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Abstract: This paper proposes a joint optimization approach for the production decision-making
and inventory allocation in a fault-prone machine Make-to-Stock System, considering both
production-side uncertainties and demand-side uncertainties, these factors often cause operational
inefficiencies, higher costs and lower customer satisfaction, thus highlighting the need to integrate
maintenance strategies into production-inventory management. A model based on Markov
decision theory is presented to more accurately reflect real-world production processes, utilizing
a preventive repair maintenance strategy, which focuses on repairing the machine only when it
fails, as opposed to traditional fixed-cycle or fixed-threshold maintenance strategies. To tackle the
complex structure of the optimal control strategy, the paper employs a numerical algorithm for
updating the optimal strategy. Computational experiments are conducted to explain the properties
of the optimal control strategies and emphasize the importance of considering a maintenance
factor in the system. The study highlights the significance of effective production inventory
system management, with the conclusion that the optimal control strategy is a machine-state-
dependent threshold strategy.

Keywords: preventive maintenance; optimal control strategy; fault-prone machine; Markov
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1. Introduction

In today’s dynamic business environment, production and inventory systems are pivotal to
ensuring the seamless operation of modern enterprises, thereby enhancing customer satisfaction
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and reducing operational costs. However, the management and maintenance of such systems
remain inherently challenging due to the pervasive uncertainties and complexities associated
with demand forecasting, supply chain coordination, and production planning. Uncertainties
exert a substantial impact on production-inventory systems, often leading to elevated operational
costs, diminished efficiency, and decreased customer satisfaction. In particular,
production-related uncertainties—such as unforeseen equipment failures and prolonged
maintenance durations—can disrupt the production flow and trigger stock-outs. Similarly,
demand uncertainties, characterized by stochastic variations in customer arrival rates and order
quantities, may result in either overstocking, which increases holding costs and risks product
obsolescence or spoilage, or understocking, which contributes to higher shortage costs and
service-level deterioration. Consequently, effective management of production-inventory
systems must explicitly account for these uncertainties in order to optimize performance and
minimize total system cost.

A substantial body of literature has proposed diverse methodologies to address uncertainty
in production-inventory management. For instance, Jin et al. (2021) [1] developed a reliability
index and option pricing framework based on uncertain fractional-order differential equations,
offering novel insights into the integration of uncertainty within inventory systems. Similarly,
Li et al. (2022) [2] introduced a piecewise parameterization approach for multifactor uncertain
systems and examined optimization strategies for uncertain inventory-promotion interactions.
In a different domain, Shi et al. (2022) [3] investigated dynamic pricing and production control
for perishable goods under uncertainty. Additionally, Kim et al. (2023) [4] applied model-
based robust optimization techniques to closed-loop supply chains, accounting for uncertain
carbon tax rates and fluctuating demand. Taleizadeh, Ata Allah, et al. (2017) [5] focused on
stochastic machine breakdown and discrete delivery in imperfect inventory-production systems,
providing targeted insights into addressing production-side uncertainties (i.e., random machine
failures) while integrating discrete delivery constraints into inventory-production optimization.
Collectively, these studies offer valuable perspectives on managing uncertainty in production-
inventory systems.

Among the prevailing strategies in this field, controlled inventory allocation has emerged as a
widely adopted approach. To accurately represent customer demand and analyze the behavior of
production-inventory systems, researchers frequently employ queuing theory and queuing
network models. Zhou SX and Yu Y (2008) [6], Zhou SX and Tao Z (2011) [7] provide
comprehensive reviews on this topic, modeling the conversion of products into inventory to
satisfy customer demand, where unmet demand is immediately lost. Under the assumption of
exponential distributions, they characterize the machine state as a Markov decision process [8, 9]
and analyze the joint management of maintenance and inventory allocation strategies in
production-inventory systems. Neubauer (2019) [10] analyzes the application of semi-Markov
processes to constructing a four-state system for preventive replacements with minimal repair.
Research addressing production uncertainty spans discrete models [11–14] and fluid
models [15–17], collectively supporting the conclusion that the optimal production policy
typically follows a threshold structure dependent on the machine’s operational state. Porteus et
al. (1986) [18] examines production systems with deteriorating machine conditions; Pierskalla
and Voelker (1976) [19] develop maintenance models for deteriorating systems; Iravani et
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al. (2000) [20] investigate the joint optimization of production and maintenance policies in
unreliable settings, concluding that the optimal production strategy mirrors a basic inventory
replenishment rule; Iravani and Duenyas (2002) [21] extend this line of research by analyzing a
multi-state make-to-order system with machine degradation, jointly optimizing production and
maintenance decisions.

Preventive and corrective maintenance are widely regarded as primary strategies for
managing fault-prone machines in production-inventory systems [22, 23], often implemented
through age-based maintenance policies. Navarro (2020) and Ito (2019) [24, 25] investigate
minimal repair strategies within coherent systems. Contrasting traditional approaches that treat
preventive maintenance and inventory management separately, Cheung and
Hausman (1997) [26] propose an integrated framework that jointly optimizes both aspects.
Zhao (2021) [27] further suggests that effective replacement policies should adopt a
collaborative structure. Charlot et al. (2007) [28] extend the application of preventive
maintenance to accident prevention by introducing lockout/tagout and non-lockout/tagout
strategies. Regarding the structural properties of optimal control strategies, Dong and
You (1999) [13] analyze the convexity, monotonicity, and continuity of the optimal cost function;
Boukas et al. (1995) [29] formulate joint production and maintenance planning within a
stochastic manufacturing framework as a piecewise deterministic Markov decision process; Das
and Sarkar (1999) [30] determine the optimal timing for executing preventive maintenance
activities; Hopp et al. (1989) [31] and Salameh and Ghattas (2001) [32] emphasize the role of
periodic preventive maintenance in creating a temporary buffer between production and demand,
thereby mitigating uncertainty; Kyriakidis and Dimitrakos (2006) [33] develop a Markov
decision algorithm tailored for control-limited strategies in systems with deteriorating
machinery. Furthermore, Pang et al. (2014) [34] address an inventory rationing problem in a lost
sales make-to-stock (MTS) production system with batch ordering and multiple demand classes;
Shi et al. (2014) [35] consider a production control problem with a failure-prone machine.
Meanwhile, inspired by Cheng et al. (2011) [36] and Gao et al. (2010) [37], this study proposes
a novel approach that jointly optimizes production and distribution strategies in a
production-inventory system serving multiple customers.

In recent years, research on the maintenance and reliability of multi-state manufacturing
systems has continued to deepen, providing crucial support for modeling multi-state failing
machines in this paper. Yang.L et al. (2024) [38] proposed a structure-reliability-oriented
reliability assessment framework for multi-state systems with dependent components and
imprecise parameters. Their approach to handling random parameters aligns with the logic of
modeling machine degradation rates and maintenance durations in this paper. Yang.X et al.
(2024) [39] introduced an opportunistic maintenance approach centered on task reliability,
integrating physical and functional failure assessments to optimize maintenance portfolios,
thereby addressing the shortcomings of traditional maintenance research that overlooks
production task requirements. Liao et al. (2023) [40] constructed a risk-oriented predictive
maintenance model, clarifying the operational risk dimensions driven by task reliability,
providing practical reference for this paper’s integration of “maintenance-production-inventory”
to mitigate risks.
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Although the existing literature has made significant contributions to the field, gaps in
knowledge and methodology remain. Previous studies have considered various aspects of
production and demand uncertainties, but there is still a need for a more integrated and systematic
approach to optimize production-inventory systems in modern enterprises. In particular, a
framework that deeply integrates inventory allocation with maintenance strategies is still lacking
to comprehensively address the challenges arising from the interplay of production and demand
uncertainties.

To fill this gap, this paper proposes a novel approach that jointly optimizes inventory allocation
using a model based on Markov decision theory, while taking into account the cost of maintenance
activities. By considering both production and demand uncertainties, this study aims to provide
a more integrated and systematic approach to optimize make-to-stock (MTS) [41] production
inventory systems in modern enterprises. This approach is expected to contribute significantly
to the field by providing a more comprehensive solution to the challenges of production and
demand uncertainty.

This paper presents three key innovations: First, we propose an integrated framework that
jointly optimizes dynamic production control, multi-level inventory allocation, and adjustable
preventive maintenance strategies within a prone-to-failure make-to-stock production system—a
first in this field. Second, we establish a continuous-time Markov decision process model,
demonstrating that the optimal strategy is a threshold policy dependent on machine state and
analyzing its structural monotonicity properties. Finally, we reveal the intrinsic relationship
between maintenance and inventory, demonstrating that increasing preventive maintenance
intensity effectively reduces both optimal inventory levels and production costs. This provides
enterprises with a management solution that balances resilience and cost-effectiveness.

The structure of this paper is organized as follows. Section 2 presents a comprehensive
review of the existing literature on production-inventory systems under uncertainty, identifies
critical methodological gaps, and positions the novel contributions of this study. Section 3
outlines the proposed methodology, which is based on a Markov Decision Process (MDP)
framework incorporating an expected discounted total cost criterion. This formulation enables the
optimization of inventory allocation strategies over an infinite planning horizon while accounting
for fixed maintenance operations. To solve the MDP problem, dynamic programming algorithms
are employed to derive the optimal policy and corresponding value function. Section 4 reports
the results of computational experiments, demonstrating the effectiveness and advantages of the
proposed model and control strategy. Finally, Section 5 concludes the paper by summarizing key
findings and discussing their managerial implications for the design and operation of production-
inventory systems.

2. Model Formulation and Optimal Control Policy

In this section, we present a Markov decision model for a production-inventory system that
aims to minimize the expected discounted total cost within an infinite range.
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2.1. Summary of Parameter’s Meaning

In order to better understand our model, Table 1 lists the explanatory meanings of all symbols
in the text.

2.2. Model Description

Suppose there exists a filtered complete probability space (Ω,F, {Ft},P) that encompasses all
relevant stochastic elements of the system. Consider a production-inventory system consisting of
a single production unit, which manufactures one type of finished product to satisfy the demands
of n customer classes. The system state is denoted by a tuple (x, i), where x ∈ N+ represents
the current inventory level, and i ∈ {0, 1, . . . ,m} indicates the operational status of the machine
(consistent with Table 1: i = 0 for complete failure, i = m for full functionality, and 1 ≤ i ≤ m− 1
for partial functionality). Specifically, i = 0 corresponds to a fully failed machine, while i = m
denotes a fully functional state. The transition dynamics between machine states are governed
by the parameter ξi, for i ∈ {1, 2, . . . ,m}, ξi = i(1− s) quantifies the deterioration rate from state i
to i − 1 (dependent on preventive maintenance s); for i = 0, ξ0 > 0 quantifies the repair rate from
complete failure (state 0) to full functionality (state m) independent of s.

Whether and how the transition from state (x, i) occurs depends on three dynamic factors,
which can be described as follows:

1. Natural breakdown and repairment. For 0 < i ≤ m, the state (x, i) tends to decline to (x, i−1),
with the time between failures following an exponential distribution with parameter ξi. Here,
ξi is controlled by s, and ξi = r(i)(1 − s) is only valid for 1 ≤ i ≤ m (deterioration process),
where r(i) is fixed. For i = 0 (complete failure), the state (x, i) has two potential transition
modes after maintenance: one is full repair that restores the machine to the fully functional
state (x,m) with transition rate ξ0m; the other is partial repair that transitions the machine to
an intermediate operational state (x, k) (where 1 ≤ k ≤ m − 1) with transition rate ξ0k. The

sum of all transition rates from state i = 0 satisfies
m∑

k=1

ξ0k = ξ0, and the repair time for each

transition mode follows an exponential distribution with the corresponding rate parameter.

2. Production. The controller can choose a production rate µi ∈ [0, µ̄i] to product. In such
rate, the interval between the production of two consecutive goods follows an exponential
distribution with parameter µi. When a commodity is produced, the state tuple turns from
(x, i) to (x+ 1, i) for x > 0. Accordingly, it costs operating cost of qµi(t), where q represents
production cost. And we suppose µ̄m > µ̄m−1 > · · · > µ̄0 = 0.

3. A lost sale inventory system facing n types of demands. Each demand process is a Poisson
process with parameter λi. The controller has the power to satisfy the demands or not, based
on the principle of minimizing costs. If a demand is satisfied, the state tuple turns from
(x, i) to (x − 1, i) for x > 0. Or the controller pays an out-of-stock cost of ci. Commonly,
we suppose c1 > c2 > · · · > cm. If the inventory level is not positive, the customer will
immediately leave the system.

Accordingly, there are three factors controlling the policy π when the system is in state (x, i),
which can be described as follows:
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Table 1. Interpretation of symbols.

Symbol Explanation

ξi Deterioration rate from state i to state i − 1 (for i ∈ {1, 2, . . . ,m}); repair rate from
state 0 to state m (for i = 0). Constraints: ξi = r(i)(1 − s) for 1 ≤ i ≤ m (controlled
by preventive maintenance s); ξ0 > 0 (constant, independent of s)

r(i) Natural deterioration rate of the machine at state i, r(i) > 0 (constant). Constraint:
r(1) < r(2) < · · · < r(m) (deterioration rate increases with machine state
deterioration)

s Preventive maintenance degree, s ∈ [0, 1). Constraints: s = 0 (no preventive
maintenance); s→ 1− (maximum preventive maintenance intensity, minimizing
deterioration rate)

ck Out-of-stock cost when the demand of the k-th class customers is not satisfied,
c1 > c2 > · · · > cn > 0 (constant)

γ Discount factor, 0 < γ < 1 (constant)
h(x) Inventory holding costs; h(x) is convex, increasing and h(0) = 0, h(x) ≥ 0 for all

x ∈ N0

w(s) Maintenance costs; w(s) is convex, increasing, w(0) = 0 and lim
s→1−

w(s) = ∞,
w(s) ≥ 0 for all s ∈ [0, 1)

q Production cost per unit, q > 0 (constant)
µi Maximum production rate at state i. Constraints: µ0 = 0 (no production in failure

state); µ1 < µ2 < · · · < µm (production rate increases with machine state
improvement), µi ≥ 0

Nπk (t) The total out-of-stock quantity of the k-th class customers by time t under the
policy π, Nπk (t) ≥ 0 (integer)

λk Arrival rate of the k-th class customers, λk > 0 (constant)
V(x, i) The optimal expected discounted present value in state (x, i), V(x, i) ≥ 0
S ∗(i) Production threshold when the system is in state (x, i), S ∗(i) ∈ N0 (integer)
R∗k(x, i) Inventory allocation threshold for the k-th class customers in state (x, i),

R∗k(x, i) ∈ N0 (integer)
T The operator to represent the Markov decision process, defining the inventory

allocation rule (see Definition 4.1)
x Current inventory level, a non-negative integer (x ∈ N0, where N0 = {0, 1, 2, . . .})
i Operational status of the machine, where i ∈ {0, 1, . . . ,m}. Constraints: i = 0

(complete failure, no production); 1 ≤ i ≤ m − 1 (partial functionality, sorted by
decreasing efficiency); i = m (full functionality, maximum production rate)
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1. A preventive maintenance degree s ∈ [0, 1), leading to the deterioration rate ξi = r(i)(1 − s).

2. A production rate µi ∈ [0, µ̄i].

3. Whether to satisfy the arriving demands.

3. Expected Total Discounted Cost and Optimality Analysis

Before delving into the expected discounted cost criterion, it is necessary to clarify the
rationale for prioritizing this criterion. The expected discounted cost criterion is widely adopted
in long-horizon production-inventory optimization due to its ability to reflect the time value
of capital—assigning higher weights to near-term costs and lower weights to future costs,
which aligns with the financial management logic of enterprises. Additionally, this criterion
exhibits favorable mathematical tractability, facilitating the derivation of structural properties
of the optimal strategy (e.g., threshold characteristics) and laying a theoretical foundation for
subsequent analysis. Section 4 will extend the research to the average cost criterion, which
focuses on long-term steady-state cost performance, and compare the two criteria to validate the
robustness of the optimal strategy across different decision contexts.

3.1. The Expected Total Discounted Cost Criterion

The total cost of the system includes state transition costs, production costs, and out-of-stock
costs. State transition costs occur when the system state changes, and are comprised of holding
costs h(x(t)) and maintenance costs w(s). Production cost is represented by q, and µ(t) denotes
the production rate. Nπk (t) represents the total out-of-stock quantity of the k-th class of customers
by time t under the policy π. If the inventory is insufficient to meet the demand of the k-th class
of customers, an out-of-stock cost ck is incurred. The indefinite expected discounted total cost
associated with the system can be calculated over an infinite time horizon from 0 to positive
infinity, with a discount factor represented by γ. This total cost is expressed as:

V(x, i) = E

∫ +∞

0
e−γt
[h(x(t)) + w(s) + qµ(t)]dt +

n∑
i=1

cidNπi (t)

 (3.1)

For the purpose of finding the optimal strategy that results in the minimum expected total cost,
we use the set of all viable policies Π, and choose a specific policy π ∈ Π. The optimal policy is
denoted by π∗, and it results in the minimum expected total cost V(x, i), which is represented by
the optimal expected discount value in the current state that satisfies:

Vπ
∗

(x, i) = min
π∈Π
{Vπ(x, i)}

= min

E
∫ +∞

0
e−γt
[h(x(t)) + w(s) + qµ(t)]dt +

n∑
i=1

cidNπi (t)


 (3.2)

To obtain the structural properties of the optimal policy, it is necessary to get the Bellman
Equation of (3.2). As the arrival time intervals of customers, machine maintenance, and
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production process all follow exponential distributions with different parameters, the decision
process conforms to a continuous-time Markov decision processes.

Before getting the Bellman Equation, we need to clarify a property of Poisson process: labelet
N∆t is a Poisson process with parameter λ, then


P(N∆t = 0) = 1 − λ∆t + o(∆t),
P(N∆t = 1) = λ∆t

P(N∆t > 1) = o(∆t)

Therefore, we can get that the probability of each event (breakdown and repairment,
production, arrival of demands) occurring is infinitely small, with a value of ∆t. And the state
transition process from t to t + ∆t is shown in Figure 1.

Figure 1. State transition process from t to t + ∆t.

Then we devide the time [0,∞) into [0,∆t) ∪ [∆t,∞), that is
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V(x, k) = min E
∫ ∞

0
e−γt[(h(xt) + w(s) + qµ(t))dt +

m∑
i=1

cidNi(t)]

= min E{
∫ ∆t

0
+

∫ ∞

∆t
}[e−γt(h(xt) + w(s) + qµ(t))dt +

m∑
i=1

cidNi(t)]

= [h(xt) + w(s)]∆t

+ min
0<µk≤µ̄k

{min{qµk∆t + µk∆te−γ∆tV(x + 1, k), µk∆te−γ∆tV(x, k)}}

+

n∑
i=1

λi∆t min{V(x, k) + ci,V(x − 1, k)} + ξk∆tV(x, k − 1)

+ e−γ∆tV(x, k)[1 − ∆t(
n∑

i=1

λi + ξk + µk)] + o(∆t)

= [h(xt) + w(s)]∆t + min
0<µk≤µ̄k

{µk∆t min{q + V(x + 1, k),V(x, k)}}

+

n∑
i=1

λi∆t min{V(x, k) + ci,V(x − 1, k)} + ξk∆tV(x, k − 1)

+ V(x, k)[1 − ∆t(
n∑

i=1

λi + µk + ξk + γ)] + o(∆t)

= [h(xt) + w(s)]∆t + ∆t min
0≤µk≤µ̄k

{µk[q + V(x + 1, k) − V(x, k)]}

+ ∆t
n∑

i=1

λi min{V(x, k) + ci,V(x − 1, k)} + ∆tξkV(x, k − 1)

+ V(x, k)[1 − ∆t(
n∑

i=1

λi + ξk + γ)] + o(∆t)

Minus V(x, k), divide both sides by ∆t and let ∆t → 0, and then we can get

V(x, k)(γ +
n∑

i=1

λi + ξk)

= [h(x) + w(s)] + min
0≤µk≤µ̄k

{µk
[
q + V(x + 1, k) − V(x, k)

]
}

+

n∑
i=1

λi min{V(x, k) + ci,V(x − 1, k)} + ξkV(x, k − 1)

Add both sides by

V(x, k)(
m∑

i=0,i,k

ξi +

m∑
i=1

µi)

We get
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V(x, k)(γ +
n∑

i=1

λi +

m∑
i=0

ξi +

m∑
i=1

µi)

=h(x) + w(s) + min
0≤µk≤µ̄k

{µk
[
q + V(x + 1, k) − V(x, k)

]
}

+

n∑
i=1

λi min{V(x, k) + ci,V(x − 1, k)} + ξkV(x, k − 1)

+

 m∑
i=0,i,k

ξi +

m∑
i=1

µi)

V(x, k)

=h(x) + w(s) + min
0≤µk≤µ̄k

{µk min[q + V(x + 1, k),V(x, k)]}

+

n∑
i=1

λi min{V(x, k) + ci,V(x − 1, k)} + ξkV(x, k − 1)

+

 m∑
i=0,i,k

ξi +

m∑
l=1,l,k

µl)

V(x, k)

Denote E1 = γ +

n∑
i=1

λi +

m∑
i=0

ξi +

m∑
i=1

µi, and let E1 = 1. We will get

V(x, k) = h(x) + w(s) + min
0≤µk≤µ̄k

{µk min[q + V(x + 1, k),V(x, k)]}

+

n∑
i=1

λi min{V(x, k) + ci,V(x − 1, k)} + ξkV(x, k − 1)

+

 m∑
i=0,i,k

ξi +

m∑
l=1,l,k

µl)

V(x, k)

Definition 3.1. The optimal inventory allocation strategy of the production inventory system is
that when V (x − 1, i) < V (x, i) + ck, the system decides to deliver in response to the demand
of the k-th class of customers. Otherwise, the system does not deliver. The optimal production
decision is:

TkV (x, i) = min {V (x − 1, i) ,V (x, i) + ck} ,V(−1, i) = ∞

T iV (x, i) = min {V (x, i) ,V (x + 1, i) + q}

Definition 3.1 also implies that producing at the maximum rate is the optimal strategy when
the system decides to produce, while no production is the best strategy otherwise.

Therefore, based on Equation (3.2), the Bellman Equation for the system can be obtained
from as follows:

V(x, i) = TV(x, i) = h(x) + w(s)

+µ̄iI[q+V(x+1,k)−V(x,k)<0]T iV(x, i) + ξiV(x, i − 1) +
n∑

k=1

λkTkV(x, i)

+

 m∑
l=1,l,i

µl +

m∑
l=0,l,i

ξl

V(x, i)

(3.3)
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The inventory allocation strategy in the production inventory system is represented by the
operator T , which determines whether to fulfill the demand of arriving customers or not. Since
the deterioration rate ξi of machine state i (1 ≤ i ≤ m) is controlled by the preventive maintenance
degree s, satisfying ξi = r(i)(1 − s) (r(i) is the fixed natural deterioration rate), substitute it into
the above Bellman equation to replace the original ξi term: The terms related to ξi in the original

equation are ξiV(x, i − 1) and
m∑

l=1,l,i

ξlV(x, i), where ξl = r(l)(1 − s) (l , i), thus obtaining the

specific form of the above equation after substitution.
[Dimensional Consistency Verification]: All terms in the equation have the dimension of

“cost per unit time”, which is logically consistent to ensure the rigor of the derivation.
When the system is in state (x, i) with x, i > 1, the deterioration rate ξi can be substituted to

obtain

V(x, i) = TV(x, i) = h(x) + w(s)

+µ̄iI[q+V(x+1,k)−V(x,k)<0]T iV(x, i) + r(i)(1 − s)V(x, i − 1) +
n∑

k=1

λkTkV(x, i)

+[
m∑

l=0,l,i

µl +

m∑
l=1,l,i

r(l)(1 − s)+ξ0]V(x, i)

(3.4)

where the first and second terms represent the current inventory holding cost and maintenance
cost, respectively. The remaining terms represent the total expected cost of the system from the
next state transitions to infinity.

The optimal equation indicates that if the demand is satisfied with probability ξi, the state will
be transferred from i to (i − 1), while if the demand is not satisfied, the state transitions to (i).
Similarly, for the case when i = 0, we have

V(x, 0) = TV(x, 0) = h(x) + w(s) + ξ0V(x,m)

+

n∑
k=1

λkTkV(x, i) + [
m∑

l=1

µl +

m∑
l=1

r(l)(1 − s)]V(x, 0) (3.5)

In summary, Definition 3.1 for the optimal inventory allocation strategy in the production
inventory system is proposed in our study, which stipulates that if V(x − 1, i) < V(x, i) + ck, the
system should deliver in response to the demand of the k-th class of customers, otherwise it
should not deliver.

3.2. Optimality analysis

The structural properties of the optimal strategy can then be described by the optimal equation.
To facilitate the explanation, we introduce a difference operator on the state variables (x, i).

D1u(x, k) = u(x + 1, k) − u(x, k);

D2u(x, k) = u(x, k + 1) − u(x, k);

D11u(x, k) = D1D1u(x, k);

D12u(x, k) = D1D2u(x, k) = D21u(x, k) = D2D1u(x, k)
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Meanwhile, for the purpose of obtaining the structural properties of the optimal strategy of
the system, we introduce a set V defined on the state space of the system. We specify that if
u(x, i) ∈ V, then u(x, i) satisfies

P1. Convexity D11u(x, i) ≥ 0
P2. Upper bound D12u(x, i) ≥ 0
P3. Lower bound D1u(x, i) ≥ −c1

(3.6)

Proposition 3.1. ∀V ∈ V,TV ∈ V.

Proposition 3.1 states that if V is a set of functions that satisfy P1–P3, then the operator T
maps V to itself. To prove this proposition, we propose three sub-propositions that demonstrate
the satisfaction of the convexity, upper bound, and lower bound conditions, respectively.

The first sub-proposition, Proposition 3.2, states that

Proposition 3.2 (P1). For x, i ≥ 0, D11TV(x, i) ≥ 0.

If TV(x, i) retains property P1, then D1TV(x, i) is an increasing function of x.

Proof. See proof in Appendix .1. □

After establishing the validity of D11TkV(x, i) ≥ 0 in Proposition 3.2, we proceed to the
second sub-proposition, which addresses Property P2, the upper bound condition, as stated in
Proposition 3.3.

Proposition 3.3 (P2). For x, i ≥ 0, D12T iV(x, i) ≥ 0.

Proof. See proof in Appendix .2. □

After proving Proposition 3.3, we now turn our attention to the third sub-proposition which
deals with the lower bound condition, Property P3.

Proposition 3.4 (P3). For x, i ≥ 0, D1TV(x, i) ≥ −c1.

Proof. See proof in Appendix .3. □

Having established all three sub-propositions, we can naturally prove the main proposition.
Based on Propositions 3.2, 3.3, and 3.4, we conclude that the operator T maps the set of functions
V that satisfy properties P1–P3 to itself, that is, T (V) ⊂ V . Therefore, we restate Proposition 3.1
as the following theorem.

Theorem 3.1. ∀ V ∈ V,TV ∈ V.

Where V is the optimal cost function. The optimal strategy is a dynamic control strategy that
depends on the equipment status. The optimal production rate control strategy is a threshold
strategy that depends on the equipment status. The optimal inventory allocation strategy is a
dynamic control strategy that depends on the inventory level and the equipment status.
Specifically, when the system is in state (x, i), there exists a production threshold S ∗(i), when
x < S ∗(i), production is carried out at the maximum rate µ(i) = µ̄i, otherwise production is not
carried out. There exists an inventory allocation threshold R∗k(x, i), when x ≥ R∗k(x, i), the
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demand of the k-th type of customer is met, otherwise it is not met. This result is essential to the
overall analysis of the inventory allocation system and provides important insights into the
system’s behavior as follows.

Theorem 3.2. The optimal strategies hold the below structural properties:

1. S ∗(i) = min
x
{V(x + 1, i) − V(x, i) ≥ −q}

2. R∗k(i) = min
x
{V(x, i) − V(x − 1, i) ≥ −ck}

3. S ∗(z) ≤ S ∗(z − 1) ≤ · · · ≤ S ∗(1)

4. R∗1(i) ≤ R∗2(i) ≤ · · ·R∗m(i)

5. R∗k(z) ≤ R∗k(z − 1) ≤ · · ·R∗k(0)

6. The demand of the first type of customer must be met.

Proof. Properties 1 and 2 follow directly from the convexity of V(x, i) (P1), which implies the
optimal production/inventory allocation strategies are state-dependent threshold policies.
Property 3 is derived from the upper bound property (P2): V(S ∗(i) + 1, i + 1) − V(S ∗(i), i + 1) ≥
V(S ∗(i) + 1, i) − V(S ∗(i), i) ≥ −q, so we have S ∗(i + 1) ≤ S ∗(i).
Property 4 stems from V(R∗k(i), i) − V(R(i) − 1, i) ≥ −ci ≥ −ci−1, leading to R∗k−1(x, i) ≤ R∗k(x, i).
Property 5 is obtained via the definition of R∗(k) and P1, ensuring R∗(i + 1) ≤ R(i).
Property 6 is a direct consequence of Property 3.
Detailed formula derivations and full scenario analyses are provided in Appendix .4 □

Theorem 3.3. Let maintenance factors s1 and s2 respectively corresponding to Vs1(x, i) and
Vs2(x, i), such that D1V(0, i, s1) ≤ −c1 and ∀x : 0 ≤ x ≤ x0,D1(x, i, s2) ≤ −q,D1(x+1, i, s2) > −q.
If D1V(x, i, s2) − D1V(x, i, s1) ≥ 0, then D1TV(x, i, s2) − D1TV(x, i, s1) ≥ 0.

Proof. We begin by observing that if D1(0, i, s1) ≤ −c1, then ∀x : 0 ≤ x ≤ x0,D1(x, i, s2) ≤
−q,D1(x + 1, i, s2) > −q holds true. Therefore, to prove the theorem, it suffices to demonstrate
that if D1V(x, i, s2)−D1V(x, i, s1) ≥ 0, then D1TV(x, i, s2)−D1V(x, i, s1) ≥ 0. This is equivalent
to proving the following inequalities:

D1 min
x
{V(x + 1, i, s2) + q,V(x, i, s2)} − D1 min

x
{V(x + 1, i, s1) + q,V(x, i, s1)} ≥ 0 (3.7)

D1 min
x
{V(x, i, s2) + ck,V(x − 1, i, s2)} − D1 min

x
{V(x, i, s1) + ck,V(x − 1, i, s1)} ≥ 0 (3.8)

Detailed algebraic expansions and scenario-specific verifications are provided in Appendix .5
□

Based on the preceding theorem, we conclude that an increase in the maintenance factor s
leads to a reduction in the optimal stock level for a given machine state. This result underscores
the critical role of preventive maintenance in lowering production thresholds and enhancing the
overall efficiency of the inventory allocation system. By elucidating the relationship between
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maintenance intensity and optimal control policies, decision-makers can better schedule
maintenance activities and improve system performance.

Figure 2. Structure of the Optimal Control Policy.

Figure 2 offers a three-dimensional visualization of the optimal control structure, illustrating
both the production and inventory allocation thresholds as functions of machine state i and
maintenance factor s. In the figure, S ∗(i) denotes the production threshold associated with
machine state i, determining whether production should occur. The green and blue lines represent
S ∗(1) and S ∗(2), respectively, indicating that production proceeds at the maximum allowable rate
when x < S ∗(i). Notably, we observe that S ∗(2) < S ∗(1), implying that the production threshold
declines as the machine condition improves. Moreover, for a fixed machine state, the optimal
stock level consistently decreases with increasing maintenance intensity.

The three lines at the bottom of the graph represent the inventory allocation threshold,
suggesting whether to allocate or not. When x > R∗k(z), the demand of the k-th class customers
is satisfied. Taking state 1 as an example, we can see that only the demand of the 1-th class
cutstomers is satisfied and the demand of the 2-th class customers isn’t when optimal control
policy is under inventory alloction threshold R∗2(1). Obviously, R∗2(0) > R∗2(1) > R∗2(2), indicating
the inventory alloction threshold decreases with the machine state improves. Furthermore, with
the increase of the maintenance factor s, the optimal control policy decreases.

4. The Average Expected Cost Criterion

Referring to [37], we can express the average cost function of the system operating in π mode
with initial state (x, i) as follows:

gπ(x, i) = lim
τ→+∞

1
τ

E

∫ τ

0

[h(x(t)) + w(s) + qµ(t)]dt +
n∑

i=1

ci dNπi (t)


If there is an optimal strategy π∗, the optimal strategy satisfies the following conditions:

gπ
∗

(x, i) = min
π

gπ(x, i)
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Consider a control strategy denoted by π′ where the preventive maintenance degree is set at
s. Full production is initiated in all states following a first-come-first-served (FCFS) customer
strategy if the inventory level falls below this threshold. Under this condition, the system satisfies
ergodicity and has an average cost constant g independent of the initial state. The set of (x, i)
satisfying h(x) + qµi < g − w(s) is finite.

Similarly, there exists an optimal average cost constant g∗ and a set f (x, i) such that x ≥ 1.



E∗ f (x,2)+g=h(x)+w(s)+µ2T 2 f (x,2)+r(2)(1−s) f (x,1)+

 n∑
j=1

λ jT j+

k∑
m,i

µm+

k∑
m,i,0

r(m)(1−s)+ξ0

 f (x,2)

E∗ f (x,1)+g=h(x)+w(s)+µ1T 1 f (x,1)+r(2)(1−s) f (x,0)+

 n∑
j=1

λ jT j+

k∑
m,i

µm+

k∑
m,i,0

r(m)(1−s)+ξ0

 f (x,1)

E∗ f (x,0)+g=h(x)+w(s)+ξ0 f (x,2)+
n∑
j=1

λ jT j f (x,1)+

 k∑
m=1

µm+

k∑
m=1

r(i)(1−s)

 f (x,0)

(4.1)
The above equations can be rewritten as

f (x, i) = T ′ f (x, i) =
1
E∗
[
T f (x, i) − g∗

]
x ≥ 1

where E∗ = E1 − γ. It is clear that the formula still satisfies properties P1–P3.
The case where x = 0 will not be further elaborated.
Based on the findings in [37], we can draw a similar conclusion that the optimal control

strategy for the average cost criterion exhibits analogous characteristics to that of the expected
discounted cost criterion. Specifically, it adopts a threshold strategy that is decided by the state
of the system as well.

4.1. Structural properties

In this section, we will present the structural properties of the optimal policy for our system.
As we have proven that ∀V ∈ V,TV ∈ V, it leads to the result below:

Theorem 4.1. The optimal strategy is a dynamic control strategy that depends on the system
state, including the optimal maintenance and inventory allocation strategies.

Specifically, this theorem highlights that the optimal maintenance strategy is a threshold
strategy that depends on the state of the equipment, which decides whether or not to produce.
The optimal inventory allocation strategy is a dynamic control strategy that depends on the
inventory level, which decides whether or not to deliver.

5. Stationary Analysis

In this section, we analyze the steady-state behavior of the system, which involves two
customer classes and three machine states, including failure. Based on the state space defined in
Section 2.2, we conduct a stationary analysis of the system dynamics.
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The system considers two types of customers and three discrete machine states: i = 0
(complete failure), i = 1 (partial functionality), and i = 2 (full functionality). Let x denote the
inventory level and i the machine state. Accordingly, the system state is represented by the tuple
(x, i) ∈ {(x, i) | 0 ≤ x ≤ S 1, i = 0, 1, 2}, where S 1 denotes the upper bound of the inventory level.

The system’s control strategy is determined jointly by the current machine state and inventory
level. Production decisions depend on whether the inventory has reached a state-dependent
threshold, and the inventory is updated accordingly. Similarly, the decision to serve second-class
customers is based on whether the current inventory exceeds a corresponding supply threshold.

Five threshold parameters govern the control policy: S 1, S 2, R0, R1, and R2. Here, S 1 and S 2

represent the production thresholds for machine states 1 and 2, respectively. The parameters R0,
R1, and R2 denote the inventory thresholds at which supply to second-class customers commences,
corresponding to machine states 0, 1, and 2, respectively.

The system strategy and control thresholds together form the control policy that determines
the system behavior over time. Furthermore, the balance equations for the system in steady-state
will also be derived and discuss the partial constraints involved in the calculation. Let px,i be the
probability that the system is steady in state (x, i), which can be also described as the limit state
of the finite-state Markov chain.

For machine state k = 2, the behavior of the system can be further classified into seven cases
based on the inventory level x. First, when x = S 1, the balance equation is given by

[λ1 + λ2 + r(2)(1 − s)]pS 1,2 = ξ0 pS 1,0

Second, when x = S 2 + 1, · · · , S 1 − 1, the equation is

[λ1 + λ2 + r(2)(1 − s)]px,2 = [λ1 + λ2]px+1,2 + ξ0 px,0

Third, when x = S 2, the equation is

[λ1 + λ2 + r(2)(1 − s)]pS 2,2 = [λ1 + λ2]pS 2+1,2 + ξ0 pS 2,0 + µ2 pS 2−1,2

Fourth, when x = R2 + 1, · · · , S 2 − 1, the equation is

λ1 + λ2 + r(2)(1 − s) + µ2]px,2 = [λ1 + λ2]px+1,2 + ξ0 px,0 + µ2 px−1,2

Fifth, when x = R2, the equation is

[λ1 + r(2)(1 − s) + µ2]pR2,2 = [λ1 + λ2]pR2+1,2 + ξ0 pR2,0 + µ2 pR2−1,2

Sixth, when x = 1, · · · ,R2 − 1, the equation is

[λ1 + r(2)(1 − s) + µ2]px,2 = λ1 px+1,2 + ξ0 px,0 + µ2 px−1,2

Finally, when x = 0, the equation is

[r(2)(1 − s) + µ2]p0,2 = λ1 p1,2 + ξ0 p0,0

For machine status k = 1, the behavior of the system can be similarly classified into five cases
based on the inventory level x. First, when x = S 1, the balance equation is given by
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[λ1 + λ2 + r(1)(1 − s)]pS 1,1 = r(2)(1 − s)pS 1,2 + µ1 pS 1−1,1

Second, when x = R1 + 1, · · · , S 1 − 1, the equation is

[λ1 + λ2 + r(1)(1 − s) + µ1]px,1 = [λ1 + λ2]px+1,1 + r(2)(1 − s)πi,2 + µ1 px−1,1

Third, when x = R1, the equation is

[λ1 + r(1)(1 − s) + µ1]pR1,1 = [λ1 + λ2]pR1+1,1 + r(2)(1 − s)pR1,2 + µ1 pR1−1,1

Fourth, when x = 1, · · · ,R1 − 1, the equation is

[λ1 + r(1)(1 − s) + µ1]px,1 = λ1 px+1,1 + r(2)(1 − s)px,2 + µ1 px−1,1

Fifth, when x = 0, the equation is

[r(1)(1 − s) + µ1]p0,1 = λ1 p1,1 + r(2)(1 − s)p0,2

For machine status k = 0, the behavior of the system can also be further classified into five
cases based on the inventory level x. First, when x = S 1, the balance equation is given by

[λ1 + λ2 + ξ0]pS 1,0 = r(1)(1 − s)pS 1,1

Second, when x = R0 + 1, · · · , S 1 − 1, the equation is

[λ1 + λ2 + ξ0]px,0 = [λ1 + λ2]px+1,0 + r(1)(1 − s)px,1

Third, when x = R0, the equation is

[λ1 + ξ0]pR0,0 = [λ1 + λ2]pR0+1,0 + r(1)(1 − s)pR0,1

Forth, when x = 1, · · · ,R0 − 1, the equation is

[λ1 + ξ0]px,0 = λ1 px+1,0 + r(1)(1 − s)px,1

Fifth, when x = 0, the equation is

ξ0π0,0 = λ1 p1,0 + r(1)(1 − s)p0,1

From the above formulas, we can obtain the following results.
For the cases where x = 0, we have

p1,0

p1,1

p1,2

 = 1
λ1


ξ0 −r(1)(1−s) 0
0 r(1)(1−s)+µ1 −r(2)(1−s)
−ξ0 0 r(2)(1−s)+µ2




p0,0

p0,1

p0,2

 . (5.1)
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When x = R2,

pR2+1,0

pR2+1,1

pR2+1,2


=



λ1+ξ0
λ1

−
r(1)(1−s)
λ1

0

0
λ1+r(1)(1−s)+µ1

λ1
−

r(2)(1−s)
λ1

−
ξ0
λ1+λ2

0
λ1+r(2)(1−s)+µ2

λ1+λ2





pR2,0

pR2,1

pR2,2



+



0 0 0

0 −
µ1

λ1
0

0 0 −
µ2

λ1+λ2





pR2−1,0

pR2−1,1

pR2−1,2



(5.2)

When x = R2+1, · · · ,R1 − 1,

px+1,0

px+1,1

px+1,2


=



λ1+ξ0
λ1

−
r(1)(1−s)
λ1

0

0
λ1+r(1)(1−s)+µ1

λ1
−

r(2)(1−s)
λ1

−
ξ0
λ1+λ2

0
λ1+λ2+r(2)(1−s)+µ2

λ1+λ2





px,0

px,1

px,2



+



0 0 0

0 −
µ1

λ1
0

0 0 −
µ2

λ1+λ2





px−1,0

px−1,1

px−1,2



(5.3)

When x = R1,

pR1+1,0

pR1+1,1

pR1+1,2


=



λ1+ξ0
λ1

−
r(1)(1−s)
λ1

0

0
λ1+r(1)(1−s)+µ1

λ1+λ2
−

r(2)(1−s)
λ1+λ2

−
ξ0
λ1+λ2

0
λ1+λ2+r(2)(1−s)+µ2

λ1+λ2





pR1,0

pR1,1

pR1,2



+



0 0 0

0 −
µ1

λ1+λ2
0

0 0 −
µ2

λ1+λ2





pR1−1,0

pR1−1,1

pR1−1,2



(5.4)
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When x = R1+1, · · · ,R0 − 1,

px+1,0

px+1,1

px+1,2


=



λ1+ξ0
λ1

−
r(1)(1−s)
λ1

0

0
λ1+λ2+r(1)(1−s)+µ1

λ1+λ2
−

r(2)(1−s)
λ1+λ2

−
ξ0
λ1+λ2

0
λ1+λ2+r(2)(1−s)+µ2

λ1+λ2





px,0

px,1

px,2



+



0 0 0

0 −
µ1

λ1+λ2
0

0 0 −
µ2

λ1+λ2





px−1,0

px−1,1

px−1,2



(5.5)

When x = R0,

pR0+1,0

pR0+1,1

pR0+1,2


=



λ1+ξ0
λ1+λ2

−
r(1)(1−s)
λ1+λ2

0

0
λ1+λ2+r(1)(1−s)+µ1

λ1+λ2
−

r(2)(1−s)
λ1+λ2

−
ξ0
λ1+λ2

0
λ1+λ2+r(2)(1−s)+µ2

λ1+λ2





pR0,0

pR0,1

pR0,2



+



0 0 0

0 −
µ1

λ1+λ2
0

0 0 −
µ2

λ1+λ2





pR0−1,0

pR0−1,1

pR0−1,2



(5.6)

When x = R0+1, · · · , S 2 − 1,

px+1,0

px+1,1

px+1,2


=



λ1+λ2+ξ0
λ1+λ2

−
r(1)(1−s)
λ1+λ2

0

0
λ1+λ2+r(1)(1−s)+µ1

λ1+λ2
−

r(2)(1−s)
λ1+λ2

−
ξ0
λ1+λ2

0
λ1+λ2+r(2)(1−s)+µ2

λ1+λ2





px,0

px,1

px,2



+



0 0 0

0 −
µ1

λ1+λ2
0

0 0 −
µ2

λ1+λ2





px−1,0

px−1,1

px−1,2



(5.7)
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When x = S 2,



pS 2+1,0

pS 2+1,1

pS 2+1,2


=



λ1+λ2+ξ0
λ1+λ2

−
r(1)(1−s)
λ1+λ2

0

0
λ1+λ2+r(1)(1−s)+µ1

λ1+λ2
−

r(2)(1−s)
λ1+λ2

−
ξ0
λ1+λ2

0
λ1+λ2+r(2)(1−s)

λ1+λ2





pS 2,0

pS 2,1

pS 2,2



+



0 0 0

0 −
µ1

λ1+λ2
0

0 0 −
µ2

λ1+λ2





pS 2−1,0

pS 2−1,1

pS 2−1,2



(5.8)

When x = S 2+1, · · · , S 1 − 1,



px+1,0

px+1,1

px+1,2


=



λ1+λ2+ξ0
λ1+λ2

−
r(1)(1−s)
λ1+λ2

0

0
λ1+λ2+r(1)(1−s)+µ1

λ1+λ2
−

r(2)(1−s)
λ1+λ2

−
ξ0
λ1+λ2

0
λ1+λ2+r(2)(1−s)

λ1+λ2





px,0

px,1

px,2



+



0 0 0

0 −
µ1

λ1+λ2
0

0 0 0





px−1,0

px−1,1

px−1,2



(5.9)

In addition, according to the first balance expression of each state, we have the following
constraints:
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

1 −
r(1)(1−s)
λ1+λ2+ξ0

0

0 1 −
λ1+λ2+r(2)(1−s)+µ1

λ1+λ2+r(1)(1−s)

−
ξ0

λ1+λ2+r(2)(1−s)
0 1





pS 1,0

pS 1,1

pS 1,2



=



0 0 0

0
µ1

λ1+λ2+r(1)(1−s)
0

0 0 0





pS 1−1,0

pS 1−1,1

pS 1−1,2



(5.10)

To obtain the final probability distribution, one can add up the probabilities across all possible
states and ensure that their sum equals 1.

S 1∑
x=0

2∑
i=0

px,i = 1 (5.11)

Therefore, the instant satisfaction rates f1, f2 of the two types of customers can be obtained as

f1 = 1 −
2∑

i=0

p0,i

f2 = 1 −
R0∑
x=0

px,0 −

R1∑
x=0

px,1 −

R2∑
x=0

px,2

By the above formulas, we can solve for the optimal control strategy that minimize the total
expected cost, that is, a set of thresholds based on inventory levels:

{S ∗(1), S ∗(2),R∗2(0),R∗2(1),R∗2(2)}

6. Numerical Simulation

This section presents computational experiments to evaluate the effectiveness of the proposed
optimal control policy. A simulated annealing (SA) algorithm is employed to iteratively update
the control strategy and identify the optimal policy for the system. Determining the optimal
strategy in a production-inventory environment constitutes an NP-hard problem, even under
simplified conditions. The objective is to minimize the total cost by treating the control policy as
a decision variable within the optimization framework.

Simulated annealing, a Monte Carlo-based stochastic optimization technique, is selected
because of its ability to escape local optima—an advantage over traditional gradient-based or
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hill-climbing algorithms. The optimization problem is formulated with respect to the structural
parameters of the system, and the transition probabilities between candidate solutions are
explicitly defined to guide the search process [42, 43].

To ensure the reproducibility of computational experiments, the core parameter settings of
the SA algorithm are supplemented as follows: initial temperature T0 = 1000, cooling rate
α = 0.95, maximum iterations per temperature N = 500, termination condition as temperature
drops to 10−6 or the relative change of the optimal objective function (total system cost) is less
than 1 × 10−6 for 100 consecutive iterations, neighborhood search step for threshold parameters
S ∗(i) and R∗k(x, i) set to 1 (integer adjustment) to match the discrete nature of inventory levels and
machine states, and acceptance probability function P(∆E) = exp(−∆E/T ) with ∆E denoting
the difference between the new solution cost and the current optimal cost and T being the current
temperature.

6.1. Cases Study

To be specific, we discuss a production inventory system that has a single device provided by
a single machine with three states (i = 0, 1, 2) to meet demands from two classes of customers
(x = 1, 2), corresponding to the machine failure factor. Two numerical cases are presented
to demonstrate the influence of different parameters on the optimal control strategy. Case
6.1 involves implementing threshold strategies for different preventive maintenance policies
under a fixed corrective maintenance approach. This scenario is applicable to companies where
some equipment, although difficult to repair once damaged, can be adjusted and preemptively
maintained during earlier stages. Case 6.2, conversely, involves implementing threshold strategies
for various corrective maintenance policies under a fixed preventive maintenance approach,
suitable for companies that prefer not to conduct early-stage maintenance but can promptly repair
and adjust equipment once failure occurs. Analysis of both cases indicates that under the same
parameters, the optimal threshold for adjusting preventive maintenance strategies is lower than
that for adjusting corrective maintenance strategies. This suggests that systems like those in Case
6.1 exhibit greater resilience, lower costs, and higher reliability.

Case 6.1. The production rates of a machine in its three states are µ0 = 0, µ1 = 5, and µ2 = 20.
The two customer classes have arrival rates of λ1 = 1 and λ2 = 10. The machine’s repair time
during a complete breakdown follows an exponential distribution with parameter ξ0 = 0.5. The
unit production cost is q = 0.5, and the unit maintenance cost is w(s) = 1 The shortage costs for
the two customer classes are c1 = 100 and c2 = 10. The machine’s natural damage rates in its
two operating states are r(1) = 1 and r(2) = 2. The maximum inventory level is xmax = 50. The
maintenance degree s ranging from 0.1 to 0.9 in increments of 0.1.

To obtain optimal production and inventory allocation strategies for this case, we formulated
the problem as an MDP model and derived the corresponding value function and constraints, as
described in the previous sections. However, due to the high complexity of the model, traditional
optimization methods were insufficient to obtain an optimal solution. We thus applied intelligent
optimization algorithm to search for the optimal policy. After 500 iterations for each temperature,
the algorithm converged and provided approximations of the optimal decisions for each system
state. The resulting optimal policy is characterized by a set of thresholds that define switching
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points between different production and inventory allocation strategies, as illustrated in Figure 3,
to show how it varies with changes in the maintenance parameter s.
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Figure 3. Optimal production policy structure for varying maintenance parameter s.

Figure 4. Heatmaps and radar charts for different s values.

As depicted in Figure 3, the optimal control policy in Case 1 is designed based on thresholds
for the inventory level, which depend on the maintenance parameter s. In line with Definition 3.1,
the policy is formulated based on S ∗(1) > S ∗(2) > R∗2(0) > R∗2(1) > R∗2(2). When the inventory
level x surpasses S ∗(1) and S ∗(2), the machines in states 1 and 2 serve both types of customers
without producing. If x exceeds R∗2(0), the machine is in a state of shutdown (state 0) but still
delivers to meet customer demand. When x exceeds R∗2(1) or R∗2(2), the machine is in state 1 or 2
and produces to satisfy all demand.

Figure 4 presents the heatmap and radar chart of the system’s optimal control strategy under
different preventive maintenance intensities s. The heatmap visually illustrates the gradual
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decline in production and inventory allocation thresholds across machine states as s increases,
corroborating the conclusion in Theorem 3.3 regarding the negative correlation between
maintenance intensity and inventory levels. The radar chart further compares the overall
structure of system strategies under different s values from multiple dimensions, highlighting the
regulatory role of maintenance strategies on the system’s overall performance.

It can be observed that the threshold levels decrease as the maintenance parameter s increases.
From a practical perspective, maintaining reasonable inventory levels in conjunction with an
effective maintenance strategy can help mitigate uncertainty in production and supply processes.
Higher maintenance intensity enables manufacturers to respond more swiftly to machine failures,
thereby reducing the risk of operational disruptions and minimizing the need for excessive
inventory buffering. However, it is essential to balance inventory holding costs and maintenance
expenses against the operational benefits to ensure optimal system performance in real-world
applications.

Additionally, the optimal stock level corresponding to machine state 1 is higher than that of
state 2, as the production capacity in state 1 exceeds that in state 2. Consequently, the expected
demand during state 1 is greater, justifying a higher inventory threshold.

These results demonstrate that the optimal control policy adopts a dynamic threshold strategy
that adapts to the current machine state. Specifically, the manufacturer increases production to
the maximum allowable rate whenever the inventory level falls below the threshold associated
with the machine’s current condition. As the maintenance level improves, the adverse impact
of machine failure on system operations diminishes, leading to progressively lower threshold
levels. Therefore, machine reliability emerges as a critical determinant in the design of optimal
production-inventory control policies.

Case 6.2. The production rates of a machine in its three states are µ0 = 0, µ1 = 5, and µ2 = 20.
The two customer classes have arrival rates of λ1 = 1 and λ2 = 10. The maintenance degree
s = 0.3.The unit production cost is q = 0.5, and the unit maintenance cost is w(s) = 1 The
shortage costs for the two customer classes are c1 = 100 and c2 = 10. The machine’s natural
damage rates in its two operating states are r(1) = 1 and r(2) = 2. The maximum inventory level
is xmax = 50. The machine’s repair time during a complete breakdown follows an exponential
distribution with parameter ξ0 ranging from 0.1 to 1 in increments of 0.1.

Figure 5 depicts the impact of various xi0 on the optimal control strategy in Case 6.2. The
relationship between stock levels and thresholds remains the same as described in Theorem
1. when the machine is in state 1 and the inventory level is greater than or equal to S ∗(1) and
S ∗(2), the machine does not produce but delivers to satisfy the demands of both customer classes.
Similarly, in state 0, when the inventory level is greater than or equal to R∗2(0) due to machine
failure, the machine does not produce but delivers to satisfy the demands of both customer
classes. Finally, the machine produces to meet the demands of both customer classes when it is
in state 1 and the inventory level is greater than or equal to R∗2(1) or when it is in state 2 and the
inventory level is greater than or equal to R∗2(2).
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Figure 5. Optimal production policy structure for varying maintenance parameter ξ0.

Figure 6. Heatmaps and radar charts for different ξ0 values

Figure 6 illustrates the influence of the repair rate ξ0on the optimal control strategy. As ξ0
increases (i.e., the average repair time decreases), both production and inventory allocation
thresholds for each machine state exhibit a downward trend. This indicates that the system can
maintain service levels with lower inventory levels under a more efficient repair mechanism. The
radar chart further reveals coordinated changes in the system strategy across multiple dimensions,
demonstrating how repair capability enhances the overall scheduling flexibility of the system.

Furthermore, the numerical results indicate that all threshold levels decrease as the parameter
ξ0 increases. The optimal manufacturertrategy involves suspending production for maintenance
while still delivering products to meet customer demand. A shorter maintenance time implies
less impact of machine failure on the overall operation of the system.

6.2. Benefit from The Optimal Control Policy

In conclusion, the results of the computational experiments demonstrate the validity and
precision of the model in this document and the solution approach to the complex problem of
production and inventory allocation under machine failure. The numerical results show that
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the optimal production and inventory allocation strategies are dependent on the machine state
and threshold values, and can be obtained through the application of intelligent optimization
algorithm combined with the MDP model. Moreover, the numerical experiments indicate that
the proposed approach can effectively reduce the impact of machine failures on the system by
improving maintenance levels, and thus decrease total costs. In general, the proposed model
and solution approach provides a useful tool for decision makers in the field of production and
inventory management under machine failure.

6.3. Convergence Stability Analysis

To rigorously validate the stability and robustness of the obtained optimal thresholds, we
conducted additional experiments with two distinct sets of initial threshold values:

• Initial Set 1 (High): S ∗(1) = 30, S ∗(2) = 25
• Initial Set 2 (Low): S ∗(1) = 20, S ∗(2) = 15

For both initial settings, the inventory allocation thresholds R∗2(0),R∗2(1),R∗2(2) were initialized
proportionally. The SA algorithm was executed under each initial configuration using the
convergence criteria specified in Section 6.

The results, summarized in Table 2, demonstrate that both initializations converge to identical
optimal thresholds: S ∗(1) = 28, S ∗(2) = 22, R∗2(0) = 23, R∗2(1) = 20, R∗2(2) = 16. The total
expected cost difference between the two converged solutions is less than 0.5%. This consistency
across different initial settings ultimately verifies that the optimal control strategy is independent
of the initial threshold, demonstrating the algorithm’s robustness.

Table 2. Convergence Results under Different Initial Thresholds (Case 6.1, s = 0.5).

Initial Setting S ∗(1) S ∗(2) R∗2(0) R∗2(1) R∗2(2) Total Cost (CNY)

Set 1 (High) 28 22 23 20 16 1089.6

Set 2 (Low) 28 22 23 20 16 1085.2

7. Conclusion and Future Research

This study presents a comprehensive joint optimization framework that integrates production
decision-making and inventory allocation in a fault-prone supply chain system. By explicitly
modeling production and supply uncertainties alongside the impact of machine failures, the
framework emphasizes the strategic value of preventive repair and maintenance. This unified
approach provides a holistic solution for managing the complexities of machine-dependent
production environments. Through the proactive mitigation of machine failure risks, firms can
reduce downtime, stabilize production flows, and enhance overall system resilience.
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Leveraging Markov decision theory under an infinite-horizon expected discounted cost
criterion, we analytically derive the structural properties of the optimal inventory allocation
and maintenance policies. The resulting threshold-based strategies offer critical insights into
dynamic system behavior. Stationary analysis further enriches our understanding of the system’s
long-term performance. Visualizations in three dimensions highlights the interplay between
machine states, inventory levels, and maintenance efforts, providing an intuitive representation
of the threshold dynamics. Computational experiments using a simulated annealing algorithm
confirm the robustness and practical value of the proposed approach. The results demonstrate
significant improvements in system stability and reliability while efficiently managing production
and demand uncertainties and minimizing long-term maintenance costs.

The optimized inventory strategy not only achieves cost reduction, but also exhibits strong
resilience under uncertainty, reaffirming the essential role of preventive maintenance in
maintaining operational robustness. By preventing unexpected disruptions, preventive strategies
enhance reliability and reduce the cumulative cost of corrective actions. These findings highlight
the critical importance of embedding preventive repair in production-inventory systems to
maintain long-term operational stability.

Nonetheless, the current model operates under certain assumptions, such as
Poisson-distributed demand and fixed batch sizes. While these assumptions provide analytical
tractability, they may limit the model’s generality. Future research could explore extensions to
more realistic settings by relaxing these assumptions, incorporating variable batch sizes, and
modeling non-Poisson demand processes. In particular, further investigation is warranted into
backlog systems under flexible production conditions and varying demand rates, which may
offer additional managerial insights.

Looking ahead, promising research directions include extending the model to multi-product
and multi-machine settings, as well as exploring alternative or hybrid maintenance strategies.
The integration of predictive and condition-based maintenance with preventive policies may
further improve system reliability and cost efficiency.

In essence, this research advances the state of the art by integrating preventive maintenance
and inventory optimization into a unified control framework. It demonstrates how such synergy
can significantly enhance system resilience in fault-prone environments. The study’s main
contribution lies in its holistic perspective on managing operational uncertainty, offering both
theoretical insights and practical guidance for the design of robust production-inventory systems
in dynamic settings.
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28. E. Charlot, J. P. Kenné, S. Nadeau, Optimal production, maintenance and lockout/tagout
control policies in manufacturing systems, Int. J. Prod. Econ., 107 (2007), 435–450.
https://doi.org/10.1016/j.ijpe.2006.09.017

29. E. Boukas, Q. Zhang, G. Yin, Robust production and maintenance planning in
stochastic manufacturing systems, IEEE Trans. Autom. Control, 40 (1995), 1098–1102.
https://doi.org/10.1109/9.388692

30. T. K. Das, S. Sarkar, Optimal preventive maintenance in a production inventory system, IIE
Trans., 31 (1999), 537–551. https://doi.org/10.1023/A:1007602423336

31. W. J. Hopp, N. Pati, P. C. Jones, Optimal inventory control in a production
flow system with failures, Int. J. Prod. Res., 27 (1989), 1367–1384.
https://doi.org/10.1080/00207548908942628

32. M. K. Salameh, R. E. Ghattas, Optimal just-in-time buffer inventory for regular preventive
maintenance, Int. J. Prod. Econ., 74 (2001), 157–161. https://doi.org/10.1016/S0925-
5273(01)00122-0

33. E. G. Kyriakidis, T. D. Dimitrakos, Optimal preventive maintenance of a production
system with an intermediate buffer, Eur. J. Oper. Res., 168 (2006), 86–99.
https://doi.org/10.1016/j.ejor.2004.01.052

34. Z. Pang, H. Shen, T. C. E. Cheng, Inventory rationing in a maketo-stock system
with batch production and lost sales, Prod. Oper. Manage., 23 (2014), 1243–1257.
https://doi.org/10.1111/poms.12190

35. X. Shi, H. Shen, T. Wu, T. C. E. Cheng, Production planning and pricing policy in a make-to-
stock system with uncertain demand subject to machine breakdowns, Eur. J. Oper. Res., 238
(2014), 122–129.

36. T. C. E. Cheng, C. Gao, H. Shen, Production planning and inventory allocation of a single-
product assemble-to-order system with failure-prone machines, Int. J. Prod. Econ., 131
(2011), 604–617.

Journal of Industrial and Management Optimization Volume 22, Issue 2, 880–910.

https://dx.doi.org/https://doi.org/10.1016/j.ress.2020.106946
https://dx.doi.org/https://doi.org/10.1016/j.ejor.2019.06.013
https://dx.doi.org/https://doi.org/10.1002/(SICI)1520-6750(199704)44:3<257::AID-NAV2>3.0.CO;2-7
https://dx.doi.org/https://doi.org/10.1016/j.jmsy.2020.04.003
https://dx.doi.org/https://doi.org/10.1016/j.ijpe.2006.09.017
https://dx.doi.org/https://doi.org/10.1109/9.388692
https://dx.doi.org/https://doi.org/10.1023/A:1007602423336
https://dx.doi.org/https://doi.org/10.1080/00207548908942628
https://dx.doi.org/https://doi.org/10.1016/S0925-5273(01)00122-0
https://dx.doi.org/https://doi.org/10.1016/S0925-5273(01)00122-0
https://dx.doi.org/https://doi.org/10.1016/j.ejor.2004.01.052
https://dx.doi.org/https://doi.org/10.1111/poms.12190


910

37. C. Gao, H. Shen, T. C. E. Cheng, Order-fulfillment performance analysis of an assemble-
to-order system with unreliable machines, Int. J. Prod. Econ., 126 (2010), 341–349.
https://doi.org/10.1016/j.ijpe.2010.04.014

38. L. Yang, X. Zhang, Z. Lu, Y. Fu, D. Moens, M. Beer, Reliability evaluation
of a multi-state system with dependent components and imprecise parameters:
A structural reliability treatment, Reliab. Eng. Syst. Safety, 250 (2024), 110240.
https://doi.org/10.1016/j.ress.2024.110240

39. X. Yang, Y. He, R. Liao, Y. Cai, W. Dai, Mission reliability-centered opportunistic
maintenance approach for multistate manufacturing systems, Reliab. Eng. Syst. Safety, 241
(2024), 109693. https://doi.org/10.1016/j.ress.2023.109693

40. R. Liao, Y. He, T. Feng, X. Yang, W. Dai, W. Zhang, Mission reliability-driven risk-based
predictive maintenance approach of multistate manufacturing system, Reliab. Eng. Syst.
Safety, 236 (2023), 109273. https://doi.org/10.1016/j.ress.2023.109273

41. S. Rajagopalan, Make to order or make to stock: model and application, Manage. Sci., 48
(2002), 241–256. https://doi.org/10.1287/mnsc.48.2.241.255

42. X. Yang, Z. Cai, T. Jin, Z. Tang, S. Gao, A three-phase search approach with dynamic
population size for solving the maximally diverse grouping problem, Eur. J. Oper. Res., 302
(2022), 925–953. https://doi.org/10.1016/j.ejor.2022.02.003

43. A. Corana, M. Marchesi, C. Martini, S. Ridella, Minimizing multimodal functions
of continuous variables with the “simulated annealing” algorithm corrigenda for
this article is available here, Acm Trans. Math. Software, 13 (1987), 262–280.
https://doi.org/10.1145/29380.29864

© 2026 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Journal of Industrial and Management Optimization Volume 22, Issue 2, 880–910.

https://dx.doi.org/https://doi.org/10.1016/j.ijpe.2010.04.014
https://dx.doi.org/https://doi.org/10.1016/j.ress.2024.110240
https://dx.doi.org/https://doi.org/10.1016/j.ress.2023.109693
https://dx.doi.org/https://doi.org/10.1016/j.ress.2023.109273
https://dx.doi.org/https://doi.org/10.1287/mnsc.48.2.241.255
https://dx.doi.org/https://doi.org/10.1016/j.ejor.2022.02.003
https://dx.doi.org/https://doi.org/10.1145/29380.29864
https://creativecommons.org/licenses/by/4.0

	Introduction
	Model Formulation and Optimal Control Policy
	Summary of Parameter's Meaning 
	Model Description

	Expected Total Discounted Cost and Optimality Analysis
	The Expected Total Discounted Cost Criterion 
	Optimality analysis

	The Average Expected Cost Criterion
	Structural properties

	Stationary Analysis
	Numerical Simulation
	Cases Study
	Benefit from The Optimal Control Policy
	Convergence Stability Analysis

	Conclusion and Future Research

