Research article

Dynamic pricing strategy design for manufacturing service providers in manufacturing platforms

  • Published: 29 January 2026
  • 90B50, 68T42

  • Existing game theory and scheduling optimization-based dynamic pricing methods suffer from complex decision-making processes, failing to adapt to service providers' (SPs) dynamic pricing needs in manufacturing service recommendation scenarios. To address this gap, this study proposes four rule-based dynamic pricing strategies—cost-plus pricing (CPP), service recommendation outcome-driven pricing (SROP), service capacity surplus-driven pricing (SCSP), and market average price-driven pricing (MAPP)—by analyzing SPs' dynamic response mechanisms during service recommendation. Additionally, integrating SPs' adaptive learning behaviors in competitive environments, two reinforcement learning (RL)-driven adaptive dynamic pricing methods were developed. These six strategies were embedded into a multi-agent simulation model abstracted from a real service recommendation system to evaluate their performance across diverse market environments. Results show that: (1) Among the rule-based strategies, SROP exhibits superior competitiveness in most scenarios due to its direct linkage with recommendation outcomes; (2) RL-driven pricing methods do not consistently outperform their rule-based counterparts, indicating that one-sided pursuit of dynamic learning capabilities may not help SPs establish market advantages. This study provides actionable pricing references for SPs in manufacturing service platforms and enriches the theoretical framework of dynamic pricing in service recommendation contexts.

    Citation: Wenchong Chen, Xiaoliao Tang, Jiehui Qi, Hongwei Liu. Dynamic pricing strategy design for manufacturing service providers in manufacturing platforms[J]. Journal of Industrial and Management Optimization, 2026, 22(2): 1140-1167. doi: 10.3934/jimo.2026042

    Related Papers:

  • Existing game theory and scheduling optimization-based dynamic pricing methods suffer from complex decision-making processes, failing to adapt to service providers' (SPs) dynamic pricing needs in manufacturing service recommendation scenarios. To address this gap, this study proposes four rule-based dynamic pricing strategies—cost-plus pricing (CPP), service recommendation outcome-driven pricing (SROP), service capacity surplus-driven pricing (SCSP), and market average price-driven pricing (MAPP)—by analyzing SPs' dynamic response mechanisms during service recommendation. Additionally, integrating SPs' adaptive learning behaviors in competitive environments, two reinforcement learning (RL)-driven adaptive dynamic pricing methods were developed. These six strategies were embedded into a multi-agent simulation model abstracted from a real service recommendation system to evaluate their performance across diverse market environments. Results show that: (1) Among the rule-based strategies, SROP exhibits superior competitiveness in most scenarios due to its direct linkage with recommendation outcomes; (2) RL-driven pricing methods do not consistently outperform their rule-based counterparts, indicating that one-sided pursuit of dynamic learning capabilities may not help SPs establish market advantages. This study provides actionable pricing references for SPs in manufacturing service platforms and enriches the theoretical framework of dynamic pricing in service recommendation contexts.



    加载中


    [1] T. Wang, C. Li, Y. Yuan, J. Liu, I. B. Adeleke, An evolutionary game approach for manufacturing service allocation management in cloud manufacturing, Comput. Ind. Eng., 133 (2019), 231-240. https://doi.org/10.1016/j.cie.2019.05.005 doi: 10.1016/j.cie.2019.05.005
    [2] H. Bo, Y. Zheng, Y. Li, S. He, Manufacturing resource outsourcing and matching: service mode selection and equilibrium evolution, J. Oper. Res. Soc., 76 (2025), 772-789. https://doi.org/10.1080/01605682.2024.2392797 doi: 10.1080/01605682.2024.2392797
    [3] Q. Zhang, N. Li, J. Duan, J. Qin, Y. Zhou, Resource scheduling optimisation study considering both supply and demand sides of services under cloud manufacturing, Systems, 12 (2024), 133. https://doi.org/10.3390/systems12040133 doi: 10.3390/systems12040133
    [4] H. Akbaripour, M. Houshmand, T. V. Woensel, N. Mutlu, Cloud manufacturing service selection optimization and scheduling with transportation considerations: mixed-integer programming models, Int. J. Adv. Manuf. Technol., 95 (2018), 43-70. https://doi.org/10.1007/s00170-017-1167-3 doi: 10.1007/s00170-017-1167-3
    [5] H. Tong, J. Zhu, A customer-oriented method to support multi-task green scheduling with diverse time-of-use prices in Cloud Manufacturing, Proc. Inst. Mech. Eng. B: J. Eng. Manuf., 237 (2023), 911-924. https://doi.org/10.1177/09544054221121848 doi: 10.1177/09544054221121848
    [6] W. Peng, W. Guo, L. Wang, R. Y. Liang, Dynamic pricing in cloud manufacturing systems under combined effects of consumer structure, negotiation, and demand, Math. Probl. Eng., 2017 (2017), 2073585. https://doi.org/10.1155/2017/2073585 doi: 10.1155/2017/2073585
    [7] Y. S. Hao, Y. S. Fan, J. Zhang, Service recommendation based on description reconstruction in cloud manufacturing, Int. J. Comput. Integr. Manuf., 32 (2019), 294-306. https://doi.org/10.1080/0951192X.2019.1571242 doi: 10.1080/0951192X.2019.1571242
    [8] S. Zhang, W. Yang, S. Xu, W. Zhang, Control, A hybrid social network-based collaborative filtering method for personalized manufacturing service recommendation, Int. J. Comput Commun Control., 12 (2017), 728-740. https://doi.org/0000-0002-6405-584X
    [9] L. Wang, T. Gao, B. Zhou, H. Tang, F. Xiang, Manufacturing service recommendation method toward industrial internet platform considering the cooperative relationship among enterprises, Expert Syst. Appl., 192 (2022), 116391. https://doi.org/10.1016/j.eswa.2021.116391 doi: 10.1016/j.eswa.2021.116391
    [10] Z. C. Liu, L. Wang, X. X. Li, S. Pang, A multi-attribute personalized recommendation method for manufacturing service composition with combining collaborative filtering and genetic algorithm, J. Manuf. Syst., 58 (2021), 348-364. https://doi.org/10.1016/j.jmsy.2020.12.019 doi: 10.1016/j.jmsy.2020.12.019
    [11] J. Liu, Y. Chen, Q. Liu, B. Tekinerdogan, A similarity-enhanced hybrid group recommendation approach in cloud manufacturing systems, Comput. Ind. Eng., 178 (2023), 109128. https://doi.org/10.1016/j.cie.2023.109128 doi: 10.1016/j.cie.2023.109128
    [12] H. Bouzary, F. F. Chen, A classification-based approach for integrated service matching and composition in cloud manufacturing, Rob. Comput. Integr. Manuf., 66 (2020), 101989. https://doi.org/10.1016/j.rcim.2020.101989 doi: 10.1016/j.rcim.2020.101989
    [13] X. B. Zhu, J. Shi, F. J. Xie, R. Q. Song, Pricing strategy and system performance in a cloud-based manufacturing system built on blockchain technology, J. Intell. Manuf., 31 (2020), 1985-2002. https://doi.org/10.1007/s10845-020-01548-3 doi: 10.1007/s10845-020-01548-3
    [14] X. Xue, S. F. Wang, L. J. Zhang, Z. Y. Feng, Evaluating of dynamic service matching strategy for social manufacturing in cloud environment, Future Gener. Comput. Syst., 91 (2019), 311-326. https://doi.org/10.1016/j.future.2018.08.028 doi: 10.1016/j.future.2018.08.028
    [15] X. Xue, Y. M. Kou, S. F. Wang, Z. Z. Liu, Computational experiment research on the equalization-oriented service strategy in collaborative manufacturing, IEEE Trans. Serv. Comput., 11 (2016), 369-383. https://doi.org/10.1109/TSC.2016.2569082 doi: 10.1109/TSC.2016.2569082
    [16] P. Cong, J. Zhou, M. Chen, T. Wei, Personality-guided cloud pricing via reinforcement learning, IEEE Trans. Cloud Comput., 10 (2020), 925-943. https://doi.org/10.1109/TCC.2020.2992461 doi: 10.1109/TCC.2020.2992461
    [17] Y. P. Zhang, Y. Cheng, H. T. Zheng, F. Tao, Long-short-term preference based dynamic pricing and manufacturing service collaboration optimization, IEEE Trans. Ind. Inf., 18 (2022), 8948-8956. https://doi.org/10.1109/tii.2022.3153663 doi: 10.1109/tii.2022.3153663
    [18] A. Kastius, R. Schlosser, Dynamic pricing under competition using reinforcement learning, J. Revenue Pricing Manag., 21 (2021), 50-63. https://doi.org/10.1057/s41272-021-00285-3 doi: 10.1057/s41272-021-00285-3
    [19] X. Xue, D. Y. Zhou, F. Y. Chen, X. N. Yu, Z. Y. Feng, Y. C. Duan, et al., From soa to voa: a shift in understanding the operation and evolution of service ecosystem, IEEE Trans. Serv. Comput. 16 (2021), 315-329. https://doi.org/10.1109/TSC.2021.3134718 doi: 10.1109/TSC.2021.3134718
    [20] M. Bisceglia, R. Cellini, L. Siciliani, O. R. Straume, Optimal dynamic volume-based price regulation, Int. J. Ind Organiz., 73 (2020), 102675. https://doi.org/10.1016/j.ijindorg.2020.102675 doi: 10.1016/j.ijindorg.2020.102675
    [21] G. Gallego, G. V. Ryzin, Optimal dynamic pricing of inventories with stochastic demand over finite horizons, Manage. Sci., 40 (1994), 999-1020. https://doi.org/10.1287/mnsc.40.8.999 doi: 10.1287/mnsc.40.8.999
    [22] Y. Wu, P. Liu, Pricing strategies for shared manufacturing platform considering cooperative advertising based on differential game, PLoS One, 19 (2024), e0303928. https://doi.org/10.1371/journal.pone.0303928 doi: 10.1371/journal.pone.0303928
    [23] R. Bi, F. Wu, S. Yuan, Leadership-driven pricing and customization in collaborative manufacturing: a platform dynamics perspective, J. Theor. Appl. Electron. Commer. Res., 20 (2025), 222. https://doi.org/10.3390/jtaer20030222 doi: 10.3390/jtaer20030222
    [24] L. Sun, G. Hua, T. Cheng, Y. Wang, How to price 3D-printed products? Pricing strategy for 3D printing platforms, Int. J. Prod. Econ., 226 (2020), 107600. https://doi.org/10.1016/j.ijpe.2019.107600 doi: 10.1016/j.ijpe.2019.107600
    [25] F. Tao, Y. Zuo, L. D. Xu, L. Zhang, IoT-based intelligent perception and access of manufacturing resource toward cloud manufacturing, IEEE Trans. Ind. Inf., 10 (2014), 1547-1557. https://doi.org/10.1109/TⅡ.2014.2306397 doi: 10.1109/TⅡ.2014.2306397
    [26] X. V. Wang, X. W. Xu, An interoperable solution for cloud manufacturing, Rob. Comput. Integr. Manuf., 29 (2013), 232-247. https://doi.org/10.1016/jscim.2013.01.005 doi: 10.1016/jscim.2013.01.005
    [27] X. Cao, H. Bo, Y. Liu, X. Liu, Effects of different resource-sharing strategies in cloud manufacturing: A stackelberg game-based approach, Int. J. Prod. Res., 61 (2023), 520-540. https://doi.org/10.1080/00207543.2021.2010824 doi: 10.1080/00207543.2021.2010824
    [28] P. K. Kopalle, K. Pauwels, L. Y. Akella, M. Gangwar, Dynamic pricing: Definition, implications for managers, and future research directions, J. Retailing., 99 (2023), 580-593. https://doi.org/10.1016/j.jretai.2023.11.003 doi: 10.1016/j.jretai.2023.11.003
    [29] O. Besbes, A. Zeevi, On the (surprising) sufficiency of linear models for dynamic pricing with demand learning, Manage. Sci., 61 (2015), 723-739. https://doi.org/10.1287/mnsc.2014.2031 doi: 10.1287/mnsc.2014.2031
    [30] Y. Wu, X. Zhou, Q. Xia, L. Peng, Resource scheduling method for equipment maintenance based on dynamic pricing model in cloud manufacturing, Appl. Sci., 13 (2023), 12483. https://doi.org/10.3390/app132212483 doi: 10.3390/app132212483
    [31] J. Zheng, Y. Gan, Y. Liang, Q. Jiang, J. Chang, Joint strategy of dynamic ordering and pricing for competing perishables with Q‐Learning algorithm, Wirel. Commun. Mob. Comput., 2021 (2021), 6643195. https://doi.org/10.1155/2021/6643195 doi: 10.1155/2021/6643195
    [32] M. Salb, L. Jovanovic, A. Elsadai, N. Bacanin, V. Simic, D. Pamucar, et al., Cloud spot instance price forecasting multi-headed models tuned using modified PSO, J. King Saud Univ. Sci., 36 (2024), 103473. https://doi.org/10.1016/j.jksus.2024.103473 doi: 10.1016/j.jksus.2024.103473
    [33] A. Guizzardi, F. M. E. Pons, G. Angelini, E. Ranieri, Big data from dynamic pricing: A smart approach to tourism demand forecasting, Int. J. Forecast., 37 (2021), 1049-1060. https://doi.org/10.1016/j.ijforecast.2020.11.006 doi: 10.1016/j.ijforecast.2020.11.006
    [34] Q. Ma, S. Feng, J. Liu, Dynamic pricing and demand forecasting: Integrating time-series analysis, regression models, machine learning, and competitive analysis, Appl. Comput. Eng., 93 (2024), 149-154. https://doi.org/10.54254/2755-2721/93/20240935 doi: 10.54254/2755-2721/93/20240935
    [35] C. Zhao, L. Zhang, Y. Liu, Z. Zhang, G. Yang, B. H. Li, Agent-based simulation platform for cloud manufacturing, Int. J. Model. Simul. Sci. Comput., 8 (2017), 1742001. https://doi.org/10.1007/s00170-015-7221-0 doi: 10.1007/s00170-015-7221-0
    [36] C. Zhao, X. Luo, L. Zhang, Modeling of service agents for simulation in cloud manufacturing, Rob. Comput. Integr. Manuf., 64 (2020), 101910. https://doi.org/10.1016/j.rcim.2019.101910 doi: 10.1016/j.rcim.2019.101910
    [37] Y. Hu, L. Pan, D. Gu, Z. Wang, H. Liu, Y. Wang, Matching of manufacturing resources in cloud manufacturing environment, Symmetry, 13 (2021), 1970. https://doi.org/10.3390/sym13101970 doi: 10.3390/sym13101970
    [38] J. Zhang, C. Wang, Supply-demand dynamic matching in cloud manufacturing based on hypernetwork model, Appl. Sci., 15, (2025), 1747. https://doi.org/10.3390/app15041747 doi: 10.3390/app15041747
    [39] L. Guo, S. Wang, L. Kang, Y. Cao, Agent-based manufacturing service discovery method for cloud manufacturing, Int. J. Adv. Manuf. Technol., 81 (2015), 2167-2181. https://doi.org/10.1007/s00170-015-7221-0 doi: 10.1007/s00170-015-7221-0
    [40] K. Li, T. Zhou, B. H. Liu, H. Li, A multi-agent system for sharing distributed manufacturing resources, Expert Syst. Appl., 99 (2018), 32-43. https://doi.org/10.1016/j.eswa.2018.01.027 doi: 10.1016/j.eswa.2018.01.027
    [41] H. Bouzary, F. F. Chen, K. Krishnaiyer, Service matching and selection in cloud manufacturing: a state-of-the-art review, Proc. Manuf., 26 (2018), 1128-1136. https://doi.org/10.1016/j.promfg.2018.07.149 doi: 10.1016/j.promfg.2018.07.149
    [42] A. Simeone, Y. Zeng, A. Caggiano, Intelligent decision-making support system for manufacturing solution recommendation in a cloud framework, Int. J. Adv. Manuf. Technol., 112 (2021), 1035-1050. https://doi.org/10.1007/s00170-020-06389-1 doi: 10.1007/s00170-020-06389-1
    [43] F. Fkih, Similarity measures for collaborative filtering-based recommender systems: review and experimental comparison, J. King Saud. Univ. Comput. Inf. Sci., 34 (2022), 7645-7669. https://doi.org/10.1016/j.jksuci.2021.09.014 doi: 10.1016/j.jksuci.2021.09.014
    [44] A. Dolgui, J. M. Proth, Pricing strategies and models, Annu. Rev. Control., 34 (2010), 101-110. https://doi.org/10.1016/j.arcontrol.2010.02.005 doi: 10.1016/j.arcontrol.2010.02.005
    [45] X. Chang, J. Li, D. Rodriguez, Q. Su, Agent-based simulation of pricing strategy for agri-products considering customer preference, Int. J. Prod. Res., 54 (2016), 3777-3795. https://doi.org/10.1080/00207543.2015.1120901 doi: 10.1080/00207543.2015.1120901
    [46] I. Dogan, A. R. Güner, A reinforcement learning approach to competitive ordering and pricing problem, Expert Syst. Appl., 32 (2015), 39-48. https://doi.org/10.1111/exsy.12054 doi: 10.1111/exsy.12054
    [47] A. Bhanu, G. C. Nath, T. Patnaik, Unlocking liquidity through shortened settlement cycle: Empirical evidence from India, Econ. Lett., 239 (2024), 111736. https://doi.org/10.1016/j.econlet.2024.111736 doi: 10.1016/j.econlet.2024.111736
    [48] X. Xue, Z. J. Chen, S. F. Wang, Z. Y. Feng, Y. C. Duan, Z. B. Zhou, Value entropy: A systematic evaluation model of service ecosystem evolution, IEEE Trans. Serv. Comput., 15 (2020), 1760-1773. https://doi.org/10.1109/TSC.2020.3016660 doi: 10.1109/TSC.2020.3016660
    [49] C. Panico, C. Cennamo, User preferences and strategic interactions in platform ecosystems, Strategic Manage. J., 43 (2022), 507-529. https://doi.org/10.1002/smj.3149 doi: 10.1002/smj.3149
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(73) PDF downloads(9) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog