Research article Special Issues

Production and inventory rationing in an unreliable Make-to-Stock System under preventive maintenance policy

  • Published: 13 January 2026
  • Primary: 90B30, 91-10; Secondary: 65-11

  • This paper proposes a joint optimization approach for the production decision-making and inventory allocation in a fault-prone machine Make-to-Stock System, considering both production-side uncertainties and demand-side uncertainties, these factors often cause operational inefficiencies, higher costs and lower customer satisfaction, thus highlighting the need to integrate maintenance strategies into production-inventory management. A model based on Markov decision theory is presented to more accurately reflect real-world production processes, utilizing a preventive repair maintenance strategy, which focuses on repairing the machine only when it fails, as opposed to traditional fixed-cycle or fixed-threshold maintenance strategies. To tackle the complex structure of the optimal control strategy, the paper employs a numerical algorithm for updating the optimal strategy. Computational experiments are conducted to explain the properties of the optimal control strategies and emphasize the importance of considering a maintenance factor in the system. The study highlights the significance of effective production inventory system management, with the conclusion that the optimal control strategy is a machine-state-dependent threshold strategy.

    Citation: Ting Jin, Yuting Yan, Houcai Shen. Production and inventory rationing in an unreliable Make-to-Stock System under preventive maintenance policy[J]. Journal of Industrial and Management Optimization, 2026, 22(2): 880-910. doi: 10.3934/jimo.2026032

    Related Papers:

  • This paper proposes a joint optimization approach for the production decision-making and inventory allocation in a fault-prone machine Make-to-Stock System, considering both production-side uncertainties and demand-side uncertainties, these factors often cause operational inefficiencies, higher costs and lower customer satisfaction, thus highlighting the need to integrate maintenance strategies into production-inventory management. A model based on Markov decision theory is presented to more accurately reflect real-world production processes, utilizing a preventive repair maintenance strategy, which focuses on repairing the machine only when it fails, as opposed to traditional fixed-cycle or fixed-threshold maintenance strategies. To tackle the complex structure of the optimal control strategy, the paper employs a numerical algorithm for updating the optimal strategy. Computational experiments are conducted to explain the properties of the optimal control strategies and emphasize the importance of considering a maintenance factor in the system. The study highlights the significance of effective production inventory system management, with the conclusion that the optimal control strategy is a machine-state-dependent threshold strategy.



    加载中


    [1] T. Jin, X. Yang, H. Xia, H. Ding, Reliability index and option pricing formulas of the first-hitting time model based on the uncertain fractional-order differential equation with caputo type. Fractals, 29 (2021), 2150012. https://doi.org/10.1142/S0218348X21500122
    [2] B. Li, J. Xu, T. Jin, Y. Shu, Piecewise parameterization for multifactor uncertain system and uncertain inventory-promotion optimization, Knowl.-Based Syst., 255 (2022), 109683. https://doi.org/10.1016/j.knosys.2022.109683 doi: 10.1016/j.knosys.2022.109683
    [3] R. Shi, C. You, Dynamic pricing and production control for perishable products under uncertain environment, Fuzzy Optim. Decis. Making, (2022), 1–28.
    [4] Y. G. Kim, G. H. Yang, B. D. Chung, Estimated model-based robust optimization of closed-loop supply chain under uncertain carbon tax rates and demand, Comput. Ind. Eng., (2023), 109368.
    [5] A. A. Taleizadeh, H. Samimi, B. Sarkar, B. Mohammadi, STOCHASTIC MACHINE BREAKDOWN AND DISCRETE DELIVERY IN AN IMPERFECT INVENTORY-PRODUCTION SYSTEM, J. Ind. Manage. Optim., 13 (2017), 1511–1535. https://doi.org/10.3934/jimo.2017005 doi: 10.3934/jimo.2017005
    [6] S. X. Zhou, Y. Yu, Optimal product acquisition, pricing, and inventory management for systems with remanufacturing, Oper. Res., 59 (2008), 514–521.
    [7] S. X. Zhou, Z. Tao, X. Chao, Optimal control of inventory systems with multiple types of remanufacturable products, Manuf. Serv. Oper. Manage., 13 (2011), 20–34. https://doi.org/10.1287/msom.1100.0298 doi: 10.1287/msom.1100.0298
    [8] J. Hu, P. Vakili, G. Yu, Optimality of hedging point policies in the production control of failure prone manufacturing systems, IEEE Trans. Autom. Control, 39 (1994), 1875–1880. https://doi.org/10.1109/9.317116 doi: 10.1109/9.317116
    [9] J. Hu, D. Xiang, Monotonicity of optimal flow control for failure-prone production systems, J. Optimiz. Theory Appl., 86 (1995), 57–71. https://doi.org/10.1007/BF02193461 doi: 10.1007/BF02193461
    [10] L. Knopik, K. Migawa, Semi-markov system model for minimal repair maintenance, Eksploat. Niezawodn., 21 (2019), 256–260.
    [11] M. M. Srinivasan, H. Lee, Random review production/inventory systems with compound poisson demands and arbitrary processing times, Manage. Sci., 37 (1991), 813-833. https://doi.org/10.1287/mnsc.37.7.813 doi: 10.1287/mnsc.37.7.813
    [12] D. Song, Optimal production and backordering policy in failure-prone manufacturing systems, IEEE Trans. Autom. Control, 51 (2006), 906–911. https://doi.org/10.1109/TAC.2006.872833 doi: 10.1109/TAC.2006.872833
    [13] D. Song, Y. Sun, Optimal control structure of an unreliable manufacturing system with random demands, IEEE Trans. Autom. Control, 44 (1999), 619–622. https://doi.org/10.1109/9.751363 doi: 10.1109/9.751363
    [14] Y. Feng, B. Xiao, Optimal threshold control in discrete failure-prone manufacturing systems, IEEE Trans. Autom. Control, 47 (2002), 1167–1174.
    [15] E. Boukas, A. Haurie, Manufacturing flow control and preventing maintenance: a stochastic control approach, IEEE Trans. Autom. Control, 35 (1990), 1024–1031. https://doi.org/10.1109/9.58530 doi: 10.1109/9.58530
    [16] S. W. Chiu, Production lot size problem with failure in repair and backlogging derived without derivatives, Eur. J. Oper. Res., 188 (2008), 610–615. https://doi.org/10.1016/j.ejor.2007.04.049 doi: 10.1016/j.ejor.2007.04.049
    [17] A. K. Sethi, S. P. Sethi, Flexibility in manufacturing: a survey, Int. J. Flex. Manuf. Syst., 2 (1990), 289–328. https://doi.org/10.1007/BF00186471 doi: 10.1007/BF00186471
    [18] E. L. Porteus, Optimal lot sizing, process quality improvement and setup cost reduction, Oper. Res., 34 (1986), 137–144. https://doi.org/10.1287/opre.34.1.137 doi: 10.1287/opre.34.1.137
    [19] W. P. Pierskalla, J. A. Voelker, A survey of maintenance models: the control and surveillance of deteriorating systems, Naval Res. Logistics Q., 23 (1976), 353–388. https://doi.org/10.1002/nav.3800230302 doi: 10.1002/nav.3800230302
    [20] S. M. Iravani, I. Duenyas, T. L. Olsen, A production/inventory system subject to failure with limited repair capacity, Oper. Res., 48 (2000), 951–964. https://doi.org/10.1287/opre.48.6.951.12389 doi: 10.1287/opre.48.6.951.12389
    [21] S. Iravani, I. Duenyas, Integrated maintenance and production control of a deteriorating production system, Iie Trans., 34 (2002), 423–435. https://doi.org/10.1023/A:1013596731865 doi: 10.1023/A:1013596731865
    [22] S. Sheu, Y. Lin, G. Liao, Optimal policies with decreasing probability of imperfect maintenance, IEEE Trans. Reliab., 54 (2005), 347–357.
    [23] G. A. Widyadana, H. M. Wee, An economic production quantity model for deteriorating items with preventive maintenance policy and random machine breakdown, Int. J. Syst. Sci., 43 (2012), 1870–1882.
    [24] K. Ito, S. Mizutani, T. Nakagawa, Optimal inspection models with minimal repair, Reliab. Eng. Syst. Saf., 201 (2020), 106946. https://doi.org/10.1016/j.ress.2020.106946 doi: 10.1016/j.ress.2020.106946
    [25] J. Navarro, A. Arriaza, A. Su$\acute{a}$rez-Llorens, Minimal repair of failed components in coherent systems, Eur. J. Oper. Res., 279 (2019), 951–964. https://doi.org/10.1016/j.ejor.2019.06.013 doi: 10.1016/j.ejor.2019.06.013
    [26] K. L. Cheung, W. H. Hausman, Joint determination of preventive maintenance and safety stocks in an unreliable production environment, Naval Res. Logistics, 44 (1997), 257–272. https://doi.org/10.1002/(SICI)1520-6750(199704)44:3<257::AID-NAV2>3.0.CO;2-7 doi: 10.1002/(SICI)1520-6750(199704)44:3<257::AID-NAV2>3.0.CO;2-7
    [27] X. Zhao, J. Cai, S. Mizutani, T. Nakagawa, Preventive replacement policies with time of operations, mission durations, minimal repairs and maintenance triggering approaches, J. Manuf. Syst., 61 (2021), 819–829. https://doi.org/10.1016/j.jmsy.2020.04.003 doi: 10.1016/j.jmsy.2020.04.003
    [28] E. Charlot, J. P. Kenn$\acute{e}$, S. Nadeau, Optimal production, maintenance and lockout/tagout control policies in manufacturing systems, Int. J. Prod. Econ., 107 (2007), 435–450. https://doi.org/10.1016/j.ijpe.2006.09.017 doi: 10.1016/j.ijpe.2006.09.017
    [29] E. Boukas, Q. Zhang, G. Yin, Robust production and maintenance planning in stochastic manufacturing systems, IEEE Trans. Autom. Control, 40 (1995), 1098–1102. https://doi.org/10.1109/9.388692 doi: 10.1109/9.388692
    [30] T. K. Das, S. Sarkar, Optimal preventive maintenance in a production inventory system, IIE Trans., 31 (1999), 537–551. https://doi.org/10.1023/A:1007602423336 doi: 10.1023/A:1007602423336
    [31] W. J. Hopp, N. Pati, P. C. Jones, Optimal inventory control in a production flow system with failures, Int. J. Prod. Res., 27 (1989), 1367–1384. https://doi.org/10.1080/00207548908942628 doi: 10.1080/00207548908942628
    [32] M. K. Salameh, R. E. Ghattas, Optimal just-in-time buffer inventory for regular preventive maintenance, Int. J. Prod. Econ., 74 (2001), 157–161. https://doi.org/10.1016/S0925-5273(01)00122-0 doi: 10.1016/S0925-5273(01)00122-0
    [33] E. G. Kyriakidis, T. D. Dimitrakos, Optimal preventive maintenance of a production system with an intermediate buffer, Eur. J. Oper. Res., 168 (2006), 86–99. https://doi.org/10.1016/j.ejor.2004.01.052 doi: 10.1016/j.ejor.2004.01.052
    [34] Z. Pang, H. Shen, T. C. E. Cheng, Inventory rationing in a maketo-stock system with batch production and lost sales, Prod. Oper. Manage., 23 (2014), 1243–1257. https://doi.org/10.1111/poms.12190 doi: 10.1111/poms.12190
    [35] X. Shi, H. Shen, T. Wu, T. C. E. Cheng, Production planning and pricing policy in a make-to-stock system with uncertain demand subject to machine breakdowns, Eur. J. Oper. Res., 238 (2014), 122–129.
    [36] T. C. E. Cheng, C. Gao, H. Shen, Production planning and inventory allocation of a single-product assemble-to-order system with failure-prone machines, Int. J. Prod. Econ., 131 (2011), 604–617.
    [37] C. Gao, H. Shen, T. C. E. Cheng, Order-fulfillment performance analysis of an assemble-to-order system with unreliable machines, Int. J. Prod. Econ., 126 (2010), 341–349. https://doi.org/10.1016/j.ijpe.2010.04.014 doi: 10.1016/j.ijpe.2010.04.014
    [38] L. Yang, X. Zhang, Z. Lu, Y. Fu, D. Moens, M. Beer, Reliability evaluation of a multi-state system with dependent components and imprecise parameters: A structural reliability treatment, Reliab. Eng. Syst. Safety, 250 (2024), 110240. https://doi.org/10.1016/j.ress.2024.110240 doi: 10.1016/j.ress.2024.110240
    [39] X. Yang, Y. He, R. Liao, Y. Cai, W. Dai, Mission reliability-centered opportunistic maintenance approach for multistate manufacturing systems, Reliab. Eng. Syst. Safety, 241 (2024), 109693. https://doi.org/10.1016/j.ress.2023.109693 doi: 10.1016/j.ress.2023.109693
    [40] R. Liao, Y. He, T. Feng, X. Yang, W. Dai, W. Zhang, Mission reliability-driven risk-based predictive maintenance approach of multistate manufacturing system, Reliab. Eng. Syst. Safety, 236 (2023), 109273. https://doi.org/10.1016/j.ress.2023.109273 doi: 10.1016/j.ress.2023.109273
    [41] S. Rajagopalan, Make to order or make to stock: model and application, Manage. Sci., 48 (2002), 241–256. https://doi.org/10.1287/mnsc.48.2.241.255 doi: 10.1287/mnsc.48.2.241.255
    [42] X. Yang, Z. Cai, T. Jin, Z. Tang, S. Gao, A three-phase search approach with dynamic population size for solving the maximally diverse grouping problem, Eur. J. Oper. Res., 302 (2022), 925–953. https://doi.org/10.1016/j.ejor.2022.02.003 doi: 10.1016/j.ejor.2022.02.003
    [43] A. Corana, M. Marchesi, C. Martini, S. Ridella, Minimizing multimodal functions of continuous variables with the "simulated annealing" algorithm corrigenda for this article is available here, Acm Trans. Math. Software, 13 (1987), 262–280. https://doi.org/10.1145/29380.29864 doi: 10.1145/29380.29864
  • jimo-22-02-032-s001.pdf
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(315) PDF downloads(22) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog