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Abstract: Existing game theory and scheduling optimization-based dynamic pricing methods suffer 

from complex decision-making processes, failing to adapt to service providers’ (SPs) dynamic pricing 

needs in manufacturing service recommendation scenarios. To address this gap, this study proposes 

four rule-based dynamic pricing strategies—cost-plus pricing (CPP), service recommendation 

outcome-driven pricing (SROP), service capacity surplus-driven pricing (SCSP), and market average 

price-driven pricing (MAPP)—by analyzing SPs’ dynamic response mechanisms during service 

recommendation. Additionally, integrating SPs’ adaptive learning behaviors in competitive 

environments, two reinforcement learning (RL)-driven adaptive dynamic pricing methods were 

developed. These six strategies were embedded into a multi-agent simulation model abstracted from a 

real service recommendation system to evaluate their performance across diverse market environments. 

Results show that: (1) Among the rule-based strategies, SROP exhibits superior competitiveness in 

most scenarios due to its direct linkage with recommendation outcomes; (2) RL-driven pricing 

methods do not consistently outperform their rule-based counterparts, indicating that one-sided pursuit 

of dynamic learning capabilities may not help SPs establish market advantages. This study provides 

actionable pricing references for SPs in manufacturing service platforms and enriches the theoretical 

framework of dynamic pricing in service recommendation contexts. 
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1. Introduction 

The advancement of new-generation information technologies, including cloud computing and 

the industrial Internet, has enabled the manufacturing industry to transform the vision of 

“interconnection and sharing of everything” into reality. As early as 2000, the United States established 

MFG, the world’s largest manufacturing platform, to facilitate the efficient matching and transactions 

of production orders and manufacturing capacity. Subsequently, manufacturing platforms targeting 

different industrial sectors were developed in succession, including Protolabs, Zemi, Yun Cut, and 

Jiepei. Financial reports from Protolabs and Zemi for 2023 indicate that their market capitalizations 

have reached approximately USD 1.01 billion and USD 1.735 billion, respectively. This highlights the 

substantial market potential and promising development prospects of manufacturing platforms. 

Although these platforms effectively streamline channels for aligning industrial supply and demand 

and reduce the configuration costs of manufacturing networks, the continuous expansion of service 

scale inevitably leads to an increasing number of manufacturing requests and registered service 

providers. Consequently, efficiently matching the supply and demand of numerous manufacturing 

services has become a critical challenge in the development of such platforms. 

Currently, numerous scholars have designed various approaches to address the problem of 

supply–demand matching (SDM) in different contexts. Some studies focus on the negotiation 

processes among stakeholders (i.e., service providers, service demanders, and the platform), 

developing game-theoretic frameworks for SDM modeling [1,2], or exploring SDM involving multiple 

service providers and demanders through scheduling-related optimization [3–5]. These studies clarify 

the complex framework of SDM but also highlight a critical issue: the service pricing problem. Pricing 

holds significant practical relevance, as it affects both the service purchase behavior of demanders and 

the ultimate outcomes of SDM [6]. Insufficiently, both game-theoretic and scheduling-related 

approaches aim at addressing the SDM with restricted service providers and demanders. As the number 

of manufacturing services published on the platform continues to grow, information overload has 

become an increasingly serious challenge [7]. It poses a significant challenge for inexperienced 

demanders to manually select candidate services to meet specific functional requirements [8]. 

Manufacturing service recommendation has been widely regarded as an effective solution to alleviate 

information overload and has attracted increasing attention from researchers in recent years [9]. In this 

context, a variety of recommendation algorithms, including collaborative filtering [10], K-medoids 

clustering [11], K nearest neighbor [12], and so on, have been proposed. Meanwhile, the pricing 

strategies adopted by service providers when bidding for jobs within such recommendation systems 

have also emerged as an important research topic. For instance, Zhu et al. [13] designed three pricing 

strategies under a game-theoretic framework and evaluated their performance through a simulation 

using the K nearest neighbor recommendation algorithm. These pricing strategies can help service 

providers adjust their service prices effectively; however, they have the following three limitations: 
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(1) The game-theoretic and scheduling-related pricing approaches are excessively complex, 

making them inapplicable for service providers’ participation in platform-based manufacturing. 

Currently, small- and medium-sized enterprises (SMEs) constitute the primary participants in 

platform-based manufacturing. Constrained by their scale, game-theoretic and scheduling-related 

approaches are difficult to promote and apply in practice. Based on a specialized survey we conducted 

on SMEs (e.g., Jianhua Machinery, Guanming Packaging, Yongqiang Auto Parts, and Banghe Die 

Casting) using the COSMOPlat platform, we found that these enterprises generally adjust service 

prices dynamically according to their surplus production capacity or the platform’s service 

recommendations. This practical context necessitates the development of concise, rule-oriented 

dynamic pricing strategies integrated with the platform’s service recommendation process. 

(2) The prevailing pricing approaches—predominantly game-theoretic and scheduling-related—

overlook the adaptive learning behaviors of service providers within the complex context of platform-

based manufacturing. While these methods can accurately model service providers’ optimal pricing 

decisions in complex environments, they fail to capture how providers adaptively adjust prices in 

response to the platform’s service recommendation outcomes. In recent years, the rapid advancement 

of artificial intelligence has drawn significant attention to reinforcement learning-based approaches, 

which are model-free and well-suited to addressing service pricing challenges in complex settings. 

However, there remains a lack of research on applying existing reinforcement learning methods to 

service pricing in platform-based manufacturing. 

(3) There is a lack of simulation models capable of depicting the dynamic service 

recommendation process in platform-based manufacturing to evaluate the effectiveness of different 

service pricing strategies. Different pricing strategies should be evaluated within realistic simulation 

environments to assess their effectiveness. Accordingly, some scholars have developed multi-agent–

based simulation models for the service matching process in platform-based manufacturing, thereby 

verifying the effects of different recommendation algorithms on group evolution outcomes [14,15]. 

However, a limitation of these simulation models is that they do not incorporate service providers’ 

service pricing as a key variable, making them unable to be directly used to assess the actual 

implementation effects of various service pricing strategies in platform-based manufacturing. 

This paper aims to address the aforementioned limitations by formulating a focused research 

question: Against the backdrop of an increasingly competitive platform-based manufacturing 

landscape, how should service providers develop rule-oriented or reinforcement learning-based 

dynamic service pricing strategies to gain a competitive edge in the market, secure more service 

recommendations, and ultimately maximize profits? By tackling this research question, this study 

makes three key contributions, which are elaborated as follows:  

(1) Four rule-oriented dynamic pricing strategies for service providers are developed. These 

strategies comprehensively consider key factors such as service providers’ costs, manufacturing 

platforms’ service recommendation results, residual service capacities, and average market service 

prices, enabling efficient modeling of the differentiated pricing preferences of various service 

providers in the platform-based manufacturing environment. Compared with the pricing policies 

presented in references [13] and [15], the pricing strategy proposed in this study takes platform service 

recommendation volume and corresponding revenue as the core basis for dynamic price adjustment. 

This mechanism enables SPs to respond more precisely to the platform’s service recommendation 
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process. In addition, we further embed four distinct rule-based pricing strategies into different SP 

agents; this allows for the precise identification of applicable scenarios for each pricing strategy under 

competitive conditions, thereby furnishing a decision-making basis for SPs to select optimal pricing 

strategies in accordance with their own endowment conditions. 

(2) Two adaptive dynamic pricing strategies based on the Q-learning algorithm are proposed. One 

strategy involves learning to optimize the four aforementioned rule-based pricing strategies, while the 

other focuses on direct price learning to determine optimal pricing decisions. The applicability of the 

two strategies is evaluated by comparing their performance across diverse market environments. 

Beyond the common practice adopted in [16–18], where service prices are regarded as the core learning 

target, this study not only incorporates prices into the learning scope but also identifies dynamic pricing 

strategies as another key learning parameter. This design not only enriches the pricing learning 

mechanism of service providers (SPs) but also establishes a brand-new pricing decision-making 

paradigm for their reference. 

(3) A multi-agent simulation model is developed to evaluate the performance of dynamic pricing 

strategies across various artificial market environments. The model simulates how different pricing 

approaches compete to secure service recommendations and is designed to assess the adaptability and 

survivability of these strategies in diverse competitive settings. In contrast to the studies reported           

in [14], [15], and [19], which only focus on the service recommendation process and the evolution 

process of the platform-based manufacturing ecosystem, the simulation model constructed in this study 

further deconstructs the pricing strategies and decision-making behaviors of SPs, and conducts multi-

agent modeling analysis. This effectively addresses the deficiency of existing multi-agent simulation 

models in depicting the behavioral mechanisms of SPs.  

This research provides pricing decision support for small- and medium-sized manufacturing 

enterprises participating in service competition, while also offering an experimental platform for 

manufacturing service platforms to simulate and predict service recommendation outcomes. The 

remainder of the paper is organized as follows: Section 2 presents a literature review on pricing 

behaviors, dynamic pricing strategies, and the use of simulation models for service recommendation 

in platform-based manufacturing. Section 3 outlines the problem statement and research scope. Section 

4 details the modeling of various dynamic pricing strategies. In Section 5, a multi-agent simulation 

framework is established by encapsulating different entities into an agent-based system. Section 6 

describes the experimental design and simulation implementation. Finally, Section 7 summarizes the 

research findings and discusses their theoretical and practical implications.  

2. Literature review 

2.1. Pricing behavior and modeling in platform-based manufacturing 

Pricing in platform-based manufacturing systems is jointly influenced by consumer structure, 

bargaining behavior, and demand characteristics. Peng et al. [6] showed that when the proportion of 

“price takers” in the consumer population is relatively high, and demand is linear, service providers 

tend to raise their posted prices to increase revenue; however, under elastic demand, as the share of 

“price takers” increases, providers tend to lower prices to better adapt to market conditions. Bisceglia 
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et al. [20] conducted an empirical study in highly competitive markets with sluggish demand, 

examining the dynamic relationship between transaction volume and price volatility. They found that 

when production cost convexity is either relatively high or low, the optimal pricing strategy involves 

punitive or incentive pricing for higher output levels. Gallego et al. [21], in their study on single-

product pricing, demonstrated that optimal prices decrease as residual service capacity increases and 

remaining selling time decreases. In research on pricing under different contractual arrangements on 

shared manufacturing platforms, Wu et al. [22] found that when the platform and manufacturers adopt 

a revenue-sharing contract, the platform may set higher prices to reflect market expansion resulting 

from collaboration. Bi et al. [23] examined how different governance structures on networked 

collaborative manufacturing platforms affect product pricing strategies and reported that when the 

platform is manufacturer-led, manufacturers exhibit more stable pricing, whereas when the platform 

is designer-led, higher commission rates incentivize the platform to lower the price of standardized 

products. Sun et al. [24] investigated optimal pricing strategies for 3D printing platforms that 

simultaneously offer standardized and customized products. Their findings indicated that the price of 

standardized products is positively correlated with their own quality and negatively correlated with the 

quality of customized products; meanwhile, under low labor costs, the price of customized products is 

positively correlated with their own quality and negatively correlated with the quality of standardized 

products. 

There are complex interactions among service providers, platforms, and demand-side users, and 

many studies employ game-theoretic models to examine pricing behavior within these interactions. To 

address how service providers in cloud manufacturing systems should set prices under the joint 

influence of heterogeneous consumer structures, bargaining behaviors, and different demand forms, 

Peng et al. [6] proposed a three-party game-based dynamic pricing framework. To mitigate price 

fluctuations caused by competition for cloud manufacturing service resources, Tao et al. [25] 

developed a pricing game model grounded in multi-agent competition, revealing the interactive 

mechanisms underlying pricing strategies among service suppliers. Focusing on the heterogeneity of 

resource supply in cloud manufacturing environments, Wang [26] introduced a bilateral game model 

to determine the equilibrium price between service providers and demand-side users. Wu [22] 

constructed four cooperative advertising models using differential game theory and compared the 

decision mechanisms under different contractual arrangements, offering optimal cooperation strategies 

for manufacturers and platforms. To investigate how suppliers’ resource-sharing strategies in cloud 

manufacturing affect customer satisfaction and profit allocation, Cao et al. [27] developed a two-stage 

model based on Stackelberg games, analyzing the equilibrium pricing and task allocation mechanisms 

between suppliers and cloud platform operators. 

2.2. Dynamic pricing strategies in platform-based manufacturing 

As a highly competitive strategy in complex market environments, dynamic pricing has long 

attracted substantial scholarly attention [28]. Besbes et al. [29] investigated a multi-period single-

product pricing problem under an unknown demand curve and found that, under certain market 

conditions, adopting a linear demand model to adjust prices dynamically across periods can achieve 

near-optimal revenue performance. Zhu et al. [13] showed that service providers in cloud 
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manufacturing systems dynamically adjust their pricing strategies based on capacity conditions: when 

idle, they adopt competitive low pricing by reducing management fee rates to increase the probability 

of winning bids; when saturated, they pursue premium pricing to maximize profits; and under normal 

load, they maintain average pricing to ensure reasonable returns. Wu et al. [30] demonstrated that in 

equipment maintenance scheduling on cloud manufacturing platforms, high time sensitivity and 

demand uncertainty drive service providers to implement dynamic pricing based on factors such as 

cost and waiting time, thereby improving response speed and operational efficiency. 

From a platform perspective, Zhang et al. [17] proposed a personalized dynamic pricing strategy 

that incorporates estimates of suppliers’ short- and long-term preferences and developed a 

corresponding dynamic price-driven collaborative optimization method for manufacturing services. 

Using a Q-learning algorithm, they demonstrated that this integrated approach can significantly 

enhance system performance and optimization outcomes. Zheng et al. [31] employed a Q-learning 

algorithm to study multi-period joint pricing and ordering decisions for perishable products. By 

optimizing decision variables—including new product order quantities, sales prices, and carryover 

quantities of older inventory—the model achieves profit maximization across periods. 

Several studies base price adjustments on predictions of future demand, job arrival rates, or 

resource utilization intensity. These works employ time-series models, neural networks, or hybrid 

machine-learning approaches to construct dynamically updated pricing strategies; the methods predict 

future prices or resource utilization and feed the forecasts into an optimizer, enabling service providers 

to set prices that enhance revenue [32,33]. Ma et al. [34] integrated demand forecasting with 

competitive analysis by combining price-elasticity estimation and competitor behavior modeling. 

Through the coordinated use of optimization algorithms and revenue-management techniques, they 

developed a dynamic pricing system capable of real-time adjustments, helping firms maximize revenue 

in markets for perishable goods and services. 

2.3. Multi-agent simulation model for platform-based manufacturing 

With the growing adoption of cloud manufacturing and platform-based production models, 

researchers have increasingly employed multi-agent simulation techniques to construct virtual 

manufacturing ecosystems that replicate the dynamic interactions among users, service providers, and 

platforms. This approach enables low-cost analysis of service-matching mechanisms and system 

behaviors. Zhao et al. [35] developed a multi-agent-based cloud manufacturing transaction simulation 

platform that models enterprises as autonomous service agents, enabling full-process simulation of 

order release, service discovery, and capability matching. The platform provides a systematic 

framework for evaluating how matching mechanisms and workflow design affect operational 

efficiency. Building on this work, Zhao [36] proposed a service-agent network model that incorporates 

Quality of Service (QoS) attributes, service feedback mechanisms, and self-organizing behaviors, 

allowing service matching to more accurately reflect real market conditions. The model simultaneously 

captures the processes of service evaluation updates and dynamic relationship evolution. 

To enhance the efficiency of task-resource matching and reduce resource consumption, Hu et al. [37] 

constructed a multi-layer matching framework centered on resources, tasks, and constraints. By 

modeling multidimensional attributes—including resource capabilities, time windows, machining 
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quality, and cost—this framework enables precise alignment between manufacturing resources and 

user requirements. Zhang et al. [38] further introduced a simulation model for dynamic supply-demand 

matching in cloud manufacturing, designed to evaluate the effects of matching rules, platform response 

mechanisms, and resource distributions on overall platform efficiency and ecosystem sustainability. 

Guo et al. [39] proposed an agent-based service discovery method that, through simulation experiments, 

demonstrated how search strategies, capability descriptions, and filtering rules influence matching 

efficiency. Their service-feature modeling framework provides a theoretical foundation for subsequent 

research on service matching and recommendation. Li et al. [40] developed a distributed multi-agent 

resource-sharing system for manufacturing, in which resource, scheduling, and request agents interact 

collaboratively to optimize cross-organizational resource allocation and task distribution, effectively 

coordinating multi-party supply–demand relationships. 

2.4. Research gaps 

Existing studies have proposed various pricing methods for manufacturing services in platform-

based manufacturing environments. These methods effectively capture the interests of three parties—

service providers, service demanders, and manufacturing platforms—along with their interactive 

decision-making processes. However, a notable limitation is that these methods primarily focus on 

constructing quantitative decision models. For small- and medium-sized enterprises (SMEs) 

participating in platform-based manufacturing, such models are not only operationally complex but 

also struggle to accurately capture the dynamic and evolving nature of the service recommendation 

process. Reinforcement learning algorithms can support the development of dynamic pricing strategies 

with autonomous learning capabilities; however, relatively few studies have applied them to 

manufacturing service pricing to date. Moreover, different pricing strategies should be evaluated 

within realistic simulation environments to assess their effectiveness. Accordingly, some scholars have 

developed multi-agent-based simulation models for the service matching process in platform-based 

manufacturing, thereby verifying the effects of different recommendation algorithms on group 

evolution outcomes [14,15]. However, a limitation of these simulation models is that they do not 

incorporate service providers’ pricing as a key variable, preventing direct assessment of the actual 

effects of different service pricing strategies in platform-based manufacturing. 

3. Problem description 

Platform-based manufacturing integrated with service recommendation involves three types of 

decision-making entities: service providers (SPs), the service recommendation executor (SRE), and 

service demanders (SDs). Specifically, SPs encapsulate their manufacturing capabilities as services 

and upload them to the platform. SDs can conveniently search for and utilize these services via the 

platform and provide rating feedback upon service completion [41]. The manufacturing platform 

leverages new-generation information technologies to achieve ubiquitous connectivity of 

manufacturing services, creating a vast pool of manufacturing service resources. Encapsulated within 

the platform, the SRE is responsible for recommending the optimal manufacturing service to service 

demanders upon receiving their service requirements [42].  
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Figure 1. Recommendation processes in platform-based manufacturing. 

The recommendation processes in platform-based manufacturing are illustrated in Figure 1. These 

processes can be described in the following four steps: 

Step 1: Manufacturing service demand generation. Manufacturing service demanders arrive at 

the manufacturing platform randomly, represented by the set 𝑈 = {𝑢1, 𝑢2… , 𝑢𝑛} , where each 

demander is indexed by 𝑗 = 1,… , 𝑛. They upload their manufacturing service requirement information 

to the platform, denoted by the set 𝐷 = {𝐷1, 𝐷2… ,𝐷𝑛} . Here, 𝐷𝑗 = {𝑑𝑗1, 𝑑𝑗2… , 𝑑𝑗𝑚}  represents the 

service requirements of demander 𝑢𝑗  in the platform, where 𝑑𝑗𝑘 is the expected value of demander 𝑢𝑗  

for the 𝑘-th service attribute (𝑘 = 1, … ,𝑚), such as the desired service price, the desired service quality, 

and other relevant attributes.  

Step 2: Manufacturing services filtering and recommendation. We use set 𝑉 = {𝑣1, 𝑣2… , 𝑣𝑛} to 

represent manufacturing service providers, indexed by 𝑖 = 1, … , 𝑟 , and the set 𝐵 = {𝐵1, 𝐵2… ,𝐵𝑟} to 

represent the service attributes of all providers, where 𝐵𝑖 = {𝑏𝑖1, 𝑏𝑖2… , 𝑏𝑖𝑚} denotes the values of each 

service attribute of provider 𝑣𝑖 . The service recommendation executor calculates the similarity 

𝑆𝑖𝑚(𝐷𝑗 , 𝐵𝑖) between demander 𝑢𝑗  and provider 𝑣𝑖 using the Euclidean distance method and performs 

service recommendation based on this similarity. This recommendation mechanism is simple and 

mature, making it widely adopted in practical applications [43]. The calculation for 𝑆𝑖𝑚(𝐷𝑗 , 𝐵𝑖)  is 

shown in Equation (1):  

  (1) 

 

where 𝑑̅𝑗𝑘 and 𝑏̅𝑖𝑘 denote the normalized values of each attribute, which are obtained via the min-max 

normalization method. We set a recommendation threshold 𝛿  and all service providers with 

𝑆𝑖𝑚(𝐷𝑗 , 𝐵𝑖) < 𝛿 are placed into the candidate service set 𝑉𝑗
′ which will be recommended to service 

demander 𝑢𝑗  . We sort service demanders in accordance with the first-come-first-served rule and 

sequentially recommend the set of candidate service providers to them. 

Step 3: Service provider selection and capital settlement. The service demander evaluates the 

services from providers within the candidate set 𝑉𝑗
′ based on their preferences for the various attributes. 

The service provider that meets the capacity requirements and has the highest rating is selected. A 

service contract is then signed with the relevant provider, followed by capital settlement. 

Step 4: Service price update. Each SP adjusts its service price according to the predefined rules, 

which constitute the core strategy this paper endeavors to propose. The process then returns to Step 1 

to initiate the service recommendation and selection processes for the next time period. 

𝑆𝑖𝑚(𝐷𝑗 , 𝐵𝑖) = ∑  

𝑚

𝑘=1

(𝑑̅𝑗𝑘 − 𝑏̅𝑖𝑘)
2
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We aim to develop a set of simple and operable dynamic pricing strategies to support SPs in their 

pricing decision-making, with full consideration of the aforementioned service recommendation 

processes. 

4. Dynamic pricing strategy modeling for service providers 

This section proposes several dynamic pricing strategies for service providers, integrating the 

service recommendation processes in platform-based manufacturing. Building on previous research, 

four rule-based dynamic pricing strategies and two self-adaptive, learning-driven dynamic pricing 

strategies are developed. The four rule-based strategies include cost-plus pricing (CPP), service 

recommendation outcome-driven pricing (SROP), service capacity surplus-driven pricing (SCSP), and 

market average price-driven pricing (MAPP). CPP is typically suitable for scenarios with relatively 

stable cost structures and a high degree of product standardization. In such contexts, enterprises can 

accurately calculate costs and subsequently set prices based on expected profit margins [44]. SROP is 

particularly suitable for highly competitive markets with significant service homogenization, where 

service providers face intense rivalry for service demander orders [14]. It is also well-suited to 

scenarios where real-time feedback on recommendation volume and transaction profits is readily 

available, enabling dynamic price adjustments to balance market share expansion and profit 

optimization. Additionally, a primary motivation for service providers to participate in platform-based 

manufacturing is excess capacity. Engagement on such platforms enables full utilization of surplus 

service capacity, resulting in a capacity surplus-driven pricing strategy [45]. The final rule-based 

strategy is MAPP [45], which helps providers avoid customer loss due to unduly high prices or profit 

erosion from unduly low prices. 

Q-learning, as an efficient learning method, is well-suited for addressing self-adaptive learning 

problems with discrete action and state spaces [46]. Drawing on Q-learning principles, we develop two 

self-adaptive, learning-driven pricing strategies: one involves learning to optimize the four 

aforementioned rule-based pricing strategies (denoted as LRS), and the other focuses on direct price 

learning to determine optimal pricing decisions (denoted as DPL). DPL dynamically adjusts service 

prices based on real-time market conditions, learning to increase or decrease prices in response to the 

specific context of service recommendations. LRS is well-suited for scenarios with clear pricing rules 

and stable market logic, offering strong interpretability and low computational complexity, although it 

may be limited by the original rules. In contrast, DPL is more applicable to complex, volatile markets 

with ambiguous pricing rules, enabling flexible adaptation to unforeseen market changes. The 

applicability of the two strategies is evaluated by comparing their performance across diverse market 

environments.  

4.1. Modeling for rule-based dynamic pricing strategies 

Given the relative simplicity of the pricing logics underlying CPP and MAPP, instead of providing 

elaborate details on them, this section focuses on the two rule-based pricing strategies: SROP and SCSP. 
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4.1.1.    Modeling for SROP 

Building on the work of Xue et al. [14], we have refined the decision-making conditions: whereas 

Xue et al. relied solely on a single utility value to trigger price adjustments, our approach incorporates 

a dual-factor coordination mechanism—integrating service recommendation volume and profit—into 

SROP. This design not only mitigates potential misjudgments of market supply-demand imbalances 

arising from reliance on a single metric but also establishes dynamic benchmarks that autonomously 

adapt to market fluctuations. Specifically, if an SP receives a high volume of service recommendations 

but achieves relatively low final profit, it will appropriately increase its price. Conversely, if an SP 

receives a low volume of service recommendations but achieves a relatively high final profit, it will 

lower its offering price. Otherwise, the SP maintains its current price. This pricing strategy helps SPs 

balance service recommendation volume and profit attainment. The SROP is formally expressed in 

Equation (2): 

    (2) 

 

 

where 𝑡  is the current evolution period, 𝑃𝑎𝑣𝑔  is the average price of service, 𝑇𝑅  is the volume of 

service recommendation, 𝑇𝑅𝑎𝑣𝑔  is the mean volume of service recommendation, 𝐶𝑃  is the service 

recommendation profit, and 𝐶𝑃𝑎𝑣𝑔 is the mean profit of service recommendation. The 𝛽 denotes the 

risk preference coefficient of the SP.  

4.1.2.    Modeling for SCSP 

SCSP is developed based on Chang et al. [45]. Each SP dynamically adjusts its prices at the end 

of each evolution period according to its current remaining service capacity. Specifically, if the current 

remaining capacity exceeds the standard remaining capacity 𝐼𝑠𝑡 , the SP will set a lower price; 

conversely, the price will be increased. The specific pricing logic is formally defined by Equations (3) 

and (4). 

                       (3) 

  

    (4) 

 

 

 

 

where 𝜏 denotes the service capacity refresh cycle, 𝑄 represents the total capacity of the SP, 𝑝𝑚𝑖𝑛 and 

𝑝𝑚𝑎𝑥  denote the lower and upper price bounds, respectively, 𝑓𝑖𝑛  is the influence coefficient of the 

remaining capacity on pricing, and 𝐼𝑐𝑢 denotes the current remaining capacity of the SP. 

𝑝(𝑡 + 1) {

𝑝(𝑡) + β ∗ Pavg ∗ 10%, (𝑇𝑅 ≥ 𝑇𝑅𝑎𝑣𝑔)⋀(𝐶𝑃 ≤ 𝐶𝑃𝑎𝑣𝑔) 

𝑝(𝑡) − β ∗ Pavg ∗ 10%, (𝑇𝑅 < 𝑇𝑅𝑎𝑣𝑔)⋀(𝐶𝑃 > 𝐶𝑃𝑎𝑣𝑔)

𝑝(𝑡)                                             else                                                

 

𝐼𝑠𝑡 = (1 −
𝑡

τ
) ∗ 𝑄 

𝑝(𝑡) =

{
  
 

  
 𝑝𝑚𝑖𝑛 𝑓𝑖𝑛 ⋅ (1 −

𝐼𝑐𝑢
𝐼𝑠𝑡
) ≤ 0

𝑝𝑚𝑖𝑛 + 𝑓𝑖𝑛 ⋅ (1 −
𝐼𝑐𝑢
𝐼𝑠𝑡
) 0 < 𝑓𝑖𝑛 ⋅ (1 −

𝐼𝑐𝑢
𝐼𝑠𝑡
) ≤ 𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥 𝑓𝑖𝑛 ⋅ (1 −
𝐼𝑐𝑢
𝐼𝑠𝑡
) > 𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛
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4.2. Modeling for self-adaptive learning-driven dynamic pricing strategies 

During initial system evolution, self-learning SPs randomly explore pricing strategies to 

participate in market competition. Subsequently, these providers update their Q-tables based on 

revenue obtained from market interactions and optimize their decision-making through the Q-learning 

algorithm to transition to subsequent states. The state transition process for these self-learning pricing 

models is illustrated in Figure 2. 

4.2.1.    State space definition 

As the core variable in implementing dynamic pricing strategies, the service price serves as a 

“bridge” linking an SP’s decisions to market responses. Meanwhile, capital value directly reflects the 

practical impact of pricing decisions on a service provider’s survival and development. Its fluctuations 

not only measure the outcomes of the pricing strategy but also serve as a key indicator of its 

effectiveness. Accordingly, the state spaces of LRS and DPL are defined with explicit consideration of 

these two factors. The state space of SP 𝑣𝑖  under DPL is defined as 𝑆𝑣𝑖 = {𝐶𝑣𝑖(𝑡), 𝑝𝑣𝑖(𝑡)} , where 

𝐶𝑣𝑖(𝑡) ∈ [𝑜𝑣𝑖 , 𝑒𝑣𝑖] represents the capital value of SP 𝑣𝑖, and 𝑝𝑣𝑖(𝑡) ∈ [𝑝𝑣𝑖
𝑚𝑖𝑛, 𝑝𝑣𝑖

𝑚𝑎𝑥] denotes the current 

service price. Here, 𝑜𝑣𝑖  is the minimum capital threshold required for the SP to sustain operations 

within the system, while 𝑒𝑣𝑖  represents the capital threshold corresponding to the SP’s ability to 

reproduce new entities. The parameters 𝑝𝑣𝑖
𝑚𝑖𝑛  and 𝑝𝑣𝑖

𝑚𝑎𝑥  denote the lower and upper bounds of 𝑝𝑣𝑖 , 

respectively. The state space of SP 𝑣𝑖 under LRS is defined as 𝑆𝑣𝑖 = {𝐶𝑣𝑖(𝑡)}. The current price is 

excluded from this state space, as the price state does not influence the selection of pricing strategies. 

 

 

 

 

 

 

 

 

Figure 2. State transition process of a learning-enabled SP. 

To reduce the complexity of state spaces, both [𝑜𝑣𝑖 , 𝑒𝑣𝑖]  and [𝑝𝑣𝑖
𝑚𝑖𝑛, 𝑝𝑣𝑖

𝑚𝑎𝑥]  are discretized. 

Specifically, [𝑜𝑣𝑖 , 𝑒𝑣𝑖]  is divided into 𝑙  equal-range intervals, while [𝑝𝑣𝑖
𝑚𝑖𝑛, 𝑝𝑣𝑖

𝑚𝑎𝑥]  is divided into 𝑙′ 

equal-range intervals. Each divided interval corresponds to a distinct state. We determine the 

corresponding state by identifying the interval to which the values of 𝐶𝑣𝑖(𝑡) and 𝑝𝑣𝑖(𝑡) belong. 

4.2.2.    Action space definition 

The action space for SP 𝑣𝑖 with LRS is defined as 𝐴𝑣𝑖 = {𝑎𝑝1 , 𝑎𝑝2 , 𝑎𝑝3 , 𝑎𝑝4}. Here, 𝑎𝑝𝑧 denotes 

the action of selecting the 𝑧-th pricing strategy from the set of four predefined rule-based strategies, 
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where 𝑧 = 1  means CPP, 𝑧 = 2  means SROP, 𝑧 = 3  means SCSP, and 𝑧 = 4  means MAPP. The 

action space for SP 𝑣𝑖 with DPL is defined as 𝐴𝑣𝑖 = {𝑎𝑢𝑝, 𝑎𝑑𝑜𝑤𝑛}, where 𝑎𝑢𝑝 represents the action of 

increasing the service price, and 𝑎𝑑𝑜𝑤𝑛  means the action of decreasing it. The step sizes for price 

increases and decreases are set to be consistent with those of SROP, so as to better reflect the impact 

of learning capability on the final performance of pricing strategies. 

4.2.3.    State transition rule and reward function design 

The 𝜀 − greedy strategy is a common approach for balancing exploration and exploitation. This 

section primarily employs the 𝜀 − greedy strategy to construct the action selection method. 

Specifically, at each decision point, a learning-enabled SP selects a random action with probability 𝜀 

(exploration), creating an opportunity to discover potentially better strategies, and selects the current 

known optimal action with probability 1 − 𝜀  (exploitation) to maximize immediate returns. As 

learning progresses, 𝜀 decays exponentially according to 𝜀𝑡+1 = 𝜂 ∗ 𝜀𝑡, where 𝜂 is the decay rate. 

For a learning-enabled SP 𝑣i at time 𝑡 in state 𝑠𝑣𝑖 (𝑠𝑣𝑖 ∈ 𝑆𝑣𝑖), the probability of selecting action 

𝑎𝑣𝑖 (𝑎𝑣𝑖 ∈ 𝐴𝑣𝑖) is calculated using Equation (5): 

 

 

（5） 

 

 

After an action is selected, the Q-table is updated based on the reward 𝑅𝑡 obtained by the SP 

from transactions with service demand in period t. The update follows Equation (6): 

 

 

              (6) 

 

 The reward function is calculated using Equation (7): 

 

          (7) 

 

Here, ∑ 𝑓𝑣𝑖,𝑘
𝑖𝑛𝑐𝑜𝑚𝑒

𝑘 and 𝑓𝑣𝑖
𝑐𝑜𝑠𝑡represent the total revenue earned and the total cost incurred by the SP 

during transaction period 𝑡, respectively. 

5. Multi-agent simulation model for service recommendation 

The effectiveness of different pricing strategies can be accurately evaluated only when they are 

deployed in dynamic and competitive service recommendation environments. Service 

recommendation is inherently complex, involving multiple entities with intricate interactions. Multi-

agent simulation plays a crucial role in this evaluation by enabling the creation of an experimental 

platform that simulates service recommendation processes. This is accomplished by quantitatively 

modeling the fundamental attributes, decision-making behaviors, and interaction mechanisms of the 

entities involved. 

𝑝(𝑎vi|𝑠vi) =

{
 

 
𝜀

|𝐴(𝑠vi)|
+ (1 − 𝜀),     if   𝑎vi = arg 𝑚𝑎𝑥

𝑎′
 𝑄(𝑠vi, 𝑎

′)

𝜀

|𝐴(𝑠vi)|
,                      else                                                

 

𝑄(𝑠vi, 𝑎𝑣𝑖) = (1 − 𝛼)𝑄(𝑠vi, 𝑎𝑣𝑖) + 𝛼 (𝑅𝑡 + 𝛾𝑚𝑎𝑥𝑎𝑣𝑖
′
 𝑄(𝑠𝑣𝑖

′ , 𝑎𝑣𝑖
′ )) 

𝑅𝑡 =∑𝑓𝑣𝑖,𝑘
𝑖𝑛𝑐𝑜𝑚𝑒 − 𝑓𝑣𝑖

𝑐𝑜𝑠𝑡

𝑘

 



1152 

 

Journal of Industrial and Management Optimization  Volume 22, Issue 2, 1140–1167. 

5.1. SP agent design 

Each SP agent represents an autonomous decision-making entity capable of dynamically 

adjusting its service pricing based on its internal state and the market environment. The specific design 

of agent attributes and decision-making behaviors (e.g., price update, agent demise, and reproduction) 

is described as follows: 

(1) Agent attribute design 

Except for the basic service information, the pricing strategy adopted, unit service cost, periodic 

sale volume, and capital value are the fundamental attributes of an SP agent. The service information 

of an agent for each transaction period 𝑡  ( 𝑡 ∈ 𝑇 ) is defined as a tuple: 𝐵𝑖(𝑡) =<
𝑏𝑖1(𝑡), 𝑏𝑖2(𝑡), 𝑏𝑖3, 𝑏𝑖4 >. Here, 𝑏𝑖1(𝑡) represents the available service capacity, dynamically updated 

in each trading period based on transaction outcomes; 𝑏𝑖2(𝑡) denotes the price per unit service capacity, 

which is dynamically updated according to the agent’s adopted pricing strategy; 𝑏𝑖3  means the 

minimum delivery time of service, and 𝑏𝑖4 signifies the service reliability—both of which are constants. 

Specifically, the update of 𝑏𝑖1(𝑡) follows the rule: 𝑏𝑖1(𝑡 + 1) = 𝑏𝑖1(𝑡) − 𝑞𝑖(𝑡), and 𝑏𝑖1(𝑡) = 𝑏𝑖1(1) 
every 𝜏  trading period [14]. Here, 𝑞𝑖(𝑡)  is the sales volume of the SP agent in trading period 𝑡  , 
calculated by Equation (8): 

  (8) 

 

where 𝑑𝑗1(𝑡) denotes the required service capacity of demander 𝑢𝑗 , 𝑗 ∈ 𝑉𝑖(𝑡), 𝑉𝑖(𝑡) represents the set 

of SDs that select SP 𝑣𝑖 for services, and 𝜑𝑗 means the minimum capacity delivery ratio allowed by 

SD 𝑢𝑗 . 

(2) Agent decision-making behavior modeling 

The behaviors of an SP agent include capital settlement, price adjustment, and service capacity 

update. At the end of each period 𝑡, an SP agent calculates its revenue according to the profit function: 

𝜋𝑖(t) = (𝑏𝑖2(t) − 𝑏𝑖𝑐) ∗ 𝑞𝑖(𝑡), where 𝑏𝑖𝑐 represents the unit cost of service capacity. Following the 

calculation, the agent allocates a portion of its funds to cover normal operating expenses for the next 

transaction period [47], and updates its capital as: 𝐶𝑣𝑖(𝑡 + 1) = 𝐶𝑣𝑖(𝑡) + 𝜋𝑖(𝑡) − 𝑐𝑣̅𝑖 , where 𝑐𝑣̅𝑖 

denotes the capital consumption of SP 𝑣𝑖 for the subsequent period. After capital settlement, the agent 

adjusts its service price based on its selected pricing strategy. 

The demise, survival, and reproduction of an agent is determined by its capital value: An agent 

will be eliminated if its capital falls below a predefined threshold (i.e., 𝑜𝑣𝑖). It will survive if its capital 

remains within the range [𝑜𝑣𝑖 , 𝑒𝑣𝑖], and will reproduce a new offspring agent with an initial capital of 

𝑐𝑖𝑛𝑖𝑡𝑖𝑎𝑙  if its capital exceeds the upper limit threshold (i.e., 𝑒𝑣𝑖 ). The capital of the agent after 

reproduction is reduced to 𝑐𝑣𝑖(𝑡) − 𝑐initial [48]. Moreover, refer to Xue et al. [19], where a fixed number 

of new SPs, denoted as 𝑟1, enter the platform during each transaction period. 

5.2. SD agent design 

Each SD agent selects the most suitable SP based on service recommendation results and its own 

demand preferences. These agents interact with SP agents to complete transactions. The specific design 

of agent attributes and decision-making behaviors is described as follows:   

 

𝑞𝑖(𝑡) = ∑ 𝜑𝑗𝑑𝑗1(𝑡)

𝑗∈𝑉𝑖(𝑡)
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(1) Agent attribute design 

The attributes of an SD agent include the basic service demand information and the minimum 

capacity delivery ratio allowed (i.e., 𝜑𝑗). Agent’s service demand information is defined as a tuple: 

𝐷𝑗 =< 𝑑𝑗1, 𝑑𝑗2, 𝑑𝑗3, 𝑑𝑗4 >, where 𝑑𝑗1 represents the required service capacity, 𝑑𝑗2 denotes the expected 

unit price the demander is willing to pay, 𝑑𝑗3  refers to the expected service delivery time, and 

𝑑𝑗4 signifies the expected service reliability. 

(2) Agent decision-making behavior modeling 

The behaviors of an SD agent include demand creation, service evaluation, and service selection. 

The SD agent evaluates the utility of each candidate SP agent 𝑣𝑖(𝑣𝑖 ∈ 𝑉𝑖(𝑡)) recommended by the 

platform. The utility function is defined as 𝑓(𝐵𝑖) = 𝑤1𝑏̅𝑖1(𝑡) + 𝑤2(1 − 𝑏̅𝑖2(𝑡)) + 𝑤3(1 − 𝑏̅𝑖3) +
𝑤4𝑏̅𝑖4, where 𝑤𝑘, 𝑘 = 1,… ,4, represents the SD agent’s preference weight for the 𝑘-th service attribute, 

and 𝑤1 +𝑤2 + 𝑤3 + 𝑤4 = 1. The SD agent selects the SP agent with the highest utility for transaction. 

Drawing on the SD arrival mechanism proposed by Xue et al. [19], a fixed number of SD agents, 

denoted as 𝑛1, enter the platform during each transaction period. An SD agent’s exit is determined by 

its demand-fulfillment status: if its demand is satisfied, the agent remains in the market and generates 

a new demand; if its demand remains unsatisfied for 𝜏 consecutive periods, the agent exits the market. 

5.3. SRE agent design  

The SRE agent functions as an intermediary connecting SP agents and SD agents. It processes 

and manages both service demand information and service attribute information, while also generating 

service recommendations. For each incoming service demand 𝐷𝑗 , the SRE computes the similarity 

metrics 𝑆𝑖𝑚(𝐷𝑗 , 𝐵𝑖)  between 𝐷𝑗   and the available manufacturing services 𝐵𝑖 , and produces a 

corresponding recommendation list 𝑉𝑗
′(𝑡). This recommendation information is then transmitted to the 

SD agent 𝑢𝑗  for evaluation and selection. Furthermore, during the service contract-signing stage, the 

SRE aggregates the selection outcomes submitted by SD agents and forwards this feedback to the 

corresponding SP agents, thereby completing the transaction cycle and ensuring the closed-loop 

operation of recommendation, selection, and execution within the platform. 

5.4. Dynamic interactions among agents 

The dynamic interactions among agents are illustrated in Figure 3, which can be delineated into 

the following seven steps: 

Step 1: System initialization. Initialize a service recommendation system with a specified number 

of SP and SD agents. Define the attributes and behavioral rules for each agent according to the previous 

design and modeling processes. SP agents and SD agents publish their corresponding service and 

demand information (i.e., information sets 𝐵 and 𝐷) on the SRE agent. Set transaction period 𝑡 = 1. 

Step 2: Service recommendation. If the demand set 𝐷 is empty, turn to Step 5; otherwise, the SRE 

agent randomly selects a demand from an SD agent, calculates the similarity Sim(𝐷𝑗 , 𝑆𝑖), ∀𝑣𝑖 ∈ 𝑉, 

recommends all candidate SPs (i.e., set 𝑉𝑗
′) that meet the recommendation threshold to the SD agent, 

removes the selected demand from set 𝐷, and turns to Step 3. 

Step 3: Service selection. Based on its service preferences, an SD agent computes the utility for 

each SP in the candidate set 𝑉𝑗
′. It selects the SP that satisfies the minimum delivery quantity 𝜑𝑗𝑑𝑗1(𝑡) 

and offers the highest utility. 
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Step 4: Transaction completion and capital settlement. The SRE agent sends the result of SP 

selection to the corresponding SP agent and acts as an intermediary to facilitate the signing of service 

contracts between SD and SP agents. Subsequently, the SP agent conducts capital settlement, and turns 

to Step 2.  

Step 5: Service price updating. SP agents adjust their service prices based on their selected pricing 

strategies. Each SP agent can select one pricing strategy from the six options: CPP, SROP, SCSP, MAPP, 

LRS, and DPL. 

Step 6: Service information updating and new service demand creation. If 𝑡 < 𝑇 , service 

information from SP agents is updated and new service demands are created. The SP agents decide 

whether to reproduce new agents or exit the platform based on their capital value. The SD agents 

determine whether to exit the platform or continue publishing new service demands based on their 

demand satisfaction status. New SP agents and SD agents arrive at the platform as well, and turn to 

Step 2. If 𝑡 = 𝑇, turn to Step 7.  

Step 7: Stop. Stop the recommendation system and observe its evolutionary outcome. 

We observe the market competitiveness of the six pricing strategies by monitoring the final 

surviving quantity and the corresponding capital value of SP agents that adopt different pricing 

strategies. 

 

 

 

 

 

 

Figure 3. Agent interaction flowchart. 

6. Experimental setup and simulation 

6.1. Parameter settings 

Yuncut is a manufacturing service platform headquartered in Jiaxing, China, that specializes in 

the optimal matching of services for steel plate cutting. The platform currently hosts over 1400 

registered users and collaborates with more than 40 suppliers. To date, it has completed 3.75 million 

orders, and its annual revenue has grown substantially—from RMB 22 million in 2017 to RMB 149 

million in 2024. To ensure efficient supply–demand matching in manufacturing services, Yuncut 

employs a service recommendation mechanism. Based on field research into Yuncut’s service 

recommendation system, we collected and analyzed one week of real operational data. This statistical 
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analysis provided a basis for estimating the simulation parameter values used in this study. Among 

these parameters, 𝑏𝑖1 , 𝑏𝑖2 , 𝑏𝑖3 , and 𝑏𝑖4  are determined according to actual operational conditions, 

while parameters such as 𝜑𝑗 , 𝑛 , and 𝑟  are approximately estimated based on real-world scenarios. 

Detailed parameter values are shown in Table 1. We employ NetLogo 6.2 to develop the multi-agent 

system, and the visual interface is shown in Figure 4. 

 

 

 

 

 

 

Figure 4. Multi-agent system simulation interface. 

The simulation environment is configured as a 40×40 two-dimensional grid and includes six types 

of SP agents. Each type consists of 30 SP agents employing a distinct pricing strategy, resulting in a 

total of 180 SP agents. In addition, the environment comprises 90 SD agents (n = 90) and one SRE 

agent. All agents are initialized with randomly assigned positions and attribute values. Each 

experimental setup is repeated 10 times, and the average of the final results across these runs serves as 

the performance metric for evaluating different pricing strategies. 

6.2. Benchmark experiments and model validity analysis 

This study applies the event validity method to assess the effectiveness of the proposed model 

using a three-step procedure: (1) designing a baseline experiment, (2) generating output results through 

simulation runs, and (3) comparing the simulation outputs with real-world events. The baseline 

experiment was conducted using the parameter settings presented in Table 1, and the corresponding 

results are shown in Figures 5 and 6. 
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Table 1. Parameter settings. 

Environment SP agent SD agent 

Parameter Value Parameter Value Parameter Value 

𝑇 1000 𝑐𝑖𝑛𝑖𝑡𝑎𝑙 500 𝑑𝑗1 [40，100] 

𝜏 5 𝑐𝑣̅𝑖 [10，20] 𝑑𝑗2 [7.0，10.0] 

𝑛 90 𝑏𝑖1 [40，100] 𝑑𝑗3 [24，96] 

𝑟 180 𝑏𝑖2 [7.0，10.0] 𝑑𝑗4 [0.8，1.0] 

𝜎 2 𝑏𝑖3 [24，96] 𝜑𝑗 [0.8，1.0] 

𝑛1 1 𝑏𝑖4 [0.8，1.0] 𝑤𝑖 [0.0，1.0] 

𝑟1 1 𝑏𝑖𝑐 [6.0，7.0]   

𝑙 90 e𝑣𝑖 1000 -- -- 

𝑙′ 3 o𝑣𝑖 100 -- -- 

𝛼 0.2 𝛽 0.2 -- -- 

𝛾 0.9 𝑓𝑖𝑛 2 -- -- 

𝜂 0.99995 𝑝𝑣𝑖
𝑚𝑖𝑛 7 -- -- 

𝜀 0.9 𝑝𝑣𝑖
𝑚𝑎𝑥 10 -- -- 

 

 

 

 

 

 

Figure 5. Evolutionary results of the recommendation system. 

 

 

 

 

Figure 6. Performance of different pricing strategies. 
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As shown in Figure 5, during the initial evolution phase, both the total number of SP agents and 

the overall market capital value increase rapidly. This pattern is consistent with the typical early-stage 

development dynamics of such platforms. As the simulation progresses, the growth in the number of 

SP agents and the total capital value gradually slows and eventually stabilizes, primarily due to the 

fixed incremental rate of SD agents. Service demand, as the core driver of the recommendation system, 

provides stable and continuous input that supports the ongoing expansion of SP participation and the 

accumulation of market capital value. 

As illustrated in Figure 6, the evolutionary trajectories of SPs adopting different pricing strategies 

reveal substantial differences in survival rates and capital accumulation. Providers using the SROP 

strategy achieve both the highest survival levels and the strongest capital growth, underscoring the 

effectiveness of demand-oriented pricing within this ecosystem. In contrast, the MAPP and DPL 

strategies exhibit steady yet limited growth, suggesting constraints in exploiting service differentiation 

and inherent limitations in their price-based learning mechanisms. Although the LRS strategy faces 

similar challenges to DPL, its slower adaptation to market dynamics—particularly in the presence of 

SROP’s first-mover advantage—further diminishes its competitiveness under increasing market 

pressure. Conversely, the CPP and SCSP strategies perform suboptimally. The former neglects market 

competition and demand elasticity, whereas the latter’s narrow emphasis on supply-side factors 

weakens its capital conversion capability. Collectively, these findings highlight the critical importance 

of aligning pricing strategies with real-time demand signals in cloud manufacturing platforms. 

6.3. Value setting of recommendation threshold 𝛿 

The recommendation threshold 𝛿 plays a critical role in shaping both the platform’s selection of 

candidate SPs and the overall experience of SDs. To enhance the quality of recommendation lists and 

improve user experience by filtering out irrelevant service information, 𝛿 should be maintained within 

a moderate range. This section examines the impact of 𝛿  on the long-term development of the 

recommendation system. The experimental results are presented in Figure 7. 

 

 

 

 

 

 

Figure 7. Evolution of total agents with variation in 𝛿. 
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As shown in Figure 7, during the initial evolutionary phase (𝑡 <  200), the total number of agents 

increases rapidly in a jump-like manner, particularly in the case of 𝛿 = 0.4. This effect arises because 

a lower 𝛿  value produces more concentrated service recommendations, allowing certain SPs to 

accumulate capital quickly and reach the predefined threshold. As the evolution progresses, the total 

number of agents shifts into a phase of steady growth. Notably, by the end of the evolutionary process, 

the scenario with 𝛿 = 2 yields the highest total number of agents in the system. This result suggests 

that an excessively low 𝛿 may hinder the platform ecosystem’s long-term development. Therefore, to 

more effectively observe the system’s evolutionary dynamics, this study sets δ to 2. 

6.4. Sensitivity analysis 

6.4.1.    Effects of capital upper limit threshold 𝑒𝑣𝑖 

The capital upper-limit threshold 𝑒𝑣𝑖 determines SP agents’ decisions regarding the generation of 

new individuals. This section examines how variations in 𝑒𝑣𝑖 influence the population dynamics of SP 

agents, with the experimental results shown in Figure 8. 

 

 

 

 

 

 

Figure 8. Evolution of SP agents’ quantity with variation in 𝑒𝑣𝑖. 

As illustrated in Figure 8, during the initial evolutionary phase (𝑡 < 200), the population of SP 

agents declines as the reproduction threshold (𝑒𝑣𝑖 ) increases. However, this trend weakens as the 

system continues to evolve. By 𝑡 = 1000, the relationship between 𝑒𝑣𝑖 and the SP agent population no 

longer follows a simple linear pattern. The observed nonlinear dynamics arise from two underlying 

mechanisms. First, an excessively low 𝑒𝑣𝑖 leads to rapid agent proliferation, which intensifies market 

competition and ultimately eliminates less competitive agents, thereby stabilizing population size. 

Conversely, an overly high 𝑒𝑣𝑖 restricts successful reproduction for a significant subset of SP agents. 

These findings suggest that appropriately calibrating 𝑒𝑣𝑖  is essential for sustaining an active and 

resilient SP agent population within the system. 
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6.4.2.    Effects of price preference weight 𝑤2 

In practical application scenarios, demander preferences—acting as the primary driver of market 

demand—directly influence the effectiveness and market adaptability of different pricing strategies [49]. 

To enhance the practical relevance of this study, two price-sensitive SD scenarios are constructed. The 

first scenario investigates the impact of varying price weights (𝑤2 ) through seven comparative 

experiments, in which 𝑤2 increases from 0.3 to 0.9 in increments of 0.1, while the remaining weights 

are allocated to the other three attributes. The second scenario assigns a fixed weight of 0.7 to the price 

attribute and 0.1 to each of the remaining attributes, and introduces six experimental groups based on 

the proportion of price-sensitive SDs on the platform (ranging from 50% to 100%). The evolutionary 

outcomes of these configurations are presented in Figure 9.  

 

 

 

 

Figure 9. Effects of proportion of price-sensitive SDs. 

Figure 9(a) shows that under low price-weight conditions(𝑤2 < 0.5) , the dominant pricing 

strategies remain consistent with those observed in the benchmark experiment, indicating the broad 

applicability of the SROP strategy in such contexts. When 𝑤2 increases to the range of 0.6–0.7, clear 

strategic differentiation emerges, demonstrating the substantial influence of price weight across all 

strategies. The performance of the SROP strategy declines markedly as 𝑤2 rises, confirming its limited 

suitability in highly price-sensitive markets where price becomes the predominant decision factor, 

consequently diminishing the advantages of its composite decision-making mechanism. In contrast, 

the DPL strategy gains increasing advantage as 𝑤2 grows, suggesting strong compatibility between its 

learning mechanism and price-sensitive market conditions. At 𝑤2 = 0.7, the LRS strategy surpasses 

DPL to become the dominant approach. To further investigate the applicability boundaries of the LRS 

strategy, additional experiments were conducted, as presented in Figure 9(b). 

Analysis of the dynamic evolution of SP agents’ capital values reveals that providers employing 

the LRS strategy possess a pronounced competitive advantage (Figure 9(b)). This advantage becomes 

particularly evident when the proportion of price-sensitive demanders reaches 80%, at which point the 

strategy’s learning mechanism aligns optimally with market conditions. Under these conditions, its 

learning effectiveness becomes markedly amplified, enabling LRS-based providers to outperform their 

competitors. SPs adopting the CPP, SCSP, and MAPP strategies exhibit comparatively lower and more 

stable capital value shares, reflecting consistent yet unremarkable performance in price-sensitive 

markets. A notable pattern emerges for the SROP strategy. When price-sensitive SDs constitute 60% 

of the population, SROP-based SPs achieve the second-highest capital share at 21%. However, as this 
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proportion increases to 100%, their share drops sharply to 4%, indicating that the competitiveness of 

SROP diminishes significantly as SD price sensitivity intensifies. In contrast, SPs utilizing the DPL 

strategy experience substantial gains: their capital share increases from 15% to 43% as the proportion 

of price-sensitive SDs rises from 70% to 100%. This trend demonstrates that in markets dominated by 

highly price-sensitive demanders, the learning mechanism embedded in the DPL strategy is highly 

effective, enabling these providers to adapt successfully to market shifts and secure a competitive edge. 

6.4.3.    Effects of risk coefficient 𝛽 

The risk coefficient 𝛽, a key regulatory parameter in the SROP strategy, directly represents an 

SP’s attitude toward pricing risk. This section investigates the impact of varying 𝛽  values on the 

competitiveness of SROP. The coefficient was incrementally increased from 0.2 to 1.0 in steps of 0.2. 

The experimental results are presented in Figure 10. 

The results in Figure 10 indicate that the population share of SPs adopting the SROP strategy 

initially increases and then decreases as the risk coefficient 𝛽 rises, reaching a peak at 𝛽 = 0.4. This 

suggests that a moderate risk level facilitates effective implementation of the strategy, whereas an 

excessively high risk (𝛽 > 0.6) diminishes its applicability. The underlying rationale is that a low risk 

coefficient limits the strategy’s ability to balance risk and return effectively, while a high coefficient 

induces large price fluctuations and elevated risk, ultimately reducing the volume of recommendations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Effects of risk coefficient β. 

In contrast, the population shares of SPs employing the CPP and SCSP strategies show no 

significant correlation with 𝛽, indicating that these strategies are less sensitive to risk factors. Notably, 

the population shares of both learning-enabled SPs are relatively high when 𝛽 is 0.4 or 0.6, suggesting 

that a medium-risk environment is most favorable for the effectiveness of their learning mechanisms. 

Furthermore, when 𝛽 exceeds 0.8, the MAPP strategy exhibits a marked advantage due to its pricing 

stability, implying that in environments characterized by aggressive price adjustments, a stable pricing 

strategy becomes more adaptive. 
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From a market-wide perspective, the total capital value initially increases and then declines as 𝛽 

rises, reaching a peak at 𝛽 = 0.4. This indicates that the risk coefficient 𝛽 exerts a significant influence 

on overall capital accumulation in the market. When 𝛽 falls within an optimal range (e.g., 0.4–0.6), 

interactions among the various pricing strategies promote more rational resource allocation, allowing 

SPs to accumulate capital efficiently and thereby enhancing the total market capital value. 

In summary, the SROP strategy exhibits a distinct advantage under low risk coefficients (𝛽). As 

𝛽 increases to a medium range (0.4–0.6), the market experiences robust capital accumulation. During 

this phase, the market environment aligns well with the learning mechanisms of learning-enabled SPs, 

enabling them to capitalize on their strengths and promote capital growth. Conversely, at high 𝛽 values, 

the pricing stability of the MAPP strategy proves particularly effective in managing complex market 

risks. 

6.4.4.    Effects of initial SD agent quantity 

The initial number of SDs determines the order volume during the early stages of system 

evolution and ultimately affects service recommendation outcomes. To examine the impact of the 

initial SD count on the effectiveness of dynamic pricing strategies, three comparative experimental 

groups were designed, with initial SD numbers set at 90, 180, and 270. The experimental results are 

presented in Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Effects of initial SD agent quantity. 

As shown in Figure 11, the population share of SPs adopting the DPL strategy increases markedly 

with the initial number of SDs. Specifically, as the initial SD count rises from 90 to 270, the share of 

DPL-strategy SPs grows from 26% to 49%, establishing it as the dominant strategy. This phenomenon 

can be attributed to two underlying mechanisms. First, a sufficient order volume reduces market 

competition, providing a stable environment for SPs employing the DPL strategy. Second, the 
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diversification of SD demands exposes the limitations of traditional pricing strategies, further 

enhancing the relative advantage of DPL. 

Figure 11(d) depicts the dynamic evolution of the SD population over time under different initial 

SD counts. In the scenario with a high initial SD count (n = 270), substantial SD churn occurs during 

the early stages of system evolution due to supply-demand imbalances. Nevertheless, driven by the 

platform’s periodic SD entry mechanism, the total SD population eventually stabilizes and exhibits a 

steady growth trend. Notably, the magnitude of SD churn decreases as the initial SD count decreases. 

The final SD population size demonstrates a positive correlation with the initial SD count, indicating 

that the initial SD quantity significantly influences the system’s evolutionary outcome. 

In summary, the initial number of SDs exerts only a limited effect on the effectiveness of the CPP, 

SCSP, MAPP, and LRS strategies, whereas it has a pronounced impact on the performance of the SROP 

and DPL strategies. Moreover, as a critical prerequisite, the initial population of SD agents 

substantially determines the eventual scale of the platform’s SD base. 

7. Conclusions 

The optimization of pricing strategies is crucial for SPs to secure more service recommendations. 

This paper designs four rule-based dynamic pricing strategies and further introduces reinforcement 

learning algorithms to construct two types of self-adaptive learning-driven dynamic pricing strategies. 

By integrating the relevant stakeholders involved in manufacturing service recommendation and the 

dynamic pricing decision-making process of SPs, a multi-agent simulation model is developed. The 

performance of various pricing strategies is analyzed across a range of simulated environments. The 

innovations and main research findings of this paper are summarized as follows: 

(1) A multi-agent simulation model is developed to characterize the complex interactive behaviors 

among stakeholders. Using this model, the performance of the six dynamic pricing strategies can be 

evaluated by designing various artificial experiments based on the simulation results regarding the 

recommendation threshold 𝛿 and the capital upper limit threshold 𝑒𝑣𝑖. We find that while a higher 𝛿 

yields marginal short-term benefits, it substantially enhances the platform’s long-term sustainability. 

Conversely, an excessively low 𝑒𝑣𝑖 inhibits both the expansion of the service provider population and 

market capital accumulation. Therefore, setting appropriate values for 𝛿  and 𝑒𝑣𝑖  is crucial for the 

healthy development of the service recommendation system. 

(2) Four rule-based pricing strategies are developed for SPs in platform-based manufacturing. 

Among them, the SROP strategy demonstrates a significant competitive advantage. In scenarios 

characterized by random user preferences and a limited initial scale of SDs, this strategy, through its 

adaptive price adjustment mechanism driven by real-time recommendation results and profit feedback, 

exhibits a more pronounced competitive edge compared to the other three rule-based dynamic pricing 

strategies.  

(3) Two self-adaptive learning-driven pricing strategies are proposed for SPs considering the 

learning behaviors in competitive markets. The learning effectiveness of the two strategies is 

susceptible to various factors, such as the initial SD base, the distribution characteristics of SD price 

preferences, and the parameter settings of other rule-based pricing strategies. For instance, the 

competitive advantage of learning-driven pricing strategies becomes increasingly prominent as the 
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proportion of service price-sensitive SD rises. However, the effectiveness of learning-driven pricing 

strategies significantly decreases when the initial SD base is small and the initial market competition 

is intense. Consequently, if a service provider adopts such a strategy to enter the market, conducting a 

systematic assessment of the market environment is crucial.  

Future research could focus on the development of more advanced, adaptive, learning-based 

dynamic pricing algorithms to further improve the market performance of such mechanisms. 

Additionally, the design of more sophisticated reward functions may enrich these algorithms by 

incorporating a broader range of decision-making factors beyond capital considerations. 

Author contributions 

Wenchong Chen: Conceptualization, Methodology, Writing – original draft, Funding acquisition. 

Xiaoliao Tang: Formal analysis, Data curation, Software, Visualization. Jiehui Qi: Investigation, 

Resources, Validation. Hongwei Liu: Supervision, Validation, Writing – review and editing. All 

authors reviewed and approved the final manuscript. 

Use of Generative-AI tools declaration 

AI tools used: ChatGPT (OpenAI, version [GPT-4]) 

Purpose of use: Assisted in data visualization design, code generation for figures, and language 

refinement. 

Acknowledgments 

The authors would like to thank Jinsong Zhong (Jiaxing Yun cut Online Technology Co., Ltd) for 

the kind help with providing real-world instances. This research was supported by the Philosophy and 

Social Science Planning Project of Zhejiang, China (Grant No. 23NDJC156YB).  

Conflict of interest 

The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper.  

References 

1. T. Wang, C. Li, Y. Yuan, J. Liu, I. B. Adeleke, An evolutionary game approach for manufacturing 

service allocation management in cloud manufacturing, Comput. Ind. Eng., 133 (2019), 231–240. 

https://doi.org/10.1016/j.cie.2019.05.005 

2. H. Bo, Y. Zheng, Y. Li, S. He, Manufacturing resource outsourcing and matching: service mode 

selection and equilibrium evolution, J. Oper. Res. Soc., 76 (2025), 772–789. 

https://doi.org/10.1080/01605682.2024.2392797 

 

https://doi.org/10.1016/j.cie.2019.05.005
https://doi.org/10.1080/01605682.2024.2392797


1164 

 

Journal of Industrial and Management Optimization  Volume 22, Issue 2, 1140–1167. 

3. Q. Zhang, N. Li, J. Duan, J. Qin, Y. Zhou, Resource scheduling optimisation study considering 

both supply and demand sides of services under cloud manufacturing, Systems, 12 (2024), 133. 

https://doi.org/10.3390/systems12040133 

4. H. Akbaripour, M. Houshmand, T. V. Woensel, N. Mutlu, Cloud manufacturing service selection 

optimization and scheduling with transportation considerations: mixed-integer programming 

models, Int. J. Adv. Manuf. Technol., 95 (2018), 43–70. https://doi.org/10.1007/s00170-017-1167-3 

5. H. Tong, J. Zhu, A customer-oriented method to support multi-task green scheduling with diverse 

time-of-use prices in Cloud Manufacturing, Proc. Inst. Mech. Eng. B: J. Eng. Manuf., 237 (2023), 

911–924. https://doi.org/10.1177/09544054221121848 

6. W. Peng, W. Guo, L. Wang, R. Y. Liang, Dynamic pricing in cloud manufacturing systems under 

combined effects of consumer structure, negotiation, and demand, Math. Probl. Eng., 2017 (2017), 

2073585. https://doi.org/10.1155/2017/2073585 

7. Y. S. Hao, Y. S. Fan, J. Zhang, Service recommendation based on description reconstruction in 

cloud manufacturing, Int. J. Comput. Integr. Manuf., 32 (2019), 294–306. 

https://doi.org/10.1080/0951192X.2019.1571242 

8. S. Zhang, W. Yang, S. Xu, W. Zhang, Control, A hybrid social network-based collaborative 

filtering method for personalized manufacturing service recommendation, Int. J. Comput 

Commun Control., 12 (2017), 728–740. https://doi.org/0000-0002-6405-584X 

9. L. Wang, T. Gao, B. Zhou, H. Tang, F. Xiang, Manufacturing service recommendation method 

toward industrial internet platform considering the cooperative relationship among enterprises, 

Expert Syst. Appl., 192 (2022), 116391. https://doi.org/10.1016/j.eswa.2021.116391 

10. Z. C. Liu, L. Wang, X. X. Li, S. Pang, A multi-attribute personalized recommendation method for 

manufacturing service composition with combining collaborative filtering and genetic algorithm, 

J. Manuf. Syst., 58 (2021), 348–364. https://doi.org/10.1016/j.jmsy.2020.12.019 

11. J. Liu, Y. Chen, Q. Liu, B. Tekinerdogan, A similarity-enhanced hybrid group recommendation 

approach in cloud manufacturing systems, Comput. Ind. Eng., 178 (2023), 109128. 

https://doi.org/10.1016/j.cie.2023.109128 

12. H. Bouzary, F. F. Chen, A classification-based approach for integrated service matching and 

composition in cloud manufacturing, Rob. Comput. Integr. Manuf., 66 (2020), 101989. 

https://doi.org/10.1016/j.rcim.2020.101989 

13. X. B. Zhu, J. Shi, F. J. Xie, R. Q. Song, Pricing strategy and system performance in a cloud-based 

manufacturing system built on blockchain technology, J. Intell. Manuf., 31 (2020), 1985–2002. 

https://doi.org/10.1007/s10845-020-01548-3 

14. X. Xue, S. F. Wang, L. J. Zhang, Z. Y. Feng, Evaluating of dynamic service matching strategy for 

social manufacturing in cloud environment, Future Gener. Comput. Syst., 91 (2019), 311–326. 

https://doi.org/10.1016/j.future.2018.08.028 

15. X. Xue, Y. M. Kou, S. F. Wang, Z. Z. Liu, Computational experiment research on the equalization-

oriented service strategy in collaborative manufacturing, IEEE Trans. Serv. Comput., 11 (2016), 

369–383. https://doi.org/10.1109/TSC.2016.2569082 

16. P. Cong, J. Zhou, M. Chen, T. Wei, Personality-guided cloud pricing via reinforcement learning, 

IEEE Trans. Cloud Comput., 10 (2020), 925–943. https://doi.org/10.1109/TCC.2020.2992461 

 

https://doi.org/10.3390/systems12040133
https://doi.org/10.1007/s00170-017-1167-3
https://doi.org/10.1177/09544054221121848
https://doi.org/10.1155/2017/2073585
https://doi.org/10.1080/0951192X.2019.1571242
https://doi.org/0000-0002-6405-584X
https://doi.org/10.1016/j.eswa.2021.116391
https://doi.org/10.1016/j.jmsy.2020.12.019
https://doi.org/10.1016/j.cie.2023.109128
https://doi.org/10.1016/j.rcim.2020.101989
https://doi.org/10.1007/s10845-020-01548-3
https://doi.org/10.1016/j.future.2018.08.028
https://doi.org/10.1109/TSC.2016.2569082
https://doi.org/10.1109/TCC.2020.2992461


1165 

 

Journal of Industrial and Management Optimization  Volume 22, Issue 2, 1140–1167. 

17. Y. P. Zhang, Y. Cheng, H. T. Zheng, F. Tao, Long-short-term preference based dynamic pricing 

and manufacturing service collaboration optimization, IEEE Trans. Ind. Inf., 18 (2022), 8948–

8956. https://doi.org/10.1109/tii.2022.3153663 

18. A. Kastius, R. Schlosser, Dynamic pricing under competition using reinforcement learning, J. 

Revenue Pricing Manag., 21 (2021), 50–63. https://doi.org/10.1057/s41272-021-00285-3 

19. X. Xue, D. Y. Zhou, F. Y. Chen, X. N. Yu, Z. Y. Feng, Y. C. Duan, et al., From soa to voa: a shift 

in understanding the operation and evolution of service ecosystem, IEEE Trans. Serv. Comput. 16 

(2021), 315–329. https://doi.org/10.1109/TSC.2021.3134718 

20. M. Bisceglia, R. Cellini, L. Siciliani, O. R. Straume, Optimal dynamic volume-based price 

regulation, Int. J. Ind Organiz., 73 (2020), 102675. 

https://doi.org/10.1016/j.ijindorg.2020.102675 

21. G. Gallego, G. V. Ryzin, Optimal dynamic pricing of inventories with stochastic demand over 

finite horizons, Manage. Sci., 40 (1994), 999–1020. https://doi.org/10.1287/mnsc.40.8.999 

22. Y. Wu, P. Liu, Pricing strategies for shared manufacturing platform considering cooperative 

advertising based on differential game, PLoS One, 19 (2024), e0303928. 

https://doi.org/10.1371/journal.pone.0303928 

23. R. Bi, F. Wu, S. Yuan, Leadership-driven pricing and customization in collaborative 

manufacturing: a platform dynamics perspective, J. Theor. Appl. Electron. Commer. Res., 20 

(2025), 222. https://doi.org/10.3390/jtaer20030222 

24. L. Sun, G. Hua, T. Cheng, Y. Wang, How to price 3D-printed products? Pricing strategy for 3D 

printing platforms, Int. J. Prod. Econ., 226 (2020), 107600. 

https://doi.org/10.1016/j.ijpe.2019.107600 

25. F. Tao, Y. Zuo, L. D. Xu, L. Zhang, IoT-based intelligent perception and access of manufacturing 

resource toward cloud manufacturing, IEEE Trans. Ind. Inf., 10 (2014), 1547–1557. 

https://doi.org/10.1109/TII.2014.2306397 

26. X. V. Wang, X. W. Xu, An interoperable solution for cloud manufacturing, Rob. Comput. Integr. 

Manuf., 29 (2013), 232–247. https://doi.org/10.1016/jscim.2013.01.005 

27. X. Cao, H. Bo, Y. Liu, X. Liu, Effects of different resource-sharing strategies in cloud 

manufacturing: A stackelberg game-based approach, Int. J. Prod. Res., 61 (2023), 520–540. 

https://doi.org/10.1080/00207543.2021.2010824 

28. P. K. Kopalle, K. Pauwels, L.Y. Akella, M. Gangwar, Dynamic pricing: Definition, implications 

for managers, and future research directions, J. Retailing., 99 (2023), 580–593. 

https://doi.org/10.1016/j.jretai.2023.11.003 

29. O. Besbes, A. Zeevi, On the (surprising) sufficiency of linear models for dynamic pricing with 

demand learning, Manage. Sci., 61 (2015), 723–739. https://doi.org/10.1287/mnsc.2014.2031 

30. Y. Wu, X. Zhou, Q. Xia, L. Peng, Resource scheduling method for equipment maintenance based 

on dynamic pricing model in cloud manufacturing, Appl. Sci., 13 (2023), 12483. 

https://doi.org/10.3390/app132212483 

31. J. Zheng, Y. Gan, Y. Liang, Q. Jiang, J. Chang, Joint strategy of dynamic ordering and pricing for 

competing perishables with Q‐Learning algorithm, Wirel. Commun. Mob. Comput., 2021 (2021), 

6643195. https://doi.org/10.1155/2021/6643195 

 

https://doi.org/10.1109/tii.2022.3153663
https://doi.org/10.1057/s41272-021-00285-3
https://doi.org/10.1109/TSC.2021.3134718
https://doi.org/10.1016/j.ijindorg.2020.102675
https://doi.org/10.1287/mnsc.40.8.999
https://doi.org/10.1371/journal.pone.0303928
https://doi.org/10.3390/jtaer20030222
https://doi.org/10.1016/j.ijpe.2019.107600
https://doi.org/10.1109/TII.2014.2306397
https://doi.org/10.1016/jscim.2013.01.005
https://doi.org/10.1080/00207543.2021.2010824
https://doi.org/10.1016/j.jretai.2023.11.003
https://doi.org/10.1287/mnsc.2014.2031
https://doi.org/10.3390/app132212483
https://doi.org/10.1155/2021/6643195


1166 

 

Journal of Industrial and Management Optimization  Volume 22, Issue 2, 1140–1167. 

32. M. Salb, L. Jovanovic, A. Elsadai, N. Bacanin, V. Simic, D. Pamucar, et al., Cloud spot instance 

price forecasting multi-headed models tuned using modified PSO, J. King Saud Univ. Sci., 36 

(2024), 103473. https://doi.org/10.1016/j.jksus.2024.103473 

33. A. Guizzardi, F. M. E. Pons, G. Angelini, E. Ranieri, Big data from dynamic pricing: A smart 

approach to tourism demand forecasting, Int. J. Forecast., 37 (2021), 1049–1060. 

https://doi.org/10.1016/j.ijforecast.2020.11.006 

34. Q. Ma, S. Feng, J. Liu, Dynamic pricing and demand forecasting: Integrating time-series analysis, 

regression models, machine learning, and competitive analysis, Appl. Comput. Eng., 93 (2024), 

149–154. https://doi.org/10.54254/2755-2721/93/20240935 

35. C. Zhao, L. Zhang, Y. Liu, Z. Zhang, G. Yang, B. H. Li, Agent-based simulation platform for 

cloud manufacturing, Int. J. Model. Simul. Sci. Comput., 8 (2017), 1742001. 

https://doi.org/10.1007/s00170-015-7221-0 

36. C. Zhao, X. Luo, L. Zhang, Modeling of service agents for simulation in cloud manufacturing, 

Rob. Comput. Integr. Manuf., 64 (2020), 101910. https://doi.org/10.1016/j.rcim.2019.101910 

37. Y. Hu, L. Pan, D. Gu, Z. Wang, H. Liu, Y. Wang, Matching of manufacturing resources in cloud 

manufacturing environment, Symmetry, 13 (2021), 1970. https://doi.org/10.3390/sym13101970 

38. J. Zhang, C. Wang, Supply–demand dynamic matching in cloud manufacturing based on 

hypernetwork model, Appl. Sci., 15, (2025), 1747. https://doi.org/10.3390/app15041747 

39. L. Guo, S. Wang, L. Kang, Y. Cao, Agent-based manufacturing service discovery method for cloud 

manufacturing, Int. J. Adv. Manuf. Technol., 81 (2015), 2167–2181. 

https://doi.org/10.1007/s00170-015-7221-0 

40. K. Li, T. Zhou, B. H. Liu, H. Li, A multi-agent system for sharing distributed manufacturing 

resources, Expert Syst. Appl., 99 (2018), 32–43. https://doi.org/10.1016/j.eswa.2018.01.027 

41. H. Bouzary, F. F. Chen, K. Krishnaiyer, Service matching and selection in cloud manufacturing: 

a state-of-the-art review, Proc. Manuf., 26 (2018), 1128–1136. 

https://doi.org/10.1016/j.promfg.2018.07.149 

42. A. Simeone, Y. Zeng, A. Caggiano, Intelligent decision-making support system for manufacturing 

solution recommendation in a cloud framework, Int. J. Adv. Manuf. Technol., 112 (2021), 1035–

1050. https://doi.org/10.1007/s00170-020-06389-1 

43. F. Fkih, Similarity measures for collaborative filtering-based recommender systems: review and 

experimental comparison, J. King Saud. Univ. Comput. Inf. Sci., 34 (2022), 7645–7669. 

https://doi.org/10.1016/j.jksuci.2021.09.014 

44. A. Dolgui, J. M. Proth, Pricing strategies and models, Annu. Rev. Control., 34 (2010), 101–110. 

https://doi.org/10.1016/j.arcontrol.2010.02.005 

45. X. Chang, J. Li, D. Rodriguez, Q. Su, Agent-based simulation of pricing strategy for agri-products 

considering customer preference, Int. J. Prod. Res., 54 (2016), 3777–3795. 

https://doi.org/10.1080/00207543.2015.1120901 

46. I. Dogan, A. R. Güner, A reinforcement learning approach to competitive ordering and pricing 

problem, Expert Syst. Appl., 32 (2015), 39–48. https://doi.org/10.1111/exsy.12054 

47. A. Bhanu, G. C. Nath, T. Patnaik, Unlocking liquidity through shortened settlement cycle: 

Empirical evidence from India, Econ. Lett., 239 (2024), 111736. 

https://doi.org/10.1016/j.econlet.2024.111736 

https://doi.org/10.1016/j.jksus.2024.103473
https://doi.org/10.1016/j.ijforecast.2020.11.006
https://doi.org/10.54254/2755-2721/93/20240935
https://doi.org/10.1007/s00170-015-7221-0
https://doi.org/10.1016/j.rcim.2019.101910
https://doi.org/10.3390/sym13101970
https://doi.org/10.3390/app15041747
https://doi.org/10.1007/s00170-015-7221-0
https://doi.org/10.1016/j.eswa.2018.01.027
https://doi.org/10.1016/j.promfg.2018.07.149
https://doi.org/10.1007/s00170-020-06389-1
https://doi.org/10.1016/j.jksuci.2021.09.014
https://doi.org/10.1016/j.arcontrol.2010.02.005
https://doi.org/10.1080/00207543.2015.1120901
https://doi.org/10.1111/exsy.12054
https://doi.org/10.1016/j.econlet.2024.111736


1167 

 

Journal of Industrial and Management Optimization  Volume 22, Issue 2, 1140–1167. 

48. X. Xue, Z. J. Chen, S. F. Wang, Z. Y. Feng, Y. C. Duan, Z. B. Zhou, Value entropy: A systematic 

evaluation model of service ecosystem evolution, IEEE Trans. Serv. Comput., 15 (2020), 1760–

1773. https://doi.org/10.1109/TSC.2020.3016660 

49. C. Panico, C. Cennamo, User preferences and strategic interactions in platform ecosystems, 

Strategic Manage. J., 43 (2022), 507–529. https://doi.org/10.1002/smj.3149 

© 2026 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

 

https://doi.org/10.1109/TSC.2020.3016660
https://doi.org/10.1002/smj.3149

