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Abstract: Existing game theory and scheduling optimization-based dynamic pricing methods suffer
from complex decision-making processes, failing to adapt to service providers’ (SPs) dynamic pricing
needs in manufacturing service recommendation scenarios. To address this gap, this study proposes
four rule-based dynamic pricing strategies—cost-plus pricing (CPP), service recommendation
outcome-driven pricing (SROP), service capacity surplus-driven pricing (SCSP), and market average
price-driven pricing (MAPP)—by analyzing SPs’ dynamic response mechanisms during service
recommendation. Additionally, integrating SPs’ adaptive learning behaviors in competitive
environments, two reinforcement learning (RL)-driven adaptive dynamic pricing methods were
developed. These six strategies were embedded into a multi-agent simulation model abstracted from a
real service recommendation system to evaluate their performance across diverse market environments.
Results show that: (1) Among the rule-based strategies, SROP exhibits superior competitiveness in
most scenarios due to its direct linkage with recommendation outcomes; (2) RL-driven pricing
methods do not consistently outperform their rule-based counterparts, indicating that one-sided pursuit
of dynamic learning capabilities may not help SPs establish market advantages. This study provides
actionable pricing references for SPs in manufacturing service platforms and enriches the theoretical
framework of dynamic pricing in service recommendation contexts.
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1. Introduction

The advancement of new-generation information technologies, including cloud computing and
the industrial Internet, has enabled the manufacturing industry to transform the vision of
“interconnection and sharing of everything” into reality. As early as 2000, the United States established
MFG, the world’s largest manufacturing platform, to facilitate the efficient matching and transactions
of production orders and manufacturing capacity. Subsequently, manufacturing platforms targeting
different industrial sectors were developed in succession, including Protolabs, Zemi, Yun Cut, and
Jiepei. Financial reports from Protolabs and Zemi for 2023 indicate that their market capitalizations
have reached approximately USD 1.01 billion and USD 1.735 billion, respectively. This highlights the
substantial market potential and promising development prospects of manufacturing platforms.
Although these platforms effectively streamline channels for aligning industrial supply and demand
and reduce the configuration costs of manufacturing networks, the continuous expansion of service
scale inevitably leads to an increasing number of manufacturing requests and registered service
providers. Consequently, efficiently matching the supply and demand of numerous manufacturing
services has become a critical challenge in the development of such platforms.

Currently, numerous scholars have designed various approaches to address the problem of
supply—demand matching (SDM) in different contexts. Some studies focus on the negotiation
processes among stakeholders (i.e., service providers, service demanders, and the platform),
developing game-theoretic frameworks for SDM modeling [1,2], or exploring SDM involving multiple
service providers and demanders through scheduling-related optimization [3—5]. These studies clarify
the complex framework of SDM but also highlight a critical issue: the service pricing problem. Pricing
holds significant practical relevance, as it affects both the service purchase behavior of demanders and
the ultimate outcomes of SDM [6]. Insufficiently, both game-theoretic and scheduling-related
approaches aim at addressing the SDM with restricted service providers and demanders. As the number
of manufacturing services published on the platform continues to grow, information overload has
become an increasingly serious challenge [7]. It poses a significant challenge for inexperienced
demanders to manually select candidate services to meet specific functional requirements [8].
Manufacturing service recommendation has been widely regarded as an effective solution to alleviate
information overload and has attracted increasing attention from researchers in recent years [9]. In this
context, a variety of recommendation algorithms, including collaborative filtering [10], K-medoids
clustering [11], K nearest neighbor [12], and so on, have been proposed. Meanwhile, the pricing
strategies adopted by service providers when bidding for jobs within such recommendation systems
have also emerged as an important research topic. For instance, Zhu et al. [13] designed three pricing
strategies under a game-theoretic framework and evaluated their performance through a simulation
using the K nearest neighbor recommendation algorithm. These pricing strategies can help service
providers adjust their service prices effectively; however, they have the following three limitations:
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(1) The game-theoretic and scheduling-related pricing approaches are excessively complex,
making them inapplicable for service providers’ participation in platform-based manufacturing.
Currently, small- and medium-sized enterprises (SMEs) constitute the primary participants in
platform-based manufacturing. Constrained by their scale, game-theoretic and scheduling-related
approaches are difficult to promote and apply in practice. Based on a specialized survey we conducted
on SMEs (e.g., Jianhua Machinery, Guanming Packaging, Yongqgiang Auto Parts, and Banghe Die
Casting) using the COSMOPIat platform, we found that these enterprises generally adjust service
prices dynamically according to their surplus production capacity or the platform’s service
recommendations. This practical context necessitates the development of concise, rule-oriented
dynamic pricing strategies integrated with the platform’s service recommendation process.

(2) The prevailing pricing approaches—predominantly game-theoretic and scheduling-related—
overlook the adaptive learning behaviors of service providers within the complex context of platform-
based manufacturing. While these methods can accurately model service providers’ optimal pricing
decisions in complex environments, they fail to capture how providers adaptively adjust prices in
response to the platform’s service recommendation outcomes. In recent years, the rapid advancement
of artificial intelligence has drawn significant attention to reinforcement learning-based approaches,
which are model-free and well-suited to addressing service pricing challenges in complex settings.
However, there remains a lack of research on applying existing reinforcement learning methods to
service pricing in platform-based manufacturing.

(3) There is a lack of simulation models capable of depicting the dynamic service
recommendation process in platform-based manufacturing to evaluate the effectiveness of different
service pricing strategies. Different pricing strategies should be evaluated within realistic simulation
environments to assess their effectiveness. Accordingly, some scholars have developed multi-agent—
based simulation models for the service matching process in platform-based manufacturing, thereby
verifying the effects of different recommendation algorithms on group evolution outcomes [14,15].
However, a limitation of these simulation models is that they do not incorporate service providers’
service pricing as a key variable, making them unable to be directly used to assess the actual
implementation effects of various service pricing strategies in platform-based manufacturing.

This paper aims to address the aforementioned limitations by formulating a focused research
question: Against the backdrop of an increasingly competitive platform-based manufacturing
landscape, how should service providers develop rule-oriented or reinforcement learning-based
dynamic service pricing strategies to gain a competitive edge in the market, secure more service
recommendations, and ultimately maximize profits? By tackling this research question, this study
makes three key contributions, which are elaborated as follows:

(1) Four rule-oriented dynamic pricing strategies for service providers are developed. These
strategies comprehensively consider key factors such as service providers’ costs, manufacturing
platforms’ service recommendation results, residual service capacities, and average market service
prices, enabling efficient modeling of the differentiated pricing preferences of various service
providers in the platform-based manufacturing environment. Compared with the pricing policies
presented in references [13] and [15], the pricing strategy proposed in this study takes platform service
recommendation volume and corresponding revenue as the core basis for dynamic price adjustment.
This mechanism enables SPs to respond more precisely to the platform’s service recommendation
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process. In addition, we further embed four distinct rule-based pricing strategies into different SP
agents; this allows for the precise identification of applicable scenarios for each pricing strategy under
competitive conditions, thereby furnishing a decision-making basis for SPs to select optimal pricing
strategies in accordance with their own endowment conditions.

(2) Two adaptive dynamic pricing strategies based on the Q-learning algorithm are proposed. One
strategy involves learning to optimize the four aforementioned rule-based pricing strategies, while the
other focuses on direct price learning to determine optimal pricing decisions. The applicability of the
two strategies is evaluated by comparing their performance across diverse market environments.
Beyond the common practice adopted in [16—18], where service prices are regarded as the core learning
target, this study not only incorporates prices into the learning scope but also identifies dynamic pricing
strategies as another key learning parameter. This design not only enriches the pricing learning
mechanism of service providers (SPs) but also establishes a brand-new pricing decision-making
paradigm for their reference.

(3) A multi-agent simulation model is developed to evaluate the performance of dynamic pricing
strategies across various artificial market environments. The model simulates how different pricing
approaches compete to secure service recommendations and is designed to assess the adaptability and
survivability of these strategies in diverse competitive settings. In contrast to the studies reported
in [14], [15], and [19], which only focus on the service recommendation process and the evolution
process of the platform-based manufacturing ecosystem, the simulation model constructed in this study
further deconstructs the pricing strategies and decision-making behaviors of SPs, and conducts multi-
agent modeling analysis. This effectively addresses the deficiency of existing multi-agent simulation
models in depicting the behavioral mechanisms of SPs.

This research provides pricing decision support for small- and medium-sized manufacturing
enterprises participating in service competition, while also offering an experimental platform for
manufacturing service platforms to simulate and predict service recommendation outcomes. The
remainder of the paper is organized as follows: Section 2 presents a literature review on pricing
behaviors, dynamic pricing strategies, and the use of simulation models for service recommendation
in platform-based manufacturing. Section 3 outlines the problem statement and research scope. Section
4 details the modeling of various dynamic pricing strategies. In Section 5, a multi-agent simulation
framework is established by encapsulating different entities into an agent-based system. Section 6
describes the experimental design and simulation implementation. Finally, Section 7 summarizes the
research findings and discusses their theoretical and practical implications.

2. Literature review
2.1. Pricing behavior and modeling in platform-based manufacturing

Pricing in platform-based manufacturing systems is jointly influenced by consumer structure,
bargaining behavior, and demand characteristics. Peng et al. [6] showed that when the proportion of
“price takers” in the consumer population is relatively high, and demand is linear, service providers

tend to raise their posted prices to increase revenue; however, under elastic demand, as the share of
“price takers” increases, providers tend to lower prices to better adapt to market conditions. Bisceglia
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et al. [20] conducted an empirical study in highly competitive markets with sluggish demand,
examining the dynamic relationship between transaction volume and price volatility. They found that
when production cost convexity is either relatively high or low, the optimal pricing strategy involves
punitive or incentive pricing for higher output levels. Gallego et al. [21], in their study on single-
product pricing, demonstrated that optimal prices decrease as residual service capacity increases and
remaining selling time decreases. In research on pricing under different contractual arrangements on
shared manufacturing platforms, Wu et al. [22] found that when the platform and manufacturers adopt
a revenue-sharing contract, the platform may set higher prices to reflect market expansion resulting
from collaboration. Bi et al. [23] examined how different governance structures on networked
collaborative manufacturing platforms affect product pricing strategies and reported that when the
platform is manufacturer-led, manufacturers exhibit more stable pricing, whereas when the platform
is designer-led, higher commission rates incentivize the platform to lower the price of standardized
products. Sun et al. [24] investigated optimal pricing strategies for 3D printing platforms that
simultaneously offer standardized and customized products. Their findings indicated that the price of
standardized products is positively correlated with their own quality and negatively correlated with the
quality of customized products; meanwhile, under low labor costs, the price of customized products is
positively correlated with their own quality and negatively correlated with the quality of standardized
products.

There are complex interactions among service providers, platforms, and demand-side users, and
many studies employ game-theoretic models to examine pricing behavior within these interactions. To
address how service providers in cloud manufacturing systems should set prices under the joint
influence of heterogeneous consumer structures, bargaining behaviors, and different demand forms,
Peng et al. [6] proposed a three-party game-based dynamic pricing framework. To mitigate price
fluctuations caused by competition for cloud manufacturing service resources, Tao et al. [25]
developed a pricing game model grounded in multi-agent competition, revealing the interactive
mechanisms underlying pricing strategies among service suppliers. Focusing on the heterogeneity of
resource supply in cloud manufacturing environments, Wang [26] introduced a bilateral game model
to determine the equilibrium price between service providers and demand-side users. Wu [22]
constructed four cooperative advertising models using differential game theory and compared the
decision mechanisms under different contractual arrangements, offering optimal cooperation strategies
for manufacturers and platforms. To investigate how suppliers’ resource-sharing strategies in cloud
manufacturing affect customer satisfaction and profit allocation, Cao et al. [27] developed a two-stage
model based on Stackelberg games, analyzing the equilibrium pricing and task allocation mechanisms
between suppliers and cloud platform operators.

2.2. Dynamic pricing strategies in platform-based manufacturing

As a highly competitive strategy in complex market environments, dynamic pricing has long
attracted substantial scholarly attention [28]. Besbes et al. [29] investigated a multi-period single-
product pricing problem under an unknown demand curve and found that, under certain market
conditions, adopting a linear demand model to adjust prices dynamically across periods can achieve
near-optimal revenue performance. Zhu et al. [13] showed that service providers in cloud

Journal of Industrial and Management Optimization Volume 22, Issue 2, 1140-1167.



1145

manufacturing systems dynamically adjust their pricing strategies based on capacity conditions: when
idle, they adopt competitive low pricing by reducing management fee rates to increase the probability
of winning bids; when saturated, they pursue premium pricing to maximize profits; and under normal
load, they maintain average pricing to ensure reasonable returns. Wu et al. [30] demonstrated that in
equipment maintenance scheduling on cloud manufacturing platforms, high time sensitivity and
demand uncertainty drive service providers to implement dynamic pricing based on factors such as
cost and waiting time, thereby improving response speed and operational efficiency.

From a platform perspective, Zhang et al. [17] proposed a personalized dynamic pricing strategy
that incorporates estimates of suppliers’ short- and long-term preferences and developed a
corresponding dynamic price-driven collaborative optimization method for manufacturing services.
Using a Q-learning algorithm, they demonstrated that this integrated approach can significantly
enhance system performance and optimization outcomes. Zheng et al. [31] employed a Q-learning
algorithm to study multi-period joint pricing and ordering decisions for perishable products. By
optimizing decision variables—including new product order quantities, sales prices, and carryover
quantities of older inventory—the model achieves profit maximization across periods.

Several studies base price adjustments on predictions of future demand, job arrival rates, or
resource utilization intensity. These works employ time-series models, neural networks, or hybrid
machine-learning approaches to construct dynamically updated pricing strategies; the methods predict
future prices or resource utilization and feed the forecasts into an optimizer, enabling service providers
to set prices that enhance revenue [32,33]. Ma et al. [34] integrated demand forecasting with
competitive analysis by combining price-elasticity estimation and competitor behavior modeling.
Through the coordinated use of optimization algorithms and revenue-management techniques, they
developed a dynamic pricing system capable of real-time adjustments, helping firms maximize revenue
in markets for perishable goods and services.

2.3. Multi-agent simulation model for platform-based manufacturing

With the growing adoption of cloud manufacturing and platform-based production models,
researchers have increasingly employed multi-agent simulation techniques to construct virtual
manufacturing ecosystems that replicate the dynamic interactions among users, service providers, and
platforms. This approach enables low-cost analysis of service-matching mechanisms and system
behaviors. Zhao et al. [35] developed a multi-agent-based cloud manufacturing transaction simulation
platform that models enterprises as autonomous service agents, enabling full-process simulation of
order release, service discovery, and capability matching. The platform provides a systematic
framework for evaluating how matching mechanisms and workflow design affect operational
efficiency. Building on this work, Zhao [36] proposed a service-agent network model that incorporates
Quality of Service (QoS) attributes, service feedback mechanisms, and self-organizing behaviors,
allowing service matching to more accurately reflect real market conditions. The model simultaneously
captures the processes of service evaluation updates and dynamic relationship evolution.

To enhance the efficiency of task-resource matching and reduce resource consumption, Hu et al. [37]
constructed a multi-layer matching framework centered on resources, tasks, and constraints. By
modeling multidimensional attributes—including resource capabilities, time windows, machining
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quality, and cost—this framework enables precise alignment between manufacturing resources and
user requirements. Zhang et al. [38] further introduced a simulation model for dynamic supply-demand
matching in cloud manufacturing, designed to evaluate the effects of matching rules, platform response
mechanisms, and resource distributions on overall platform efficiency and ecosystem sustainability.
Guo et al. [39] proposed an agent-based service discovery method that, through simulation experiments,
demonstrated how search strategies, capability descriptions, and filtering rules influence matching
efficiency. Their service-feature modeling framework provides a theoretical foundation for subsequent
research on service matching and recommendation. Li et al. [40] developed a distributed multi-agent
resource-sharing system for manufacturing, in which resource, scheduling, and request agents interact
collaboratively to optimize cross-organizational resource allocation and task distribution, effectively
coordinating multi-party supply—demand relationships.

2.4. Research gaps

Existing studies have proposed various pricing methods for manufacturing services in platform-
based manufacturing environments. These methods effectively capture the interests of three parties—
service providers, service demanders, and manufacturing platforms—along with their interactive
decision-making processes. However, a notable limitation is that these methods primarily focus on
constructing quantitative decision models. For small- and medium-sized enterprises (SMEs)
participating in platform-based manufacturing, such models are not only operationally complex but
also struggle to accurately capture the dynamic and evolving nature of the service recommendation
process. Reinforcement learning algorithms can support the development of dynamic pricing strategies
with autonomous learning capabilities; however, relatively few studies have applied them to
manufacturing service pricing to date. Moreover, different pricing strategies should be evaluated
within realistic simulation environments to assess their effectiveness. Accordingly, some scholars have
developed multi-agent-based simulation models for the service matching process in platform-based
manufacturing, thereby verifying the effects of different recommendation algorithms on group
evolution outcomes [14,15]. However, a limitation of these simulation models is that they do not
incorporate service providers’ pricing as a key variable, preventing direct assessment of the actual
effects of different service pricing strategies in platform-based manufacturing.

3. Problem description

Platform-based manufacturing integrated with service recommendation involves three types of
decision-making entities: service providers (SPs), the service recommendation executor (SRE), and
service demanders (SDs). Specifically, SPs encapsulate their manufacturing capabilities as services
and upload them to the platform. SDs can conveniently search for and utilize these services via the
platform and provide rating feedback upon service completion [41]. The manufacturing platform
leverages new-generation information technologies to achieve ubiquitous connectivity of
manufacturing services, creating a vast pool of manufacturing service resources. Encapsulated within
the platform, the SRE is responsible for recommending the optimal manufacturing service to service
demanders upon receiving their service requirements [42].
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Figure 1. Recommendation processes in platform-based manufacturing.

The recommendation processes in platform-based manufacturing are illustrated in Figure 1. These
processes can be described in the following four steps:

Step 1: Manufacturing service demand generation. Manufacturing service demanders arrive at
the manufacturing platform randomly, represented by the set U = {uy,u, ...,u,}, where each
demander is indexed by j = 1, ..., n. They upload their manufacturing service requirement information
to the platform, denoted by the set D = {Dy, D, ..., D,}. Here, D; = {dj;,d;; ..., djn, } represents the
service requirements of demander u; in the platform, where djy is the expected value of demander u;
for the k-th service attribute (k = 1, ..., m), such as the desired service price, the desired service quality,
and other relevant attributes.

Step 2: Manufacturing services filtering and recommendation. We use set V = {v;, v, ..., v, } to
represent manufacturing service providers, indexed by i = 1, ..., , and the set B = {B;,B, ..., B, } to
represent the service attributes of all providers, where B; = {b;1, b;5 ..., by} denotes the values of each
service attribute of provider v;. The service recommendation executor calculates the similarity
Sim(Dj, B;) between demander u; and provider v; using the Euclidean distance method and performs
service recommendation based on this similarity. This recommendation mechanism is simple and
mature, making it widely adopted in practical applications [43]. The calculation for Sim(D;, B;) is
shown in Equation (1):

Slm(D],Bl) = Z (Cz]k - l_)l'k)z (1)
k=1

where cZ,- « and b;;, denote the normalized values of each attribute, which are obtained via the min-max
normalization method. We set a recommendation threshold § and all service providers with
S im(Dj, Bi) < & are placed into the candidate service set V' which will be recommended to service
demander u;. We sort service demanders in accordance with the first-come-first-served rule and
sequentially recommend the set of candidate service providers to them.

Step 3: Service provider selection and capital settlement. The service demander evaluates the
services from providers within the candidate set Vj’ based on their preferences for the various attributes.
The service provider that meets the capacity requirements and has the highest rating is selected. A
service contract is then signed with the relevant provider, followed by capital settlement.

Step 4: Service price update. Each SP adjusts its service price according to the predefined rules,
which constitute the core strategy this paper endeavors to propose. The process then returns to Step 1
to initiate the service recommendation and selection processes for the next time period.
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We aim to develop a set of simple and operable dynamic pricing strategies to support SPs in their
pricing decision-making, with full consideration of the aforementioned service recommendation
processes.

4. Dynamic pricing strategy modeling for service providers

This section proposes several dynamic pricing strategies for service providers, integrating the
service recommendation processes in platform-based manufacturing. Building on previous research,
four rule-based dynamic pricing strategies and two self-adaptive, learning-driven dynamic pricing
strategies are developed. The four rule-based strategies include cost-plus pricing (CPP), service
recommendation outcome-driven pricing (SROP), service capacity surplus-driven pricing (SCSP), and
market average price-driven pricing (MAPP). CPP is typically suitable for scenarios with relatively
stable cost structures and a high degree of product standardization. In such contexts, enterprises can
accurately calculate costs and subsequently set prices based on expected profit margins [44]. SROP is
particularly suitable for highly competitive markets with significant service homogenization, where
service providers face intense rivalry for service demander orders [14]. It is also well-suited to
scenarios where real-time feedback on recommendation volume and transaction profits is readily
available, enabling dynamic price adjustments to balance market share expansion and profit
optimization. Additionally, a primary motivation for service providers to participate in platform-based
manufacturing is excess capacity. Engagement on such platforms enables full utilization of surplus
service capacity, resulting in a capacity surplus-driven pricing strategy [45]. The final rule-based
strategy is MAPP [45], which helps providers avoid customer loss due to unduly high prices or profit
erosion from unduly low prices.

Q-learning, as an efficient learning method, is well-suited for addressing self-adaptive learning
problems with discrete action and state spaces [46]. Drawing on Q-learning principles, we develop two
self-adaptive, learning-driven pricing strategies: one involves learning to optimize the four
aforementioned rule-based pricing strategies (denoted as LRS), and the other focuses on direct price
learning to determine optimal pricing decisions (denoted as DPL). DPL dynamically adjusts service
prices based on real-time market conditions, learning to increase or decrease prices in response to the
specific context of service recommendations. LRS is well-suited for scenarios with clear pricing rules
and stable market logic, offering strong interpretability and low computational complexity, although it
may be limited by the original rules. In contrast, DPL is more applicable to complex, volatile markets
with ambiguous pricing rules, enabling flexible adaptation to unforeseen market changes. The
applicability of the two strategies is evaluated by comparing their performance across diverse market
environments.

4.1. Modeling for rule-based dynamic pricing strategies

Given the relative simplicity of the pricing logics underlying CPP and MAPP, instead of providing
elaborate details on them, this section focuses on the two rule-based pricing strategies: SROP and SCSP.
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4.1.1. Modeling for SROP

Building on the work of Xue et al. [14], we have refined the decision-making conditions: whereas
Xue et al. relied solely on a single utility value to trigger price adjustments, our approach incorporates
a dual-factor coordination mechanism—integrating service recommendation volume and profit—into
SROP. This design not only mitigates potential misjudgments of market supply-demand imbalances
arising from reliance on a single metric but also establishes dynamic benchmarks that autonomously
adapt to market fluctuations. Specifically, if an SP receives a high volume of service recommendations
but achieves relatively low final profit, it will appropriately increase its price. Conversely, if an SP
receives a low volume of service recommendations but achieves a relatively high final profit, it will
lower its offering price. Otherwise, the SP maintains its current price. This pricing strategy helps SPs
balance service recommendation volume and profit attainment. The SROP is formally expressed in

Equation (2):
p(t) + B * Pyyg * 10%, (TR = TRqyg)A(CP < CPyyq) )
p(t+ 1) { p(t) — B * Pyyg * 10%, (TR < TRqyug)A(CP > CPyyy)
p(t) else

where t is the current evolution period, P4 is the average price of service, TR is the volume of
service recommendation, TRy, is the mean volume of service recommendation, CP is the service
recommendation profit, and CF,,,, is the mean profit of service recommendation. The 8 denotes the
risk preference coefficient of the SP.

4.1.2. Modeling for SCSP

SCSP is developed based on Chang et al. [45]. Each SP dynamically adjusts its prices at the end
of each evolution period according to its current remaining service capacity. Specifically, if the current
remaining capacity exceeds the standard remaining capacity I, the SP will set a lower price;
conversely, the price will be increased. The specific pricing logic is formally defined by Equations (3)
and (4).

t
e=(1-2)+0 (3)
( I
Pmin fin'(l_;_u>so
st (4)
Icu Icu
p(t)=<pmin+fin' 1_1_ 0<fin' 1_1_ Spmax_pmin
st st
Icu
Pmax fin \1-——]> Pmax — Pmin
\ Iy

where T denotes the service capacity refresh cycle, Q represents the total capacity of the SP, p;,;, and
Pmax denote the lower and upper price bounds, respectively, f;,, is the influence coefficient of the
remaining capacity on pricing, and I.,, denotes the current remaining capacity of the SP.
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4.2. Modeling for self-adaptive learning-driven dynamic pricing strategies

During initial system evolution, self-learning SPs randomly explore pricing strategies to
participate in market competition. Subsequently, these providers update their Q-tables based on
revenue obtained from market interactions and optimize their decision-making through the Q-learning
algorithm to transition to subsequent states. The state transition process for these self-learning pricing
models is illustrated in Figure 2.

4.2.1. State space definition

As the core variable in implementing dynamic pricing strategies, the service price serves as a
“bridge” linking an SP’s decisions to market responses. Meanwhile, capital value directly reflects the
practical impact of pricing decisions on a service provider’s survival and development. Its fluctuations
not only measure the outcomes of the pricing strategy but also serve as a key indicator of its
effectiveness. Accordingly, the state spaces of LRS and DPL are defined with explicit consideration of
these two factors. The state space of SP v; under DPL is defined as Sy, = {Cy,(¢), py,(£)}, where

Cy, () € [0y, €,,] represents the capital value of SP v;, and p,,,(t) € [p,’]i‘in, py; **] denotes the current
service price. Here, 0,, is the minimum capital threshold required for the SP to sustain operations
within the system, while e, represents the capital threshold corresponding to the SP’s ability to
reproduce new entities. The parameters p{,’;i" and p;;** denote the lower and upper bounds of p,,,
respectively. The state space of SP v; under LRS is defined as S, = {C,,(¢)}. The current price is

excluded from this state space, as the price state does not influence the selection of pricing strategies.

J Pricing Strategy Exploration |

\b| Compete for Orders Against Competitors |

k4
k| Return Feedback |

Figure 2. State transition process of a learning-enabled SP.

To reduce the complexity of state spaces, both [0, e, ] and [p{,’i‘i",p,ﬁri‘ax

Specifically, [0y, €y,] is divided into [ equal-range intervals, while [pﬂ}i”,p,’}l?ax] is divided into I’

| are discretized.

equal-range intervals. Each divided interval corresponds to a distinct state. We determine the
corresponding state by identifying the interval to which the values of G, (¢) and p,, (t) belong.

4.2.2. Action space definition

The action space for SP v; with LRS is defined as A,, = {ap,, ap,, ap,, ap,}. Here, a,, denotes
the action of selecting the z-th pricing strategy from the set of four predefined rule-based strategies,
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where z = 1 means CPP, z = 2 means SROP, z = 3 means SCSP, and z = 4 means MAPP. The
action space for SP v; with DPL is defined as A,, = {ayp, @gown}, Where a,,;, represents the action of
increasing the service price, and ag,,, means the action of decreasing it. The step sizes for price
increases and decreases are set to be consistent with those of SROP, so as to better reflect the impact
of learning capability on the final performance of pricing strategies.

4.2.3. State transition rule and reward function design

The € — greedy strategy is a common approach for balancing exploration and exploitation. This
section primarily employs the & — greedy strategy to construct the action selection method.
Specifically, at each decision point, a learning-enabled SP selects a random action with probability €
(exploration), creating an opportunity to discover potentially better strategies, and selects the current
known optimal action with probability 1 — ¢ (exploitation) to maximize immediate returns. As
learning progresses, € decays exponentially according to ;4,1 = 1 * &, where 77 is the decay rate.

For a learning-enabled SP v; at time t in state s,,; (Sy; € Sy;), the probability of selecting action
ay; (ay; € Ay,) is calculated using Equation (5):

€

—+ (1 —-¢), if a, = Lal

|A(Svi)| (1-¢), if a,, =arg maCleQ(SVI a')
€

p(avilsvi) = (5)
_ else
|ACsv))I
After an action is selected, the Q-table is updated based on the reward R, obtained by the SP
from transactions with service demand in period ¢. The update follows Equation (6):
Q(SVj’ avi) = (1 - a)Q(SVi' a’Ui) + a Rt + ynz;g'xQ(STI)l' allﬁi) (6)

The reward function is calculated using Equation (7):
Rt — Z fviir'llgome _ vCiOSt (7)
K

Here, Y, f,f;‘,ﬁ"me and f,7*'represent the total revenue earned and the total cost incurred by the SP
during transaction period t, respectively.

5. Multi-agent simulation model for service recommendation

The effectiveness of different pricing strategies can be accurately evaluated only when they are
deployed in dynamic and competitive service recommendation environments. Service
recommendation is inherently complex, involving multiple entities with intricate interactions. Multi-
agent simulation plays a crucial role in this evaluation by enabling the creation of an experimental
platform that simulates service recommendation processes. This is accomplished by quantitatively
modeling the fundamental attributes, decision-making behaviors, and interaction mechanisms of the
entities involved.
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5.1. SP agent design

Each SP agent represents an autonomous decision-making entity capable of dynamically
adjusting its service pricing based on its internal state and the market environment. The specific design
of agent attributes and decision-making behaviors (e.g., price update, agent demise, and reproduction)
is described as follows:

(1) Agent attribute design

Except for the basic service information, the pricing strategy adopted, unit service cost, periodic
sale volume, and capital value are the fundamental attributes of an SP agent. The service information
of an agent for each transaction period t (t €T ) is defined as a tuple: B;(t) =<
b;1(t), bi5(t), bi3, biy >. Here, b;1(t) represents the available service capacity, dynamically updated
in each trading period based on transaction outcomes; b;, (t) denotes the price per unit service capacity,
which is dynamically updated according to the agent’s adopted pricing strategy; b;3 means the
minimum delivery time of service, and b;, signifies the service reliability—both of which are constants.
Specifically, the update of b;; (t) follows the rule: by (t + 1) = b;; (t) — q;(t), and b1 (t) = b;j1 (1)
every T trading period [14]. Here, g;(t) is the sales volume of the SP agent in trading period ¢ ,
calculated by Equation (8):

aw®= ) ¢dn® ®)

jevi(e)

where dj; (t) denotes the required service capacity of demander u;, j € V;(t), V;(t) represents the set
of SDs that select SP v; for services, and ¢; means the minimum capacity delivery ratio allowed by
SD u;.

(2) Agent decision-making behavior modeling

The behaviors of an SP agent include capital settlement, price adjustment, and service capacity
update. At the end of each period t, an SP agent calculates its revenue according to the profit function:
;(t) = (bjz(t) — b;.) * q;(t), where b;, represents the unit cost of service capacity. Following the
calculation, the agent allocates a portion of its funds to cover normal operating expenses for the next
transaction period [47], and updates its capital as: Cp (t + 1) = Cp,(¢t) + m;(t) — ¢y, Where Gy
denotes the capital consumption of SP v; for the subsequent period. After capital settlement, the agent
adjusts its service price based on its selected pricing strategy.

The demise, survival, and reproduction of an agent is determined by its capital value: An agent
will be eliminated if its capital falls below a predefined threshold (i.e., 0,,). It will survive if its capital
remains within the range [0,,, e,,], and will reproduce a new offspring agent with an initial capital of
Cinitiar 1f its capital exceeds the upper limit threshold (i.e., e, ). The capital of the agent after
reproduction is reduced to ¢, (t) — Cinitiar [48]. Moreover, refer to Xue et al. [19], where a fixed number
of new SPs, denoted as ry, enter the platform during each transaction period.

5.2. 8D agent design
Each SD agent selects the most suitable SP based on service recommendation results and its own

demand preferences. These agents interact with SP agents to complete transactions. The specific design
of agent attributes and decision-making behaviors is described as follows:
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(1) Agent attribute design
The attributes of an SD agent include the basic service demand information and the minimum
capacity delivery ratio allowed (i.e., ;). Agent’s service demand information is defined as a tuple:

D; =< djy, dj;, dj3,dj, >, where dj; represents the required service capacity, dj, denotes the expected
unit price the demander is willing to pay, dj; refers to the expected service delivery time, and
d;, signifies the expected service reliability.

(2) Agent decision-making behavior modeling

The behaviors of an SD agent include demand creation, service evaluation, and service selection.
The SD agent evaluates the utility of each candidate SP agent v;(v; € V;(t)) recommended by the
platform. The utility function is defined as f(B;) = wyb;1(t) + wo(1 — bjp(t)) + w3(1 — b;3) +
wyb;4, where wy, k = 1, ...,4, represents the SD agent’s preference weight for the k-th service attribute,
and w; + w, + w3 + w, = 1. The SD agent selects the SP agent with the highest utility for transaction.

Drawing on the SD arrival mechanism proposed by Xue et al. [19], a fixed number of SD agents,
denoted as nq, enter the platform during each transaction period. An SD agent’s exit is determined by
its demand-fulfillment status: if its demand is satisfied, the agent remains in the market and generates
a new demand; if its demand remains unsatisfied for T consecutive periods, the agent exits the market.

5.3. SRE agent design

The SRE agent functions as an intermediary connecting SP agents and SD agents. It processes
and manages both service demand information and service attribute information, while also generating
service recommendations. For each incoming service demand D;, the SRE computes the similarity

metrics Sim(Dj,Bi) between D; and the available manufacturing services B;, and produces a
corresponding recommendation list V;' (t). This recommendation information is then transmitted to the
SD agent u; for evaluation and selection. Furthermore, during the service contract-signing stage, the
SRE aggregates the selection outcomes submitted by SD agents and forwards this feedback to the
corresponding SP agents, thereby completing the transaction cycle and ensuring the closed-loop
operation of recommendation, selection, and execution within the platform.

5.4. Dynamic interactions among agents

The dynamic interactions among agents are illustrated in Figure 3, which can be delineated into
the following seven steps:

Step 1: System initialization. Initialize a service recommendation system with a specified number
of SP and SD agents. Define the attributes and behavioral rules for each agent according to the previous
design and modeling processes. SP agents and SD agents publish their corresponding service and
demand information (i.e., information sets B and D) on the SRE agent. Set transaction period t = 1.

Step 2: Service recommendation. If the demand set D is empty, turn to Step S; otherwise, the SRE
agent randomly selects a demand from an SD agent, calculates the similarity Sim(D;, S;),Vv; € V,
recommends all candidate SPs (i.e., set V}-’) that meet the recommendation threshold to the SD agent,
removes the selected demand from set D, and turns to Step 3.

Step 3: Service selection. Based on its service preferences, an SD agent computes the utility for
each SP in the candidate set Vj'. It selects the SP that satisfies the minimum delivery quantity @;d;; (t)
and offers the highest utility.
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Step 4: Transaction completion and capital settlement. The SRE agent sends the result of SP
selection to the corresponding SP agent and acts as an intermediary to facilitate the signing of service
contracts between SD and SP agents. Subsequently, the SP agent conducts capital settlement, and turns
to Step 2.

Step 5: Service price updating. SP agents adjust their service prices based on their selected pricing
strategies. Each SP agent can select one pricing strategy from the six options: CPP, SROP, SCSP, MAPP,
LRS, and DPL.

Step 6: Service information updating and new service demand creation. If t < T, service
information from SP agents is updated and new service demands are created. The SP agents decide
whether to reproduce new agents or exit the platform based on their capital value. The SD agents
determine whether to exit the platform or continue publishing new service demands based on their
demand satisfaction status. New SP agents and SD agents arrive at the platform as well, and turn to
Step 2. If t = T, turn to Step 7.

Step 7: Stop. Stop the recommendation system and observe its evolutionary outcome.

We observe the market competitiveness of the six pricing strategies by monitoring the final
surviving quantity and the corresponding capital value of SP agents that adopt different pricing
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Figure 3. Agent interaction flowchart.
6. Experimental setup and simulation
6.1. Parameter settings

Yuncut is a manufacturing service platform headquartered in Jiaxing, China, that specializes in
the optimal matching of services for steel plate cutting. The platform currently hosts over 1400
registered users and collaborates with more than 40 suppliers. To date, it has completed 3.75 million
orders, and its annual revenue has grown substantially—from RMB 22 million in 2017 to RMB 149
million in 2024. To ensure efficient supply—demand matching in manufacturing services, Yuncut
employs a service recommendation mechanism. Based on field research into Yuncut’s service
recommendation system, we collected and analyzed one week of real operational data. This statistical
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analysis provided a basis for estimating the simulation parameter values used in this study. Among
these parameters, b;;, b;», bz, and b;, are determined according to actual operational conditions,
while parameters such as ¢;, n, and r are approximately estimated based on real-world scenarios.
Detailed parameter values are shown in Table 1. We employ NetLogo 6.2 to develop the multi-agent
system, and the visual interface is shown in Figure 4.
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Figure 4. Multi-agent system simulation interface.

The simulation environment is configured as a 40x40 two-dimensional grid and includes six types
of SP agents. Each type consists of 30 SP agents employing a distinct pricing strategy, resulting in a
total of 180 SP agents. In addition, the environment comprises 90 SD agents (n = 90) and one SRE
agent. All agents are initialized with randomly assigned positions and attribute values. Each
experimental setup is repeated 10 times, and the average of the final results across these runs serves as
the performance metric for evaluating different pricing strategies.

6.2. Benchmark experiments and model validity analysis

This study applies the event validity method to assess the effectiveness of the proposed model
using a three-step procedure: (1) designing a baseline experiment, (2) generating output results through
simulation runs, and (3) comparing the simulation outputs with real-world events. The baseline
experiment was conducted using the parameter settings presented in Table 1, and the corresponding
results are shown in Figures 5 and 6.
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Table 1. Parameter settings.

Environment SP agent SD agent
Parameter Value Parameter Value Parameter Value
T 1000 Cinital 500 djy [40, 100]
T 5 Cyi [10, 20] dj, [7.0, 10.0]
n 90 biy [40, 100] djs [24, 96]
T 180 by [7.0, 10.0] djy [0.8, 1.0]
o 2 bis [24, 96] ®; [0.8, 1.0]
n 1 bis [0.8, 1.0] w; [0.0, 1.0]
7 1 bi, [6.0, 7.0]
! 90 ey, 1000 - -
U 3 0y, 100 - -
a 0.2 B 0.2 - -
y 0.9 fin 2 - -
n 0.99995 pon 7 - -
€ 0.9 Py ** 10 - -
25001 2T e o s st
Total Capital
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Figure 5. Evolutionary results of the recommendation system.
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As shown in Figure 5, during the initial evolution phase, both the total number of SP agents and
the overall market capital value increase rapidly. This pattern is consistent with the typical early-stage
development dynamics of such platforms. As the simulation progresses, the growth in the number of
SP agents and the total capital value gradually slows and eventually stabilizes, primarily due to the
fixed incremental rate of SD agents. Service demand, as the core driver of the recommendation system,
provides stable and continuous input that supports the ongoing expansion of SP participation and the
accumulation of market capital value.

As illustrated in Figure 6, the evolutionary trajectories of SPs adopting different pricing strategies
reveal substantial differences in survival rates and capital accumulation. Providers using the SROP
strategy achieve both the highest survival levels and the strongest capital growth, underscoring the
effectiveness of demand-oriented pricing within this ecosystem. In contrast, the MAPP and DPL
strategies exhibit steady yet limited growth, suggesting constraints in exploiting service differentiation
and inherent limitations in their price-based learning mechanisms. Although the LRS strategy faces
similar challenges to DPL, its slower adaptation to market dynamics—particularly in the presence of
SROP’s first-mover advantage—further diminishes its competitiveness under increasing market
pressure. Conversely, the CPP and SCSP strategies perform suboptimally. The former neglects market
competition and demand elasticity, whereas the latter’s narrow emphasis on supply-side factors
weakens its capital conversion capability. Collectively, these findings highlight the critical importance
of aligning pricing strategies with real-time demand signals in cloud manufacturing platforms.

6.3. Value setting of recommendation threshold &

The recommendation threshold § plays a critical role in shaping both the platform’s selection of
candidate SPs and the overall experience of SDs. To enhance the quality of recommendation lists and
improve user experience by filtering out irrelevant service information, 6 should be maintained within
a moderate range. This section examines the impact of 6 on the long-term development of the
recommendation system. The experimental results are presented in Figure 7.
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Figure 7. Evolution of total agents with variation in §.
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As shown in Figure 7, during the initial evolutionary phase (t < 200), the total number of agents
increases rapidly in a jump-like manner, particularly in the case of § = 0.4. This effect arises because
a lower § value produces more concentrated service recommendations, allowing certain SPs to
accumulate capital quickly and reach the predefined threshold. As the evolution progresses, the total
number of agents shifts into a phase of steady growth. Notably, by the end of the evolutionary process,
the scenario with § = 2 yields the highest total number of agents in the system. This result suggests
that an excessively low § may hinder the platform ecosystem’s long-term development. Therefore, to
more effectively observe the system’s evolutionary dynamics, this study sets o to 2.

6.4. Sensitivity analysis
6.4.1.  Effects of capital upper limit threshold e,

The capital upper-limit threshold e, determines SP agents’ decisions regarding the generation of
new individuals. This section examines how variations in e, influence the population dynamics of SP
agents, with the experimental results shown in Figure 8.

high

suade gs Jo Amuend

Figure 8. Evolution of SP agents’ quantity with variation in e, .

As illustrated in Figure 8, during the initial evolutionary phase (t < 200), the population of SP
agents declines as the reproduction threshold (e,,) increases. However, this trend weakens as the
system continues to evolve. By t = 1000, the relationship between e,,; and the SP agent population no
longer follows a simple linear pattern. The observed nonlinear dynamics arise from two underlying
mechanisms. First, an excessively low e, leads to rapid agent proliferation, which intensifies market
competition and ultimately eliminates less competitive agents, thereby stabilizing population size.
Conversely, an overly high e, restricts successful reproduction for a significant subset of SP agents.
These findings suggest that appropriately calibrating e, is essential for sustaining an active and
resilient SP agent population within the system.
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6.4.2. Effects of price preference weight w,

In practical application scenarios, demander preferences—acting as the primary driver of market
demand—directly influence the effectiveness and market adaptability of different pricing strategies [49].
To enhance the practical relevance of this study, two price-sensitive SD scenarios are constructed. The
first scenario investigates the impact of varying price weights (w,) through seven comparative
experiments, in which w, increases from 0.3 to 0.9 in increments of 0.1, while the remaining weights
are allocated to the other three attributes. The second scenario assigns a fixed weight of 0.7 to the price
attribute and 0.1 to each of the remaining attributes, and introduces six experimental groups based on
the proportion of price-sensitive SDs on the platform (ranging from 50% to 100%). The evolutionary
outcomes of these configurations are presented in Figure 9.
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Figure 9. Effects of proportion of price-sensitive SDs.

Figure 9(a) shows that under low price-weight conditions (w, < 0.5), the dominant pricing
strategies remain consistent with those observed in the benchmark experiment, indicating the broad
applicability of the SROP strategy in such contexts. When w, increases to the range of 0.6-0.7, clear
strategic differentiation emerges, demonstrating the substantial influence of price weight across all
strategies. The performance of the SROP strategy declines markedly as w, rises, confirming its limited
suitability in highly price-sensitive markets where price becomes the predominant decision factor,
consequently diminishing the advantages of its composite decision-making mechanism. In contrast,
the DPL strategy gains increasing advantage as w, grows, suggesting strong compatibility between its
learning mechanism and price-sensitive market conditions. At w, = 0.7, the LRS strategy surpasses
DPL to become the dominant approach. To further investigate the applicability boundaries of the LRS
strategy, additional experiments were conducted, as presented in Figure 9(b).

Analysis of the dynamic evolution of SP agents’ capital values reveals that providers employing
the LRS strategy possess a pronounced competitive advantage (Figure 9(b)). This advantage becomes
particularly evident when the proportion of price-sensitive demanders reaches 80%, at which point the
strategy’s learning mechanism aligns optimally with market conditions. Under these conditions, its
learning effectiveness becomes markedly amplified, enabling LRS-based providers to outperform their
competitors. SPs adopting the CPP, SCSP, and MAPP strategies exhibit comparatively lower and more
stable capital value shares, reflecting consistent yet unremarkable performance in price-sensitive
markets. A notable pattern emerges for the SROP strategy. When price-sensitive SDs constitute 60%
of the population, SROP-based SPs achieve the second-highest capital share at 21%. However, as this
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proportion increases to 100%, their share drops sharply to 4%, indicating that the competitiveness of
SROP diminishes significantly as SD price sensitivity intensifies. In contrast, SPs utilizing the DPL
strategy experience substantial gains: their capital share increases from 15% to 43% as the proportion
of price-sensitive SDs rises from 70% to 100%. This trend demonstrates that in markets dominated by
highly price-sensitive demanders, the learning mechanism embedded in the DPL strategy is highly
effective, enabling these providers to adapt successfully to market shifts and secure a competitive edge.

6.4.3. Effects of risk coefficient 5

The risk coefficient 8, a key regulatory parameter in the SROP strategy, directly represents an
SP’s attitude toward pricing risk. This section investigates the impact of varying £ values on the
competitiveness of SROP. The coefficient was incrementally increased from 0.2 to 1.0 in steps of 0.2.
The experimental results are presented in Figure 10.

The results in Figure 10 indicate that the population share of SPs adopting the SROP strategy
initially increases and then decreases as the risk coefficient £ rises, reaching a peak at § = 0.4. This
suggests that a moderate risk level facilitates effective implementation of the strategy, whereas an
excessively high risk (f > 0.6) diminishes its applicability. The underlying rationale is that a low risk
coefficient limits the strategy’s ability to balance risk and return effectively, while a high coefficient
induces large price fluctuations and elevated risk, ultimately reducing the volume of recommendations.
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Figure 10. Effects of risk coefficient .

In contrast, the population shares of SPs employing the CPP and SCSP strategies show no
significant correlation with f, indicating that these strategies are less sensitive to risk factors. Notably,
the population shares of both learning-enabled SPs are relatively high when £ is 0.4 or 0.6, suggesting
that a medium-risk environment is most favorable for the effectiveness of their learning mechanisms.
Furthermore, when 8 exceeds 0.8, the MAPP strategy exhibits a marked advantage due to its pricing
stability, implying that in environments characterized by aggressive price adjustments, a stable pricing
strategy becomes more adaptive.
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From a market-wide perspective, the total capital value initially increases and then declines as
rises, reaching a peak at f = 0.4. This indicates that the risk coefficient S exerts a significant influence
on overall capital accumulation in the market. When £ falls within an optimal range (e.g., 0.4-0.6),
interactions among the various pricing strategies promote more rational resource allocation, allowing
SPs to accumulate capital efficiently and thereby enhancing the total market capital value.

In summary, the SROP strategy exhibits a distinct advantage under low risk coefficients (f). As
B increases to a medium range (0.4—0.6), the market experiences robust capital accumulation. During
this phase, the market environment aligns well with the learning mechanisms of learning-enabled SPs,
enabling them to capitalize on their strengths and promote capital growth. Conversely, at high f values,
the pricing stability of the MAPP strategy proves particularly effective in managing complex market
risks.

6.4.4. Effects of initial SD agent quantity

The initial number of SDs determines the order volume during the early stages of system
evolution and ultimately affects service recommendation outcomes. To examine the impact of the
initial SD count on the effectiveness of dynamic pricing strategies, three comparative experimental
groups were designed, with initial SD numbers set at 90, 180, and 270. The experimental results are
presented in Figure 11.
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Figure 11. Effects of initial SD agent quantity.

As shown in Figure 11, the population share of SPs adopting the DPL strategy increases markedly
with the initial number of SDs. Specifically, as the initial SD count rises from 90 to 270, the share of
DPL-strategy SPs grows from 26% to 49%, establishing it as the dominant strategy. This phenomenon
can be attributed to two underlying mechanisms. First, a sufficient order volume reduces market
competition, providing a stable environment for SPs employing the DPL strategy. Second, the
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diversification of SD demands exposes the limitations of traditional pricing strategies, further
enhancing the relative advantage of DPL.

Figure 11(d) depicts the dynamic evolution of the SD population over time under different initial
SD counts. In the scenario with a high initial SD count (n = 270), substantial SD churn occurs during
the early stages of system evolution due to supply-demand imbalances. Nevertheless, driven by the
platform’s periodic SD entry mechanism, the total SD population eventually stabilizes and exhibits a
steady growth trend. Notably, the magnitude of SD churn decreases as the initial SD count decreases.
The final SD population size demonstrates a positive correlation with the initial SD count, indicating
that the initial SD quantity significantly influences the system’s evolutionary outcome.

In summary, the initial number of SDs exerts only a limited effect on the effectiveness of the CPP,
SCSP, MAPP, and LRS strategies, whereas it has a pronounced impact on the performance of the SROP
and DPL strategies. Moreover, as a critical prerequisite, the initial population of SD agents
substantially determines the eventual scale of the platform’s SD base.

7. Conclusions

The optimization of pricing strategies is crucial for SPs to secure more service recommendations.
This paper designs four rule-based dynamic pricing strategies and further introduces reinforcement
learning algorithms to construct two types of self-adaptive learning-driven dynamic pricing strategies.
By integrating the relevant stakeholders involved in manufacturing service recommendation and the
dynamic pricing decision-making process of SPs, a multi-agent simulation model is developed. The
performance of various pricing strategies is analyzed across a range of simulated environments. The
innovations and main research findings of this paper are summarized as follows:

(1) Amulti-agent simulation model is developed to characterize the complex interactive behaviors
among stakeholders. Using this model, the performance of the six dynamic pricing strategies can be
evaluated by designing various artificial experiments based on the simulation results regarding the
recommendation threshold § and the capital upper limit threshold e,,,. We find that while a higher §
yields marginal short-term benefits, it substantially enhances the platform’s long-term sustainability.
Conversely, an excessively low e, inhibits both the expansion of the service provider population and
market capital accumulation. Therefore, setting appropriate values for § and ey, is crucial for the
healthy development of the service recommendation system.

(2) Four rule-based pricing strategies are developed for SPs in platform-based manufacturing.
Among them, the SROP strategy demonstrates a significant competitive advantage. In scenarios
characterized by random user preferences and a limited initial scale of SDs, this strategy, through its
adaptive price adjustment mechanism driven by real-time recommendation results and profit feedback,
exhibits a more pronounced competitive edge compared to the other three rule-based dynamic pricing
strategies.

(3) Two self-adaptive learning-driven pricing strategies are proposed for SPs considering the
learning behaviors in competitive markets. The learning effectiveness of the two strategies is
susceptible to various factors, such as the initial SD base, the distribution characteristics of SD price
preferences, and the parameter settings of other rule-based pricing strategies. For instance, the
competitive advantage of learning-driven pricing strategies becomes increasingly prominent as the
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proportion of service price-sensitive SD rises. However, the effectiveness of learning-driven pricing
strategies significantly decreases when the initial SD base is small and the initial market competition
is intense. Consequently, if a service provider adopts such a strategy to enter the market, conducting a
systematic assessment of the market environment is crucial.

Future research could focus on the development of more advanced, adaptive, learning-based
dynamic pricing algorithms to further improve the market performance of such mechanisms.
Additionally, the design of more sophisticated reward functions may enrich these algorithms by
incorporating a broader range of decision-making factors beyond capital considerations.
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