Leffler function is defined as follows
Eα(z)=∞∑n=0znΓ(nα+1),α∈C,Re(α)>0. | (2.3) |
For α=1, Eα(z) reduces to ez.
Theorem 3.1. Consider the Caputo time-fractional biological population equation of the form (1.1) with the initial condition (1.2).
Then, by MGTFSM the solution of equations (1.1)-(1.2) is given in the form of infinite series which converges rapidly to the exact solution as follows
u(x,y,t)=∞∑i=0ui(x,y)tiαΓ(iα+1),(x,y)∈R2,t∈[0,R), |
where ui(x,y) the coefficients of the series and R is the radius of convergence.
Proof. In order to achieve our goal, we consider the following Caputo time-fractional biological population equation of the form (1.1) with the initial condition (1.2).
Assume that the solution takes the following infinite series form
u(x,y,t)=∞∑i=0ui(x,y)tiαΓ(iα+1). | (3.1) |
Consequently, the approximate solution of equations (1.1)-(1.2), can be written in the form of
un(x,y,t)=n∑i=0ui(x,y)tiαΓ(iα+1)=u0(x,y)+n∑i=1ui(x,y)tiαΓ(iα+1). | (3.2) |
By applying the operator Dαt on equation (3.2), and using the properties (1) and (2), we obtain the formula
Dαtun(x,y,t)=n−1∑i=0ui+1(x,y)tiαΓ(iα+1). | (3.3) |
Next, we substitute both (3.2) and (3.3) in (1.1). Therefore, we have the following recurrence relations
0=n−1∑i=0ui+1(x,y)tiαΓ(iα+1)−∂2∂x2(n∑i=0ui(x,y)tiαΓ(iα+1))2−∂2∂y2(n∑i=0ui(x,y)tiαΓ(iα+1))2−F(n∑i=0ui(x,y)tiαΓ(iα+1)). |
We follow the same analogue used in obtaining the Taylor series coefficients. In particular, to calculate the function un(x,y),n=1,2,3,.., we have to solve the following
D(n−1)αt{G(x,y,t,α,n)}↓t=0=0, |
where
G(x,y,t,α,n)=n−1∑i=0ui+1(x,y)tiαΓ(iα+1)−∂2∂x2(n∑i=0ui(x,y)tiαΓ(iα+1))2−∂2∂y2(n∑i=0ui(x,y)tiαΓ(iα+1))2−F(n∑i=0ui(x,y)tiαΓ(iα+1)). |
Now, we calculate the first terms of the sequence {un(x,y)}N1.
For n=1 we have
G(x,y,t,α,1)=u1(x,y)−∂2∂x2(u0(x,y)+u1(x,y)tαΓ(α+1))2−∂2∂y2(u0(x,y)+u1(x,y)tαΓ(α+1))2−F(u0(x,y)+u1(x,y)tαΓ(α+1)). |
Solving G(x,y,0,α,1)=0, yields
u1(x,y)=∂2∂x2u20(x,y)+∂2∂y2u20(x,y)+F(u0(x,y)). |
For n=2 we have
G(x,y,t,α,2)=u1(x,y)+u2(x,y)tαΓ(α+1)−∂2∂x2(u0(x,y)+u1(x,y)tαΓ(α+1)+u2(x,y)t2αΓ(2α+1))2−∂2∂y2(u0(x,y)+u1(x,y)tαΓ(α+1)+u2(x,y)t2αΓ(2α+1))2−F(u0(x,y)+u1(x,y)tαΓ(α+1)+u2(x,y)t2αΓ(2α+1)). | (3.4) |
Applying Dαt on both sides of equation (3.4) gives
DαtG(x,y,t,α,2)=u2(x,y)−2∂2∂x2[(u0(x,y)+u1(x,y)tαΓ(α+1)+u2(x,y)t2αΓ(2α+1))×(u1(x,y)+u2(x,y)tαΓ(α+1))]−2∂2∂y2[(u0(x,y)+u1(x,y)tαΓ(α+1)+u2(x,y)t2αΓ(2α+1))×(u1(x,y)+u2(x,y)tαΓ(α+1))]−(u1(x,y)+u2(x,y)tαΓ(α+1))×F′(u0(x,y)+u1(x,y)tαΓ(α+1)+u2(x,y)t2αΓ(2α+1)). |
Solving Dαt{G(x,y,t,α,2)}↓t=0=0, yields
u2(x,y)=2∂2∂x2[u0(x,y)u1(x,y)]+2∂2∂y2[u0(x,y)u1(x,y)]+u1(x,y)F′(u0(x,y)). |
To calculate u3(x,y), we consider G(x,y,t,α,3) and we solve
D2αt{G(x,y,t,α,3)}↓t=0=0, |
we have
u3(x,y)=2∂2∂x2[3u1(x,y)u2(x,y)+u0(x,y)u3(x,y)]+2∂2∂y2[3u1(x,y)u2(x,y)+u0(x,y)u3(x,y)]+u2(x,y)F′(u0(x,y))+u21(x,y)F′′(u0(x,y)), |
and so on.
In general, to obtain the coefficient function uk(x,y) we solve
D(k−1)αt{G(x,y,t,α,k)}↓t=0=0. |
Finally, the solution of equations (1.1)-(1.2), can be expressed by
u(x,y,t)=limn→∞un(x,y,t)=limn→∞n∑i=0ui(x,y)tiαΓ(iα+1)=∞∑i=0ui(x,y)tiαΓ(iα+1). |
The proof is complete.
In this section, we test the validity and efficiency of the proposed method to solve three numerical examples of Caputo time-fractional biological population equation.
We define En to be the absolute error between the exact solution u and the approximate solution un, as follows
En(x,y,t)=|u(x,y,t)−un(x,y,t)|,n=0,1,2,3,... |
Example 4.1. Consider the Caputo time-fractional biological population equation in the form
Dαtu=∂2u2∂x2+∂2u2∂y2+hu, | (4.1) |
with the initial condition
u(x,y,0)=u0(x,y)=√xy. | (4.2) |
By applying the steps involved in the MGTFSM as presented in Section 3, we have the solution of equations (4.1)-(4.2) in the form
u(x,y,t)=∞∑i=0ui(x,y)tiαΓ(iα+1), |
and
ui(x,y)=hi√xy, for i=0,1,2,3,... |
So, the solution of equations (4.1)-(4.2), can be expressed by
u(x,y,t)=√xy(1+htαΓ(α+1)+h2t2αΓ(2α+1)+h3t3αΓ(3α+1)+...)=√xy∞∑i=0(htα)iΓ(iα+1)=√xyEα(htα), | (4.3) |
where Eα(htα) is the Mittag-Leffler function, defined by (2.3).
Taking α=1 in (4.3), we have
u(x,y,t)=√xy(1+ht+(ht)22!+(ht)33!+...)=√xyexp(ht), |
which is an exact solution to the standard form biological population equation [10].
Example 4.2. Consider the Caputo time-fractional biological population equation in the form
Dαtu=∂2u2∂x2+∂2u2∂y2+u, | (4.4) |
with the initial condition
u(x,y,0)=u0(x,y)=√sinxsinhy. | (4.5) |
By applying the steps involved in the MGTFSM as presented in Section 3, we have the solution of equations (4.4)-(4.5) in the form
u(x,y,t)=∞∑i=0ui(x,y)tiαΓ(iα+1), |
and
ui(x,y)=√sinxsinhy, for i=0,1,2,3,... |
So, the solution of equations (4.4)-(4.5), can be expressed by
u(x,y,t)=√sinxsinhy(1+tαΓ(α+1)+t2αΓ(2α+1)+t3αΓ(3α+1)+...)=√sinxsinhy∞∑i=0tiαΓ(iα+1)=√sinxsinhyEα(tα), | (4.6) |
where Eα(tα) is the Mittag-Leffler function, defined by (2.3).
Taking α=1 in (4.6), we have
u(x,y,t)=√sinxsinhy(1+t+t22!+t33!+...)=(√sinxsinhy)exp(t), |
which is an exact solution to the standard form biological population equation [12].
Example 4.3 Consider the Caputo time-fractional biological population equation in the form
Dαtu=∂2u2∂x2+∂2u2∂y2+hu(1−ru), | (4.7) |
with the initial condition
u(x,y,0)=u0(x,y)=exp(√hr8(x+y)). | (4.8) |
By applying the steps involved in the MGTFSM as presented in Section 3, we have the solution of equations (4.7)-(4.8) in the form
u(x,y,t)=∞∑i=0ui(x,y)tiαΓ(iα+1), |
and
ui(x,y)=hiexp(√hr8(x+y)), for i=0,1,2,3,... |
So, the solution of equations (4.7)-(4.8), can be expressed by
u(x,y,t)=exp(√hr8(x+y))(1+htαΓ(α+1)+h2t2αΓ(2α+1)+h3t3αΓ(3α+1)+...)=exp(√hr8(x+y))∞∑i=0(htα)iΓ(iα+1)=exp(√hr8(x+y))Eα(htα), | (4.9) |
where Eα(htα) is the Mittag-Leffler function, defined by (2.3).
Taking α=1 in (4.9), we have
u(x,y,t)=exp(√hr8(x+y))(1+ht+(ht)22!+(ht)33!+...)=exp(√hr8(x+y)+ht), |
which is an exact solution to the standard form biological population equation [2].
In this section the numerical results for Examples 4.1, 4.2 and 4.3 are presented. Figures 1, 3 and 5 represents the surface graph of the exact solution and the approximate solution u6(x,y,t) at α=0.6,0.8,1. Figures 2, 4 and 6 represents the behavior of the exact solution and the approximate solution u6(x,y,t) at α=0.7,0.8,0.9,1. These figures affirm that when the order of the fractional derivative α tends to 1, the approximate solutions obtained by MGTFSM tends continuously to the exact solutions. Tables 1–3 show the absolute errors between the exact solution and the approximate solution u6(x,y,t) at α=1 for different values of x,y and t. These tables clarifies the convergence of the approximate solutions to the exact solutions.
t/x,y | 0.1 | 0.3 | 0.5 | 0.7 |
0.1 | 1.4090×10−10 | 4.2269×10−10 | 7.0449×10−10 | 9.8629×10−10 |
0.3 | 1.0576×10−7 | 3.1727×10−7 | 5.2879×10−7 | 7.4030×10−7 |
0.5 | 2.3354×10−6 | 7.0062×10−6 | 1.1677×10−5 | 1.6348×10−5 |
0.7 | 1.8129×10−5 | 5.4387×10−5 | 9.0645×10−5 | 1.2690×10−4 |
0.9 | 8.4486×10−5 | 2.5346×10−4 | 4.2243×10−4 | 5.9140×10−4 |
t/x,y | 0.1 | 0.3 | 0.5 | 0.7 |
0.1 | 1.4090×10−10 | 4.2268×10−10 | 7.0425×10−10 | 9.8497×10−10 |
0.3 | 1.0576×10−7 | 3.1726×10−7 | 5.2860×10−7 | 7.3932×10−7 |
0.5 | 2.3354×10−6 | 7.0059×10−6 | 1.1673×10−5 | 1.6326×10−5 |
0.7 | 1.8129×10−5 | 5.4385×10−5 | 9.0614×10−5 | 1.2673×10−4 |
0.9 | 8.4486×10−5 | 2.5345×10−4 | 4.2228×10−4 | 5.9061×10−4 |
t/x,y | 0.1 | 0.3 | 0.5 | 0.7 |
0.1 | 1.5572×10−9 | 1.9019×10−9 | 2.3230×10−9 | 2.8373×10−9 |
0.3 | 1.1688×10−6 | 1.4276×10−6 | 1.7436×10−6 | 2.1297×10−6 |
0.5 | 2.5810×10−5 | 3.1525×10−5 | 3.8504×10−5 | 4.7029×10−5 |
0.7 | 2.0036×10−4 | 2.4472×10−4 | 2.9890×10−4 | 3.6507×10−4 |
0.9 | 9.3372×10−4 | 1.1404×10−3 | 1.3929×10−3 | 1.7013×10−3 |
In addition, numerical results have confirmed the theoretical results and high accuracy of the proposed scheme.
Remark 5.1. In this paper, we only apply Six terms to approximate the solutions, if we apply more terms of the approximate solutions, the accuracy of the approximate solutions will be greatly improved.
In this paper, a new numerical technique called modified generalized Taylor fractional series method (MGTFSM) has been successfully applied for solving the Caputo time-fractional biological population equation. The method was applied to three numerical examples. The results show that the MGTFSM is an efficient and easy to use technique for finding approximate and exact solutions for these problems. The obtained approximate solutions using the suggested method is in excellent agreement with the exact solutions. This confirms our belief that the effciency of our technique gives it much wider applicability for general classes of fractional problems.
The authors are very grateful to the guest editors of this special issue and would like to express their sincere thanks to the referees for the careful and noteworthy reading of the paper and for their constructive comments and suggestions which are improved the paper substantially.
The authors declare that there is no conflict of interest in this paper.
[1] |
Sun J, Zuckermann RN (2013) Peptoid Polymers: A Highly Designable Bioinspired Material. ACS Nano 7: 4715–4732. doi: 10.1021/nn4015714
![]() |
[2] | Seo J, Lee BC, Zuckermann RN (2011) Peptoids: Synthesis, Characterization, and Nanostructures. Compr Biomater 2: 53–76. |
[3] |
Chongsiriwatana NP, Patch JA, Czyzewski AM, et al. (2008) Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. Proc Natl Acad Sci USA 105: 2794–2799. doi: 10.1073/pnas.0708254105
![]() |
[4] |
Vollrath SBL, Fürniss D, Schepers U, et al. (2013) Amphiphilic peptoid transporters-synthesis and evaluation. Org Biomol Chem 11: 8197–8201. doi: 10.1039/c3ob41139g
![]() |
[5] |
Li N, Zhu F, Gao F, et al. (2010) Blockade of CD28 by a synthetical peptoid inhibits T-cell proliferation and attenuates graft-versus-host disease. Cell Mol Immunol 7: 133–142. doi: 10.1038/cmi.2009.120
![]() |
[6] |
Dohm MT, Kapoor R, Barron AE (2011) Peptoids: Bio-Inspired Polymers as Potential Pharmaceuticals. Curr Pharm Design 17: 2732–2747. doi: 10.2174/138161211797416066
![]() |
[7] |
Statz AR, Park JP, Chongsiriwatana NP, et al. (2008) Surface-immobilised antimicrobial peptoids. Biofouling 24: 439–448. doi: 10.1080/08927010802331829
![]() |
[8] |
Seurynck SL, Patch JA, Barron AE (2005) Simple, helical peptoid analogs of lung surfactant protein B. Chem Biol 12: 77–88. doi: 10.1016/j.chembiol.2004.10.014
![]() |
[9] |
Maayan G, Ward MD, Kirshenbaum K (2009) Folded biomimetic oligomers for enantioselective catalysis. Proc Natl Acad Sci USA 106: 13679–13684. doi: 10.1073/pnas.0903187106
![]() |
[10] | Gellman SH (1998) Foldamers: A Manifesto. Accounts Chem Res 31: 173–180. |
[11] |
Armand P, Kirshenbaum K, Falicov A, et al. (1997) Chiral N-substituted glycines can form stable helical conformations. Fold Design 2: 369–375. doi: 10.1016/S1359-0278(97)00051-5
![]() |
[12] |
Shah NH, Butterfoss GL, Nguyen K (2008) Oligo(N-aryl glycines): A New Twist on Structured Peptoids. J Am Chem Soc 130: 16622–16632. doi: 10.1021/ja804580n
![]() |
[13] |
Huang K, Wu CW, Sanborn TJ, et al. (2006) A threaded loop conformation adopted by a family of peptoid nonamers. J Am Chem Soc 128: 1733–1738. doi: 10.1021/ja0574318
![]() |
[14] |
Crapster JA, Guzei IA, Blackwell HE (2013) A Peptoid Ribbon Secondary Structure. Angew Chem Int Ed 52: 5079–5084. doi: 10.1002/anie.201208630
![]() |
[15] |
Mannige RV, Haxton TK, Proulx C, et al. (2015) Peptoid nanosheets exhibit a new secondary-structure motif. Nature 526: 415–420. doi: 10.1038/nature15363
![]() |
[16] |
Hebert ML, Shah DS, Blake P, et al. (2013) Tunable peptoid microspheres: effects of side chain chemistry and sequence. Org Biomol Chem 11: 4459–4464. doi: 10.1039/c3ob40561c
![]() |
[17] |
Murnen HK, Rosales AM, Jaworski JN, et al. (2010) Hierarchical Self-Assembly of a Biomimetic Diblock Copolypeptoid into Homochiral Superhelices. J Am Chem Soc 132: 16112–16119. doi: 10.1021/ja106340f
![]() |
[18] |
Sanii B, Kudirka R, Cho A, et al. (2011) Shaken, Not Stirred: Collapsing a Peptoid Monolayer To Produce Free-Floating, Stable Nanosheets. J Am Chem Soc 133: 20808–20815. doi: 10.1021/ja206199d
![]() |
[19] |
Dill KA, MacCallum JL (2012) The Protein-Folding Problem, 50 Years On. Science 338: 1042–1046. doi: 10.1126/science.1219021
![]() |
[20] |
Gorske BC, Blackwell HE (2006) Tuning peptoid secondary structure with pentafluoroaromatic functionality: A new design paradigm for the construction of discretely folded peptoid structures. J Am Chem Soc 128: 14378–14387. doi: 10.1021/ja065248o
![]() |
[21] |
Stringer JR, Crapster JA, Guzei IA, et al. (2010) Construction of Peptoids with All Trans-Amide Backbones and Peptoid Reverse Turns via the Tactical Incorporation of N-Aryl Side Chains Capable of Hydrogen Bonding. J Org Chem 75: 6068–6078. doi: 10.1021/jo101075a
![]() |
[22] |
Gorske BC, Nelson RC, Bowden ZS, et al. (2013) "Bridged" n→π* Interactions Can Stabilize Peptoid Helices. J Org Chem 78: 11172–11183. doi: 10.1021/jo4014113
![]() |
[23] |
Wu CW, Kirshenbaum K, Sanborn TJ, et al. (2003) Structural and spectroscopic studies of peptoid oligomers with alpha-chiral aliphatic side chains. J Am Chem Soc 125: 13525–13530. doi: 10.1021/ja037540r
![]() |
[24] |
Kirshenbaum K, Barron AE, Goldsmith RA, et al. (1998) Sequence-specific polypeptoids: A diverse family of heteropolymers with stable secondary structure. Proc Natl Acad Sci USA 95: 4303–4308. doi: 10.1073/pnas.95.8.4303
![]() |
[25] |
Armand P, Kirshenbaum K, Goldsmith RA, et al. (1998) NMR determination of the major solution conformation of a peptoid pentamer with chiral side chains. Proc Natl Acad Sci USA 95: 4309–4314. doi: 10.1073/pnas.95.8.4309
![]() |
[26] | Dill KA (1990) Dominant forces in protein folding. Biochemistry 29: 31. |
[27] |
Dill KA, Ozkan SB, Shell MS, et al. (2008) The protein folding problem. Annu Rev Biophys 37: 289–316. doi: 10.1146/annurev.biophys.37.092707.153558
![]() |
[28] |
Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234: 779–815. doi: 10.1006/jmbi.1993.1626
![]() |
[29] |
Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15: 2507–2524. doi: 10.1110/ps.062416606
![]() |
[30] |
Rohl CA, Strauss CEM, Misura KMS, et al. (2004) Protein structure prediction using Rosetta. Method Enzymol 383: 66–93. doi: 10.1016/S0076-6879(04)83004-0
![]() |
[31] | Leach AR (2001) Molecular modelling : principles and applications, England: Pearson/Prentice Hall. |
[32] | Shell MS (2016) Coarse-Graining with the Relative Entropy, In: Rice SA, Dinner AR, Advances in Chemical Physics, Malden: Wiley-Blackwell, 395–441. |
[33] |
Mackerell AD, Feig M, Brooks CL (2004) Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25: 1400–1415. doi: 10.1002/jcc.20065
![]() |
[34] |
Feigel M (1983) Rotation barriers of amides in the gas phase. J Phys Chem 87: 3054–3058. doi: 10.1021/j100239a019
![]() |
[35] |
Sui Q, Borchardt D, Rabenstein DL (2007) Kinetics and equilibria of cis/trans isomerization of backbone amide bonds in peptoids. J Am Chem Soc 129: 12042–12048. doi: 10.1021/ja0740925
![]() |
[36] |
Duffy EM, Severance DL, Jorgensen WL (1992) Solvent effects on the barrier to isomerization for a tertiary amide from ab initio and Monte Carlo calculations. J Am Chem Soc 114: 7535–7542. doi: 10.1021/ja00045a029
![]() |
[37] |
Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J Comput Phys 23: 187–199. doi: 10.1016/0021-9991(77)90121-8
![]() |
[38] |
Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314: 141–151. doi: 10.1016/S0009-2614(99)01123-9
![]() |
[39] |
Stringer JR, Crapster JA, Guzei IA, et al. (2011) Extraordinarily Robust Polyproline Type I Peptoid Helices Generated via the Incorporation of alpha-Chiral Aromatic N-1-Naphthylethyl Side Chains. J Am Chem Soc 133: 15559–15567. doi: 10.1021/ja204755p
![]() |
[40] |
Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7: 95–99. doi: 10.1016/S0022-2836(63)80023-6
![]() |
[41] |
Butterfoss GL, Renfrew PD, Kuhlman B, et al. (2009) A Preliminary Survey of the Peptoid Folding Landscape. J Am Chem Soc 131: 16798–16807. doi: 10.1021/ja905267k
![]() |
[42] |
Mohle K, Hofmann HJ (1996) Peptides and peptoids—A systematic structure comparison. J Mol Model 2: 307–311. doi: 10.1007/s0089460020307
![]() |
[43] | Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55: 117–129. |
[44] | Pascual-Ahuir JL, Silla E, Tomasi J, et al. (1987) Electrostatic interaction of a solute with a continuum. Improved description of the cavity and of the surface cavity bound charge distribution. J Comput Chem 8: 778–787. |
[45] |
Parker BF, Knight AS, Vukovic S, et al. (2016) A Peptoid-Based Combinatorial and Computational Approach to Developing Ligands for Uranyl Sequestration from Seawater. Ind Eng Chem Res 55: 4187–4194. doi: 10.1021/acs.iecr.5b03500
![]() |
[46] |
Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107: 3032–3041. doi: 10.1063/1.474659
![]() |
[47] |
Cornell W, Cieplek P, Bayly CI, et al. (1995) A Second Generation Force-Field for the Simulation of Proteins, Nucleic-Acids, and Organic-Molecules. J Am Chem Soc 117: 5179–5197. doi: 10.1021/ja00124a002
![]() |
[48] |
Hawkins GD, Cramer CJ, Truhlar DG (1998) Universal Quantum Mechanical Model for Solvation Free Energies Based on Gas-Phase Geometries. J Phys Chem B 102: 3257–3271. doi: 10.1021/jp973306+
![]() |
[49] |
Bradley EK, Kerr JM, Richter LS, et al. (1997) NMR Structural Characterization of Oligo-N-Substituted Glycine Lead Compounds from a Combinatorial Library. Mol Divers 3: 1–15. doi: 10.1023/A:1009698309407
![]() |
[50] | Mann G, Yun RH, Nyland L, et al. (2002) The Sigma MD Program and a Generic Interface Applicable to Multi-Functional Programs with Complex, Hierarchical Command Structure, In: Schlick T, Gan HH, Computational Methods for Macromolecules: Challenges and Applications, Springer, Berlin, Heidelberg, 129–145. |
[51] |
Hermans J, Berendsen HJC, Van Gunsteren WF, et al. (1984) A consistent empirical potential for water–protein interactions. Biopolymers 23: 1513–1518. doi: 10.1002/bip.360230807
![]() |
[52] |
Butterfoss GL, Yoo B, Jaworski JN (2012) De novo structure prediction and experimental characterization of folded peptoid oligomers. Proc Natl Acad Sci USA 109: 14320–14325. doi: 10.1073/pnas.1209945109
![]() |
[53] |
Wang JM, Wolf RM, Caldwell JW, et al. (2004) Development and testing of a general amber force field. J Comput Chem 25: 1157–1174. doi: 10.1002/jcc.20035
![]() |
[54] |
Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 55: 383–394. doi: 10.1002/prot.20033
![]() |
[55] |
MacKerell AD, Bashford D, Bellott M, et al. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102: 3586–3616. doi: 10.1021/jp973084f
![]() |
[56] |
Case DA, Cheatham TE, Darden T, et al. (2005) The Amber biomolecular simulation programs. J Comput Chem 26: 1668–1688. doi: 10.1002/jcc.20290
![]() |
[57] |
Jorgensen WL, Maxwell DS, TiradoRives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118: 11225–11236. doi: 10.1021/ja9621760
![]() |
[58] |
Moehle K, Hofmann HJ (1996) Peptides and peptoids—A quantum chemical structure comparison. Biopolymers 38: 781–790. doi: 10.1002/(SICI)1097-0282(199606)38:6<781::AID-BIP9>3.0.CO;2-N
![]() |
[59] |
Jorgensen W, Chandrasekhar J, Madura J, et al. (1983) Comparison of Simple Potential Functions for Simulating Liquid Water. J Chem Phys 79: 926–935. doi: 10.1063/1.445869
![]() |
[60] |
Tobias DJ, Brooks CL (1988) Molecular dynamics with internal coordinate constraints. J Chem Phys 89: 5115–5127. doi: 10.1063/1.455654
![]() |
[61] |
Wang J, Wang W, Kollman PA, et al. (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25: 247–260. doi: 10.1016/j.jmgm.2005.12.005
![]() |
[62] | Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23: 1623–1641. |
[63] |
Mukherjee S, Zhou G, Michel C, et al. (2015) Insights into Peptoid Helix Folding Cooperativity from an Improved Backbone Potential. J Phys Chem B 119: 15407–15417. doi: 10.1021/acs.jpcb.5b09625
![]() |
[64] |
Lifson S, Roig A (1961) On the Theory of Helix-Coil Transition in Polypeptides. J Chem Phys 34: 1963–1974. doi: 10.1063/1.1731802
![]() |
[65] |
Mirijanian DT, Mannige RV, Zuckermann RN, et al. (2014) Development and use of an atomistic CHARMM-based forcefield for peptoid simulation. J Comput Chem 35: 360–370. doi: 10.1002/jcc.23478
![]() |
[66] |
Jordan PA, Bishwajit P, Butterfoss GL, et al. (2011) Oligo(N-alkoxy glycines): trans substantiating peptoid conformations. J Pept Sci 96: 617–626. doi: 10.1002/bip.21675
![]() |
[67] |
Nam KT, Shelby SA, Cho PH, et al. (2010) Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. Nat Mater 9: 454–460. doi: 10.1038/nmat2742
![]() |
[68] |
Mannige RV, Kundu J, Whitelam S (2016) The Ramachandran Number: An Order Parameter for Protein Geometry. PLoS One 11: e0160023. doi: 10.1371/journal.pone.0160023
![]() |
[69] |
Reith D, Putz M, Muller-Plathe F (2003) Deriving effective mesoscale potentials from atomistic simulations. J Comput Chem 24: 1624–1636. doi: 10.1002/jcc.10307
![]() |
[70] |
Izvekov S, Voth GA (2005) Multiscale coarse graining of liquid-state systems. J Chem Phys 123: 134105. doi: 10.1063/1.2038787
![]() |
[71] |
Shell MS (2008) The relative entropy is fundamental to multiscale and inverse thermodynamic problems. J Chem Phys 129: 144108. doi: 10.1063/1.2992060
![]() |
[72] |
Haxton TK, Mannige RV, Zuckermann RN, et al. (2015) Modeling Sequence-Specific Polymers Using Anisotropic Coarse-Grained Sites Allows Quantitative Comparison with Experiment. J Chem Theory Comput 11: 303–315. doi: 10.1021/ct5010559
![]() |
[73] |
Sanii B, Haxton TK, Olivier GK, et al. (2014) Structure-Determining Step in the Hierarchical Assembly of Peptoid Nanosheets. ACS Nano 8: 11674–11684. doi: 10.1021/nn505007u
![]() |
[74] |
Haxton TK, Zuckermann RN, Whitelam S (2016) Implicit-Solvent Coarse-Grained Simulation with a Fluctuating Interface Reveals a Molecular Mechanism for Peptoid Monolayer Buckling. J Chem Theory Comput 12: 345–352. doi: 10.1021/acs.jctc.5b00910
![]() |
[75] | Drew K, Renfrew PD, Butterfoss GL (2013) Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design. PLoS One 8: e67051. |
[76] |
Kaufmann KW, Lemmon GH, DeLuca SL, et al. (2010) Practically Useful: What the Rosetta Protein Modeling Suite Can Do for You. Biochemistry 49: 2987–2998. doi: 10.1021/bi902153g
![]() |
[77] | Renfrew PD, Craven TW, Butterfoss GL, et al. (2013) A Rotamer Library to Enable Modeling and Design of Peptoid Foldamers. J Am Chem Soc 136: 8772–8782. |
[78] |
Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys 71: 126601. doi: 10.1088/0034-4885/71/12/126601
![]() |
1. | Gbenga O. Ojo, Nazim I. Mahmudov, Aboodh Transform Iterative Method for Spatial Diffusion of a Biological Population with Fractional-Order, 2021, 9, 2227-7390, 155, 10.3390/math9020155 | |
2. | Mehmet Giyas Sakar, Onur Saldır, A New Reproducing Kernel Approach for Nonlinear Fractional Three-Point Boundary Value Problems, 2020, 4, 2504-3110, 53, 10.3390/fractalfract4040053 | |
3. | Nasir Ali, Rashid Nawaz, Laiq Zada, Abir Mouldi, Souhail Mohamed Bouzgarrou, Ndolane Sene, Taza Gul, Analytical Approximate Solution of the Fractional Order Biological Population Model by Using Natural Transform, 2022, 2022, 1687-4129, 1, 10.1155/2022/6703086 | |
4. | Ali Khalouta, Abdelouahab Kadem, Numerical Comparison of FNVIM and FNHPM for Solving a Certain Type of Nonlinear Caputo Time-Fractional Partial Differential Equations, 2020, 34, 2391-4238, 203, 10.2478/amsil-2020-0008 | |
5. | Nazek A. Obeidat, Daniel E. Bentil, Convergence analysis of the fractional decomposition method with applications to time‐fractional biological population models, 2023, 39, 0749-159X, 696, 10.1002/num.22916 | |
6. | Md Nur Alam, Onur Alp Ilhan, Jalil Manafian, Muhammad Imran Asjad, Hadi Rezazadeh, Haci Mehmet Baskonus, Jorge E. Macias-Diaz, New Results of Some of the Conformable Models Arising in Dynamical Systems, 2022, 2022, 1687-9139, 1, 10.1155/2022/7753879 | |
7. | Yeliz Karaca, Dumitru Baleanu, 2022, 9780323900324, 149, 10.1016/B978-0-323-90032-4.00006-7 | |
8. | Ayşe Ata, Mehmet Giyas Sakar, Onur Saldır, Mehmet Şenol, Finite and Infinite Dimensional Reproducing Kernel Hilbert Space Approach for Bagley–Torvik Equation, 2025, 11, 2349-5103, 10.1007/s40819-024-01828-z |
t/x,y | 0.1 | 0.3 | 0.5 | 0.7 |
0.1 | 1.4090×10−10 | 4.2269×10−10 | 7.0449×10−10 | 9.8629×10−10 |
0.3 | 1.0576×10−7 | 3.1727×10−7 | 5.2879×10−7 | 7.4030×10−7 |
0.5 | 2.3354×10−6 | 7.0062×10−6 | 1.1677×10−5 | 1.6348×10−5 |
0.7 | 1.8129×10−5 | 5.4387×10−5 | 9.0645×10−5 | 1.2690×10−4 |
0.9 | 8.4486×10−5 | 2.5346×10−4 | 4.2243×10−4 | 5.9140×10−4 |
t/x,y | 0.1 | 0.3 | 0.5 | 0.7 |
0.1 | 1.4090×10−10 | 4.2268×10−10 | 7.0425×10−10 | 9.8497×10−10 |
0.3 | 1.0576×10−7 | 3.1726×10−7 | 5.2860×10−7 | 7.3932×10−7 |
0.5 | 2.3354×10−6 | 7.0059×10−6 | 1.1673×10−5 | 1.6326×10−5 |
0.7 | 1.8129×10−5 | 5.4385×10−5 | 9.0614×10−5 | 1.2673×10−4 |
0.9 | 8.4486×10−5 | 2.5345×10−4 | 4.2228×10−4 | 5.9061×10−4 |
t/x,y | 0.1 | 0.3 | 0.5 | 0.7 |
0.1 | 1.5572×10−9 | 1.9019×10−9 | 2.3230×10−9 | 2.8373×10−9 |
0.3 | 1.1688×10−6 | 1.4276×10−6 | 1.7436×10−6 | 2.1297×10−6 |
0.5 | 2.5810×10−5 | 3.1525×10−5 | 3.8504×10−5 | 4.7029×10−5 |
0.7 | 2.0036×10−4 | 2.4472×10−4 | 2.9890×10−4 | 3.6507×10−4 |
0.9 | 9.3372×10−4 | 1.1404×10−3 | 1.3929×10−3 | 1.7013×10−3 |
t/x,y | 0.1 | 0.3 | 0.5 | 0.7 |
0.1 | 1.4090×10−10 | 4.2269×10−10 | 7.0449×10−10 | 9.8629×10−10 |
0.3 | 1.0576×10−7 | 3.1727×10−7 | 5.2879×10−7 | 7.4030×10−7 |
0.5 | 2.3354×10−6 | 7.0062×10−6 | 1.1677×10−5 | 1.6348×10−5 |
0.7 | 1.8129×10−5 | 5.4387×10−5 | 9.0645×10−5 | 1.2690×10−4 |
0.9 | 8.4486×10−5 | 2.5346×10−4 | 4.2243×10−4 | 5.9140×10−4 |
t/x,y | 0.1 | 0.3 | 0.5 | 0.7 |
0.1 | 1.4090×10−10 | 4.2268×10−10 | 7.0425×10−10 | 9.8497×10−10 |
0.3 | 1.0576×10−7 | 3.1726×10−7 | 5.2860×10−7 | 7.3932×10−7 |
0.5 | 2.3354×10−6 | 7.0059×10−6 | 1.1673×10−5 | 1.6326×10−5 |
0.7 | 1.8129×10−5 | 5.4385×10−5 | 9.0614×10−5 | 1.2673×10−4 |
0.9 | 8.4486×10−5 | 2.5345×10−4 | 4.2228×10−4 | 5.9061×10−4 |
t/x,y | 0.1 | 0.3 | 0.5 | 0.7 |
0.1 | 1.5572×10−9 | 1.9019×10−9 | 2.3230×10−9 | 2.8373×10−9 |
0.3 | 1.1688×10−6 | 1.4276×10−6 | 1.7436×10−6 | 2.1297×10−6 |
0.5 | 2.5810×10−5 | 3.1525×10−5 | 3.8504×10−5 | 4.7029×10−5 |
0.7 | 2.0036×10−4 | 2.4472×10−4 | 2.9890×10−4 | 3.6507×10−4 |
0.9 | 9.3372×10−4 | 1.1404×10−3 | 1.3929×10−3 | 1.7013×10−3 |